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We study the geometry inside the event horizon of perturbed D dimensional Reissner-Nordström–(anti)

de Sitter type black holes showing that, similarly to the four dimensional case, mass inflation also occurs

forD> 4. First, using the homogeneous approximation, we show that an increase of the number of spatial

dimensions contributes to a steeper variation of the metric coefficients with the areal radius and that the

phenomenon is insensitive to the cosmological constant in leading order. Then, using the code reported in

[P. P. Avelino, A. J. S. Hamilton, and C.A. R. Herdeiro, Phys. Rev. D 79, 124045 (2009).] adapted to D

dimensions, we perform fully nonlinear numerical simulations. We perturb the black hole with a compact

pulse adapting the pulse amplitude such that the relative variation of the black hole mass is the same in all

dimensions and determine how the black hole interior evolves under the perturbation. We qualitatively

confirm that the phenomenon is similar to four dimensions as well as the behavior observed in the

homogeneous approximation. We speculate about the formation of black holes inside black holes

triggered by mass inflation, and about possible consequences of this scenario.
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I. INTRODUCTION

It is well established that the inner horizon of the
Reissner-Nordström (RN) black hole is unstable and
evolves into a curvature singularity when perturbed
[1–14]. The formation of this singularity is a consequence
of a large relativistic counter-streaming produced by the
perturbation in the vicinity of the inner horizon. Thus, the
black hole interior, when perturbed, effectively becomes a
particle accelerator, with center of mass energy swiftly
reaching Planckian regimes. One immediate consequence
is that Planckian and trans-Planckian physics becomes
relevant inside a black hole before the curvature scale of
the unperturbed black hole becomes Planckian (in the latter
case this should only occur close to the central curvature
singularity of the classical solution). Trans-Planckian scat-
tering is dominated by graviton exchange [15] and, for a
sufficiently small impact parameter, black holes should
form [16]. Thus, the above picture of mass inflation leads
us to the fascinating scenario where black holes could form
inside black holes.

In recent years, the physics of trans-Planckian scattering
has been intensively explored motivated by models of large
[17–19] or infinite [20,21] extra dimensions. In these sce-
narios the fundamental Planck scale could be considerably
smaller than the apparent four dimensional Planck scale

(1019 GeV) and black holes could even potentially be
formed in ongoing particle accelerator runs [22,23].
These black holes would be higher dimensional charged
black holes by virtue of the charge of the colliding partons.
Then, if these higher dimensional black holes also exhibit
the same type of mass inflation instability as their four
dimensional counterparts, we could have the amusing
scenario of a (black hole) particle accelerator inside a
(terrestrial) particle accelerator.
In this paper we show that higher dimensional charged

black holes exhibit mass inflation, quite analogous to their
four dimensional counterparts (see [24] for a recent study
of lower dimensional black holes). More concretely we
consider dynamical charged black hole solutions which
generalize the standard Reissner-Nordström solution in D
dimensional Einstein-Maxwell theory coupled to a cosmo-
logical constant (Secs. II, III, and IV). The role of the latter
is shown to be quite irrelevant by considering the homoge-
neous approximation (Sec. V), which also allows the ob-
servation that the phenomenon is faster (in terms of the
areal radius) as one increases the dimension, for the same
(perturbation) energy density placed at the same areal
radius. We then perform full numerical simulations of a
compact wave packet falling into the black hole (Sec. VI),
using the code described in [1]. To make a comparison
between the different dimensions, we perform runs in
D ¼ 4, 5, 6, 7 varying the amplitude of the pulse in such
a way that the relative black hole mass variation is con-
stant, approximately 25%. We exhibit the dynamics of the
inner (and also of the outer) horizon, which is qualitatively
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quite similar in all dimensions. We also display the
behavior of the mass function and areal radius inside the
horizon, from which a qualitative agreement with the ob-
servations made for the homogeneous approximation may
be inferred.

II. ACTION AND FIELD EQUATIONS

Consider the Einstein-Maxwell action with a cosmologi-
cal constant and minimally coupled to a scalar field in a D
dimensional spacetime:

S ¼
Z

dDx
ffiffiffiffiffiffiffi�g

p �
R� ðD� 1ÞðD� 2Þ

3
�þ 16�LM

�
;

(1)

where R is the Ricci scalar and � is the cosmological
constant. LM is the matter Lagrangian, which we will
assume to be the sum of the usual Maxwell contribution,
LF, and the contribution from a self-gravitating real mass-
less scalar field ’:

LM ¼ LF þL’ ¼ � F2

16�
� 1

8�
’;�’

;�; (2)

where F2 ¼ F��F
�� and F�� is the Maxwell tensor. Our

signature choice is �þþþ . . . . The energy-momentum
tensor of the matter fields is given by FT�� þ ’T��, where

FT�� ¼ 1

4�

�
F��F�

� � 1

4
g��F

2

�
; (3)

’T�� ¼ 1

4�

�
’;�’;� � 1

2
g��’;�’

;�

�
: (4)

The equations of motion derived from (1) with (2) are the
gravitational equations

G�� þ ðD� 1ÞðD� 2Þ
6

�g�� ¼ 8�ðFT�� þ ’T��Þ; (5)

the matter equations

h’ ¼ 0; d ? F ¼ 0; (6)

where ? denotes Hodge dual.

III. D DIMENSIONAL REISSNER-NORDSTRÖM–
(ANTI)DE SITTER

A well known solution to this system is that of a D
dimensional spherically symmetric [i.e. with spatial isome-
try SOðD� 1Þ) charged black hole in asymptotically
(anti)–de-Sitter spacetime, first discussed by Tangherlini
[25] (see also [26]). The fields read

ds2 ¼ �fðrÞdt2 þ dr2

fðrÞ þ r2d�D�2; (7)

F ¼ � Q

rD�2
dt ^ dr; ’ ¼ 0; (8)

where d�D�2 is the line element on the (D� 2)-sphere
and

fðrÞ ¼ 1� 2M

rD�3
þ q2

r2ðD�3Þ �
�

3
r2: (9)

We have chosen the coefficient of the cosmological
constant term in the gravitational action such that the �
term in the last equation is dimension independent. The
two metric parametersM and q are related to the Arnowitt-
Deser-Misner (ADM) mass and charge by

MADM ¼ ðD� 2ÞAD�2

8�
M; (10)

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD� 3ÞðD� 2Þ

2

s
q; (11)

whereAD�2 is the area of a (D� 2)-sphere of unit radius.
The solution has Killing horizons of the @=@t Killing

vector field at radial distances r obeying

r2ðD�3Þ � 2MrD�3 þ q2 ��

3
r2ðD�2Þ ¼ 0: (12)

If � ¼ 0, the solutions are a simple generalization of the
four dimensional case; the horizons are located at

r� ¼
�
M�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � q2

q �
1=ðD�3Þ

: (13)

Thus, the higher dimensional Reissner-Nordström-
Tangherlini black hole still has an inner, at r ¼ r�, and
an outer horizon, at r ¼ rþ, as long as M � jqj. In this
paper we shall always take M ¼ 1 and q ¼ 0:95 for the
unperturbed black hole.
If � � 0 one cannot, in general, provide an analytical

solution for (12). Qualitatively, if �< 0, the spacetime is
asymptotically anti–de-Sitter and there are no further
Killing horizons; if �> 0, the spacetime is asymptotically
de-Sitter and there may be further Killing horizons of
cosmological nature.

IV. ANSATZ WITH SPHERICAL SYMMETRY
IN DOUBLE-NULL COORDINATES

To solve numerically the coupled system (5) and (6) is,
in general, quite a difficult task. In fact, numerical relativ-
ity in higher dimensions is a very recent field (see, e.g.,.
[27–33] for general formulations with applications). Here
we are interested in spherically symmetric black holes,
perturbed in such a way that this symmetry is preserved.
This makes the system tractable. Thus, we take a spheri-
cally symmetric ansatz written in double-null coordinates:

ds2 ¼ �2e2�ðu;vÞdudvþ r2ðu; vÞd�D�2; (14)

F ¼ Fuvðu; vÞdu ^ dv; ’ ¼ ’ðu; vÞ; (15)
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where u and v are taken to be ingoing and outgoing,
respectively. For the unperturbed solution of the previous

section, ’ ¼ 0, e2�ðu;vÞ ¼ fðrÞ with

u ¼ 1ffiffiffi
2

p ðt� r�Þ; v ¼ 1ffiffiffi
2

p ðtþ r�Þ; (16)

and dr=dr� ¼ fðrÞ.
The Maxwell equations (6) are simply solved to yield

Fuvr
D�2e�2� ¼ constant ¼ Q; (17)

where

Q ¼ 1

2AD�2

I
F; (18)

is the electric charge. The electric field is therefore purely
radial, as expected from spherical symmetry. The scalar
field equation (6) gives

’;uv ¼ �D� 2

2r
ðr;v’;u þ r;u’;vÞ: (19)

The uu, vv, uv, and transverse components of the
Einstein equations (5), which are the only distinct non-
trivial ones, give rise to the following equations (the left-
hand sides of these equations are components of the
Einstein tensor G��):

2r;u�;u � r;uu
r

¼ 2

D� 2
ð’;uÞ2; (20)

2r;v�;v � r;vv
r

¼ 2

D� 2
ð’;vÞ2; (21)

ðD� 3Þðe2� þ 2r;vr;uÞ þ 2rr;uv
2r2e2�

¼ Q2

ðD� 2Þr2ðD�2Þ þ
D� 1

6
�; (22)

� ðD� 3Þ
�
ðD� 4Þ

�
e2�

2
þ r;ur;v

�
þ 2rr;uv

�
� 2r2�;uv

¼ e2�
�

Q2

r2ðD�3Þ �
ðD� 1ÞðD� 2Þ

6
�r2

�
þ 2r2’;u’;v:

(23)

For D ¼ 4, � ¼ 0, these equations reduce to the ones in
[1] with constant Brans-Dicke scalar.

Equations (22) and (23) are the evolution equations, that
determine the dynamical variables in the future of the
hypersurfaces where initial conditions are set (see Fig. 1
in [1]). In Eqs. (20) and (21), the contribution from the
energy-momentum of the scalar field is

T’
uu ¼ ð’;uÞ2

4�
; T’

vv ¼ ð’;vÞ2
4�

; (24)

respectively, which represent, physically, the flux of the
scalar field through surfaces of constant v and u, i.e.,
outflux and influx. We shall impose that, initially, only
influx exists. However, outflux is inevitably produced by
scattering off the spacetime geometry.

V. HOMOGENEOUS APPROXIMATION

In the homogeneous approximation one considers only r
dependence in the line element (see [1] for a discussion of
this approximation and references). That is we keep the
symmetry with respect to the @=@t Killing vector, which is
spacelike in between the inner and outer horizons of the
unperturbed solution. The spherically symmetric homoge-
neous line element is given by

ds2 ¼ gttðrÞdt2 þ grrðrÞdr2 þ r2d�D�2: (25)

The black hole charge will produce a purely radial electro-
static field. The Maxwell equations then yield

Ftr ¼ � Q

rD�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gttgrr
p

: (26)

The scalar field admits solely a radial dependence, and the
Klein-Gordon equation may be written as a first order
equation

’0 /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��������
grr
gtt

��������
s

1

rD�2
; (27)

where the prime denotes radial derivative. The tt and rr
components of the Einstein equations read, respectively,

D� 2

2r2grr

�
rg0rr þ ðD� 3Þgrrðgrr � 1Þ ��

3
ðD� 1Þr2g2rr

�

¼ Q2grr

r2ðD�2Þ þ ’02; (28)

D� 2

2r2gtt

�
rg0tt � ðD� 3Þgttðgrr � 1Þ þ�

3
ðD� 1Þr2grrgtt

�

¼ � Q2grr

r2ðD�2Þ þ ’02: (29)

Analytic analysis for the homogeneous approximation

The scalar field we have been considering may be
regarded as a perfect fluid (see, e.g., [34]) with

p ¼ � ¼ 4�L’: (30)

In the homogeneous approximation ’ ¼ ’ðrÞ. Then,
energy-momentum conservation for the scalar field yields

� ¼ �i

gtti
gtt

�
ri
r

�
2ðD�2Þ

; (31)

where �i, gtti, and ri are all integration constants; �i is the
density at the surface r ¼ ri, where gtt is gtti. In the mass
inflation region, we expect the variations of gtt and grr to
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be fast. Thus, we approximate (28) and (29) by, respec-
tively,

D� 2

2r

g0rr
grr

’ ’02; (32)

D� 2

2r

g0tt
gtt

’ ’02: (33)

Observe that the cosmological constant becomes irrele-
vant, in leading order. Moreover, we conclude that, as in
four dimensions, the radial and temporal components of
the metric should be approximately proportional

� grr / gtt: (34)

It follows from this result, together with (31) and (33) that

g0rr
grr

/ 1

r2D�5
) grr / e�ðR=rÞ2ðD�3Þ

; (35)

where

R ’ ri

� �2�ir
2
i gtti

ðD� 2ÞðD� 3Þ
grr
gtt

�
1=ð2ðD�3ÞÞ

; (36)

is roughly constant in the mass inflation region. The tran-
sition from the RN phase [where grr and gtt given approxi-
mately by Eqs. (7) and (9) with �grrgtt ¼ 1] to the mass
inflation phase [where Eq. (34) is approximately valid] is
rather sharp and can be defined by the equality of the two
terms on the right-hand side of Eqs. (28) and (29). Taking

into account that at the transition ð�grr=gttÞ1=2 ’ �grr ’
1=gtt, one finds that, in the mass inflation region,

� grr
gtt

¼ Q4

4�2
i g

2
ttir

4ðD�2Þ
i

: (37)

Taking the logarithm of grr and expanding it up to
linear order in r� r� in the mass inflation region
(r & r�) one gets

lngrr ’ 2ðD� 3Þ
�
R

r�

�
2ðD�3Þ r

r�
þ const: (38)

Using Eqs. (11), (13), and (36)–(38) one finally obtains

lngrr ’ fðM;qÞ ðD� 3Þ2ðD� 2Þ
�ir

2ðD�2Þ
i gtti

r

r�
þ const; (39)

with

fðM;qÞ ¼ q4

4ðM� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � q2

p Þ2
: (40)

This leads to the near straight lines in the mass inflation
region in Fig. 1, where we plot the variation of the radial
and temporal metric components for D ¼ 5. As in the four
dimensional case, Fig. 1 shows that mass inflation is more
abrupt for smaller values of �i. This happens because
d lngrr=dr / 1=�i in the mass inflation region which

results in a larger slope of lngrrðrÞ for smaller values of
�i. In higher dimensions the behavior is similar but the
relative variation of the radial metric component is more
abrupt as the spacetime dimension increases. Fixing ri and
�i, d lngrr=dr / ðD� 3Þ2ðD� 2Þ if ri ¼ 1. This can be
confirmed in Fig. 2, where we plot the radial metric com-
ponent for two different values of �i and for D ¼ 5, 6, 7.
Indeed Fig. 2 shows that the slopes increase with D, for a
fixed �i. Note that the radial coordinate is the areal radius,
therefore having an invariant geometric meaning. Thus, it
is the appropriate variable to compare the mass inflation
phenomenon in different dimensions. In order to make
this comparison, however, we fixed ri ¼ 1 in all dimen-
sions. In the next section, we shall fix the same physical
observable, namely, the same relative mass variation for all
dimensions.

FIG. 2 (color online). Comparison of the radial metric compo-
nent behavior for D ¼ 5, 6, 7 and for two different values of �i,
in terms of the areal radius normalised by the value at the inner
horizon.

FIG. 1 (color online). Variation of the radial and temporal
metric components with the areal radius normalized by the value
at the inner horizon, for a D ¼ 5 charged black hole.
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VI. FULL NUMERICAL SIMULATIONS

We shall now present the results we have obtained using
the numerical code reported in [1] generalized to D
dimensions and the compact pulse used therein, which is,
along the initial null segment u ¼ u0,

’;vðu0; vÞ ¼ Asin2
�
�
v� v0

�v

�
; v0 � v � v0 þ�v;

(41)

and vanishing outside the interval v0 to v0 þ �v, with an
interval �v ¼ 1. With this code we have performed fully
nonlinear numerical simulations in D ¼ 4, 5, 6, 7. In order
to make a meaningful comparison between the different
dimensions, our strategy was to fix the same relative mass
variation, �M=M, after the interaction with the pulse, for
the different dimensions. In order to achieve this we had to
vary the amplitude of the pulse A by an iterative procedure.
In Fig. 3 we show the evolution of the mass of the black
hole for the values of the amplitude that were found to give,
for each dimension, a relative mass variation of about 25%.

In order to follow the black hole mass, we computed the
(outermost) apparent horizon at each null slice, i.e., the set
of points ðua; vaÞ such that

@r

@v
ðua; vaÞ ¼ 0: (42)

In Fig. 4 we exhibit the apparent horizon evolution (both
inner and outer). Then, the black hole mass was given by
the Misner-Sharpe [35] mass function evaluated at this
apparent horizon. The Misner-Sharpe mass is the total
effective mass inside a sphere of radius rðu; vÞ, and is
equal to

Mðu; vÞ ¼ rD�3

2

�
1þ q2

r2ðD�3Þ � g�1
rr

�

¼ rD�3

2

�
1þ q2

r2ðD�3Þ þ 4
r;ur;v
2e2�

�
: (43)

In Fig. 5 we have plotted the Misner-Sharpe mass func-
tion in the mass inflation region. The plots show that larger
masses occur for lower values of advanced and retarded
time as the dimension increases. Although this is a gauge
dependent statement, we emphasize that both t and r that
define u and v at infinity are comparable coordinates in
different dimensions (proper time of the observer at infinity
and areal radius).
It is tentative to conclude that the smaller time scale for

the mass variations (and also curvature as we have
checked) observed in our fully nonlinear numerical simu-
lations, for increasing dimension, is consistent with the
more abrupt radial variation of the metric coefficients,
observed in the homogeneous approximation as the dimen-
sion increases. This is qualitatively confirmed by a simul-
taneous analysis of Fig. 5 and 6, where the areal radius is
plotted in the same ðu; vÞ space. Consider, for instance, a
v ¼ constant line (say v ¼ 9), for D ¼ 7. From Fig. 5 it is
seen that a variation of 10 orders of magnitude of the mass
occurs in an interval of �u ’ 0:1–0:2 for u ’ 15:7.
Comparing with Fig. 6 we see that the variation of the
areal radius in the same interval is around �r ’ 0:1–0:2. In
this r interval, therefore, there is a mass variation of 10
orders of magnitude. A similar analysis, along the same
v ¼ constant line in a lower D shows a considerable
smaller mass variation for the same r interval. For instance,
in D ¼ 4 the mass variation is of 1–2 orders of magnitude
in the same r interval.

∆

FIG. 3 (color online). Evolution of the black hole mass as it
interacts with the pulse. The amplitude was chosen, in each
dimension, so that the final black hole mass variation is approxi-
mately 25% for all cases.

FIG. 4 (color online). Evolution of the black hole apparent
horizons. For each dimension the outer (top curve) and inner
(bottom curve) are plotted.

MASS INFLATION IN A D-DIMENSIONAL REISSNER- . . . PHYSICAL REVIEW D 84, 024019 (2011)

024019-5



One must be careful in making this connection, however,
since both ðu; vÞ and r are simply coordinates and therefore
gauge dependent; moreover, in each case one is fixing
different quantities. In particular, in the homogeneous
approximation one is fixing the initial energy density
at a given point, rather than the total energy in the
perturbation.

VII. CONCLUSIONS

If micro black holes form by trans-Planckian scattering
collisions in the present or in a future generation of
particle accelerators, they should undergo, after formation,

a balding phase, in which they lose gravitational (and other
interactions’) multipoles and approach a stationary solu-
tion, a semiclassical phase, in which the black hole decays
by Hawking radiation, with concrete and well defined
signatures that could be observed in particle experiments
[36], and finally a mysterious (with present day physics)
Planckian phase [37].
For the scenarios proposed in [17–21], these black

holes are brane world black holes. But if their mass is
sufficiently above the fundamental Planck scale and
their size is sufficiently smaller than the scale of the large
extra dimensions, then, in the absence of charge, they
should be well approximated by the classical solution for

FIG. 5 (color online). Misner-Sharpe mass function for a perturbed RN black hole in D ¼ 4, 5, 6, 7, with the amplitude of the
perturbation chosen such that the relative mass variation of the black hole is the same in all dimensions. As the dimension increases
larger masses are achieved for lower u, v.
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uncharged black holes in infinite D dimensions. The
charged case is more involved, since the electro-
magnetic field should propagate only on the brane (which
must have a length scale smaller than the TeV) and
therefore in 3þ 1 rather than in D dimensions. Modeling
such black holes as a D dimensional RN black hole
is the simplest toy model, which we have explored in this
paper.

According to the result of this paper, the brane world
black holes will undergo mass inflation and, potentially,
form new smaller black holes inside of themselves, at least
if the classical/semiclassical stage has a sufficiently long
time scale. One could think this would lead to a sort of
fractal, self-similar structure of black hole generations.
Remember, however, that the minimum mass for the black

holes is the (fundamental) Planck mass, which, therefore,
should limit the number of generations to one.
One other possible scenario is as follows. These ex-

tremely energetic regimes are also expected to be attained
in the early universe. Although the relevant physics is still
not fully developed, it has been postulated that an infla-
tionary universe might naturally arise in such extreme
conditions, solving some of the problems of the standard
cosmological model. Hence, the possibility that mass in-
flation inside black holes may also trigger the creation of
new expanding universes should be considered. In [38] it
was assumed that quantum effects could remove the
black hole singularities and be responsible for the birth
of new cosmologies with slightly different values of the
cosmological parameters, thus leading to a selection

FIG. 6 (color online). The radial coordinate r as a function of the null coordinates u and v close to the inner ingoing apparent horizon
for the D ¼ 4, 5, 6, 7 perturbed RN black hole with M ¼ 1 and q ¼ 0:95 and the amplitudes that guarantee a total mass variation of
�M=M ’ 0:25. Contours are plotted only for radii in the range of the color bar.

MASS INFLATION IN A D-DIMENSIONAL REISSNER- . . . PHYSICAL REVIEW D 84, 024019 (2011)

024019-7



criteria based on the maximization of the number of
black holes. The fact that Planckian and trans-Planckian
regimes are attained in an extended mass inflation region
much before the central singularity and the role played by
the number D of spacetime dimensions on the correspond-
ing dynamics must therefore be taken into account in such
studies.
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