32,060 research outputs found

    Local light-ray rotation

    Full text link
    We present a sheet structure that rotates the local ray direction through an arbitrary angle around the sheet normal. The sheet structure consists of two parallel Dove-prism sheets, each of which flips one component of the local direction of transmitted light rays. Together, the two sheets rotate transmitted light rays around the sheet normal. We show that the direction under which a point light source is seen is given by a Mobius transform. We illustrate some of the properties with movies calculated by ray-tracing software.Comment: 9 pages, 6 figure

    Metamaterials for light rays: ray optics without wave-optical analog in the ray-optics limit

    Get PDF
    Volumes of sub-wavelength electromagnetic elements can act like homogeneous materials: metamaterials. In analogy, sheets of optical elements such as prisms can act ray-optically like homogeneous sheet materials. In this sense, such sheets can be considered to be metamaterials for light rays (METATOYs). METATOYs realize new and unusual transformations of the directions of transmitted light rays. We study here, in the ray-optics and scalar-wave limits, the wave-optical analog of such transformations, and we show that such an analog does not always exist. Perhaps, this is the reason why many of the ray-optical possibilities offered by METATOYs have never before been considered.Comment: 10 pages, 3 figures, references update

    Electric field induced charge noise in doped silicon: ionization of phosphorus donors

    Full text link
    We report low frequency charge noise measurement on silicon substrates with different phosphorus doping densities. The measurements are performed with aluminum single electron transistors (SETs) at millikelvin temperatures where the substrates are in the insulating regime. By measuring the SET Coulomb oscillations, we find a gate voltage dependent charge noise on the more heavily doped substrate. This charge noise, which is seen to have a 1/f spectrum, is attributed to the electric field induced tunneling of electrons from their phosphorus donor potentials.Comment: 4 page, 3 figure

    Displacement operators: the classical face of their quantum phase

    Full text link
    In quantum mechanics, the operator representing the displacement of a system in position or momentum is always accompanied by a path-dependent phase factor. In particular, two non-parallel displacements in phase space do not compose together in a simple way, and the order of these displacements leads to different displacement composition phase factors. These phase factors are often attributed to the nonzero commutator between quantum position and momentum operators, but such a mathematical explanation might be unsatisfactory to students who are after more physical insight. We present a couple of simple demonstrations, using classical wave mechanics and classical particle mechanics, that provide some physical intuition for the phase associated with displacement operators.Comment: 14 pages, 4 figures, reorganized and reformatte

    Mass inflation in a D dimensional Reissner-Nordstrom black hole: a hierarchy of particle accelerators ?

    Get PDF
    We study the geometry inside the event horizon of perturbed D dimensional Reissner-Nordstrom-(A)dS type black holes showing that, similarly to the four dimensional case, mass inflation also occurs for D>4. First, using the homogeneous approximation, we show that an increase of the number of spatial dimensions contributes to a steeper variation of the metric coefficients with the areal radius and that the phenomenon is insensitive to the cosmological constant in leading order. Then, using the code reported in arXiv:0904.2669 [gr-qc] adapted to D dimensions, we perform fully non-linear numerical simulations. We perturb the black hole with a compact pulse adapting the pulse amplitude such that the relative variation of the black hole mass is the same in all dimensions, and determine how the black hole interior evolves under the perturbation. We qualitatively confirm that the phenomenon is similar to four dimensions as well as the behaviour observed in the homogeneous approximation. We speculate about the formation of black holes inside black holes triggered by mass inflation, and about possible consequences of this scenario.Comment: 8 pages, 6 figure

    The effect of low-energy ion-implantation on the electrical transport properties of Si-SiO2 MOSFETs

    Full text link
    Using silicon MOSFETs with thin (5nm) thermally grown SiO2 gate dielectrics, we characterize the density of electrically active traps at low-temperature after 16keV phosphorus ion-implantation through the oxide. We find that, after rapid thermal annealing at 1000oC for 5 seconds, each implanted P ion contributes an additional 0.08 plus/minus 0.03 electrically active traps, whilst no increase in the number of traps is seen for comparable silicon implants. This result shows that the additional traps are ionized P donors, and not damage due to the implantation process. We also find, using the room temperature threshold voltage shift, that the electrical activation of donors at an implant density of 2x10^12 cm^-2 is ~100%.Comment: 11 pages, 10 figure
    corecore