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Abstract. Volumes of sub-wavelength electromagnetic elements can act like
homogeneous materials: metamaterials. In analogy, sheets of optical elements
such as prisms can act ray-optically like homogeneous sheet materials. In
this sense, such sheets can be considered to be metamaterials for light rays
(METATOYs). METATOYs realize new and unusual transformations of the
directions of transmitted light rays. We study here, in the ray-optics and scalar-
wave limits, the wave-optical analog of such transformations, and we show that
such an analog does not always exist. Perhaps, this is the reason why many
of the ray-optical possibilities offered by METATOYs have never before been
considered.

Contents

1. Introduction 2
2. Wave-optical analog of light-ray fields 3
3. Example 6
4. Formulation in terms of topological-charge density 8
5. Relationship with holographic geometric mappings 9
6. Wave-optical analog of meta-refraction 9
7. Conclusions 10
Acknowledgments 10
References 10

1 Author to whom any correspondence should be addressed.

New Journal of Physics 11 (2009) 013042
1367-2630/09/013042+11$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:j.courtial@physics.gla.ac.uk
http://www.njp.org/


2

1. Introduction

Metamaterials [1] allow unprecedented control over light waves. This has led to the development
of new concepts, such as the coordinate-transform design paradigm [2]. Metamaterials consist
of sub-wavelength-size wave-optical elements, namely resonant (for a particular frequency)
electro-magnetic circuits, filling a volume. This structure gives them the wave-optical properties
of a homogeneous material with macroscopic parameters, namely the permittivity, ε, and the
permeability, µ [1].

Motivated by the desire to build optical elements that have some of the visual properties
of metamaterials on an everyday size scale and across the entire visible wavelength spectrum,
we recently started to investigate sheets formed by miniaturized optical elements that change
the direction of transmitted light rays (figure 1). In the simplest case (which we consider
here), these sheets are constructed to work in air, such that each light ray enters and exits
the sheet on opposite sides with the same intensity and without being offset, and that the
change in light-ray direction is independent of the position where the ray hits the sheet. In
reality, the sheets introduce a number of imperfections. They do, for example, offset transmitted
light rays, but the offsets are limited to the size of the individual elements’ aperture diameter,
which can be miniaturized, in principle until ray optics breaks down (10 s of wavelengths).
Nevertheless, a sheet’s visual properties, and generally its ray-optical behavior, is well described
by macroscopic parameters that characterize the ray-direction change. Like metamaterials, such
sheets ‘are materials with designed properties that stem from structure, not substance’ [5],
so we call them metamaterials for rays (METATOYs)2. Because the ray-direction change in
METATOYs is a generalization of refraction, we call it meta-refraction.

Meta-refraction can be familiar, like in confocal lenslet arrays that act approximately
like the interface between optical media with different positive or negative refractive indices
(figure 2(a)) [3, 4]. It can also be very unfamiliar, like in Dove-prism structures (figure 2(b)) [8],
especially those that rotate the light-ray direction around the local sheet normal (figure 2(c)) [9].
Combinations of such ray-rotation sheets can have unusual imaging properties [11], and a
Fermat’s-principle treatment of light-ray rotation around the local sheet normal leads to a
formulation in terms of an interface between complex refractive indices [12].

Here, we begin to investigate the wave optics of METATOYs. We investigate whether every
light-ray field that has been transformed by a METATOY has a simplified wave-optical analog:
a complex scalar field whose intensity is that of the light-ray field, and whose phase gradient
points in the light-ray direction. Our definition uses two approximations: the description of light
by a single scalar field, which is customary in a number of areas of optics (e.g. [13]), and the
(arguably appropriate) ray-optics limit [14].

Note that we are not calculating the light-wave field behind a METATOY, which is, of
course, always possible. Instead, we ask the question if a simplified—but, within the scope
of the simplifications, perfect (in the sense explained in section 2)—wave-optical analog of
METATOYs can exist, even in principle.

This paper is organized as follows. In section 2, we define the wave-optical analog of a
light-ray field, and we find a requirement for this analog to exist. By studying a simple example
in section 3, we then construct light-ray fields without wave-optical analog. This allows us
to formulate the condition for the existence of a wave-optical analog in terms of topological-
charge density (section 4). Section 5 outlines the relationship between our work and geometric

2 Note that different structured surfaces have previously been described as metamaterials [6].
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Figure 1. Examples of METATOYs. (a) An array of stacked, miniaturized,
Dove prisms forms a Dove-prism sheet [3]. For illustration purposes, the Dove-
prism sheet shown here contains only very few (ten) Dove prisms. In our
simulations (see figures 2(b) and (c)), the number of Dove prisms per Dove-
prism sheet typically varies between 100 and 1000. (b) Transmission through a
Dove-prism sheet flips one ray-direction component, in the case shown here the
vertical component. As far as this flipped ray-direction component is concerned,
the effect is negative refraction at the interface between media with opposite
refractive indices (c). (d) Two parallel arrays of miniaturized lenses (‘lenslet
arrays’) that share the same focal plane, F (that is, they are confocal) refract light
rays approximately like the interface between transparent media whose refractive
indices, n1 and n2, have a ratio n2/n1 ≈ η = − f2/ f1, where f1 and f2 are the
respective focal lengths of the two lenslet arrays [4].

transformations that cannot be implemented exactly with continuous holograms. In section 6,
we then study briefly the conditions for particular types of meta-refraction to turn any light-ray
field with wave-optical analog into another such field, which is the condition for the type of
meta-refraction to have a wave-optical analog. Finally, we provide conclusions.

2. Wave-optical analog of light-ray fields

A light-ray field is fully described by a three-dimensional field of normalized three-dimensional
direction vectors and an intensity field. For our purposes, it is sufficient to consider the transverse
(x and y) direction components in the z = 0 plane, which we describe by the vector field

r(x, y) =

(
rx(x, y)

ry(x, y)

)
. (1)

We restrict ourselves here to fields in which, wherever the intensity is nonzero, the light-ray
directions vary smoothly, by which we mean that the partial derivatives ∂xrx , ∂yrx , ∂xry , ∂yry

exist (we use the notation ∂ab ≡ ∂b/∂a).
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Figure 2. Example of views through METATOYs. (a) When an object is seen
through confocal lenslet arrays (figure 1(d)), the distance between the arrays
and the object appears to be stretched by a factor η. The two examples show a
stationary chess piece (see inset) seen through confocal lenslet arrays with η = 2
and −1, respectively, making the chess piece appear further away and in front
of the arrays. (The latter case is the imaging case discussed by Pendry [7] for
negative refraction between media with opposite refractive indices, but without
restoration of the evanescent-wave components.) (b) When seen through a Dove-
prism sheet (figure 1(a)), a straight line perpendicular to the sheet appears bent
into a hyperbola [8]. Here, the straight line is approximated by a thin green
cuboid, shown on its own for comparison in the inset. (c) When seen through a
ray-rotation sheet [9], a cuboid appears twisted. Part of the cuboids in (b) and (c)
extend in front of the sheet so that each cuboid’s geometry can be appreciated. All
views are ray-tracing simulations through the detailed sheet structure, performed
with the free software POV-Ray [10]. Details of the simulations shown in (a) and
(b) can be found in the references given. The ray-rotation sheet in (c) comprises
two Dove-prism sheets [8], each containing 100 Dove prisms, that are rotated
with respect to each other through 60◦, together forming a sheet that rotates the
direction of transmitted light rays through 120◦ around the local sheet normal.

We define the wave-optical analog of such a light-ray field as follows. The analogous
monochromatic light wave, if it exists, is a complex field with a cross-section in the transverse
plane of the form

u(x, y) =
√

I (x, y) exp (iφ(x, y)) . (2)
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We want this field to be ‘non-pathological’; we ask for it to be continuous and differentiable
everywhere—the usual properties asked from a physical field. Wherever the intensity I is
nonzero, the phase φ then has to be continuous and differentiable. We translate the ray field’s
brightness and direction into the complex field’s intensity and three-dimensional phase gradient,
∇φ, respectively. The latter choice follows the usual ray-optics limit [14].

We have not yet specified the magnitude of the phase gradient. In a monochromatic plane
wave of wavelength λ, the magnitude of the phase gradient is 2π/λ, so the relationship between
the phase gradient and the (normalized) ray direction is

∇φ(x, y) =
2π

λ
r(x, y). (3)

(Note that φ(x, y) and r(x, y) are defined such that this equation describes the x and
y components of the three-dimensional phase gradient and normalized light-ray direction,
multiplied by 2π/λ, in the z = 0 plane.) This is also generally the case in the ray-optics limit, in
which the wavelength is so short that, on the scale of a few wavelengths, any wave locally looks
planar. This is the main scenario we consider here.

Sometimes we also venture slightly further from the ray-optics limit by considering a
scenario in which the magnitude of the phase gradient is not 2π/λ. This occurs routinely in
general monochromatic waves: in optical superoscillations, for example, the magnitude of the
phase gradient can be greater, even arbitrarily large, but conventional wisdom has it that this can
only happen when the intensity gets very close to zero3, and in special cases such as standing
waves the phase gradient can be zero. In this ‘less-ray-optical scenario’, we therefore allow the
phase gradient to be of any length, as long as it has a direction (i.e. length 6= 0), is finite, and
does not point in the opposite direction from the light-ray direction4:

∇φ(x, y) = f (x, y)
2π

λ
r(x, y), (4)

where 0 < f (x, y) < ∞.
We now consider a METATOY immediately in front of the z = 0 plane, and concentrate

on the field immediately behind the METATOY. The existence of the partial derivatives of the
components of r(x, y), specifically ∂yrx and ∂xry , implies that the mixed partial derivatives of
φ(x, y), ∂x∂yφ and ∂y∂xφ, exist. Under these (and, indeed, less strict) conditions the theorem on
the order of differentiation [17] holds, stating that

∂y∂xφ = ∂x∂yφ. (5)

Using equation (3), this can be translated into the following condition on the transverse ray
directions, rx and ry:

∂xry = ∂yrx . (6)

In the less-ray-optical scenario, the corresponding condition is

∂y [ f (x, y)rx(x, y)] = ∂x

[
f (x, y)ry(x, y)

]
. (7)

3 This particular ‘conventional wisdom’ is a generalization of special cases such as [15], and is correct in a
statistical sense [16].
4 In negative-refractive-index materials, the wave vector points in the opposite direction of the ‘propagation
direction’ [1]. We consider here only METATOYs embedded in a positive-refractive-index material. We also restrict
ourselves to homogeneous materials.
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If a light-ray field does not satisfy equation (6) (or, in the case of the less-ray-optical scenario,
equation (7) for at least one function f (x, y) > 0) wherever the intensity is nonzero, then the
phase φ(x, y), and with it the complex field u(x, y) that corresponds to the ray directions
rx(x, y) and ry(x, y), cannot exist there. In this sense, equations (6) and (7) are therefore in
the different scenarios necessary conditions for the existence of a light-ray field’s wave-optical
analog.

3. Example

As an example, we consider here a specific light beam passing through a METATOY
immediately in front of the z = 0 plane that rotates the light-ray direction through 90◦ around
the z-direction without offsetting the ray position. Such local ray rotation can be achieved with
combinations of Dove-prism sheets [9].

We consider a light-ray field which has, in the plane immediately in front of the ray-
rotating METATOY, the following properties. In the neighborhood of the point (x, y) = (0, 0),
the brightness is uniform and the light-ray directions are given by the gradient of the quadratic
phase function

φ0(x, y) = x2, (8)

so the x and y components of the ray-direction field are

r0(x, y) = ∇φ0(x, y) =

(
2x
0

)
. (9)

After passage through the METATOY, all ray directions have been rotated through 90◦ around
the z-axis, so in the plane immediately behind the METATOY the ray-direction components are

r(x, y) =

(
0

2x

)
. (10)

Can such a light-ray-direction field have a wave-optical analog? The x and y components
of r clearly violate the condition for the existence of a wave-optical analog in the ray-optics
limit: substitution into equation (6) gives ‘2 = 0’. In the less-ray-optical scenario, the situation
is slightly more complicated: substituting the x and y components of r into equation (7), we get

0 = ∂x ( f (x, y)2x) . (11)

This condition can only be satisfied if

f (x, y) =
g(y)

x
, (12)

where g(y) is function of y that is greater than zero (as f (x, y) > 0). It is clear that, at x = 0,
f (x, y) diverges to infinity and changes sign at x = 0, contrary to the conditions of the less-
ray-optical scenario. In either scenario the light-ray field given by equation (10) therefore has
no wave-optical analog.

To illustrate the lack of a wave-optical analog in the ray-optics limit in this example, we
consider a piecewise rotation of the phase. Figure 3(a) shows the quadratic phase function
φ0(x, y) described by equation (8). Figure 3(b) shows the result of dividing the z = 0 plane,
and with it φ0(x, y), into squares of equal size and rotating each square through 90◦ around its
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Figure 3. Piecewise rotation of the phase. (a) Plot of the phase φ0(x, y) = x2.
(b) φ0(x, y), piecewise rotated through 90◦. (c) The rotated pieces are
individually phase shifted such that they fit together along the red dashed lines.
(d) The thick red arrow indicates a non-zero path integral along a closed loop in
the z = 0 plane.

center. Such piecewise phase rotation is an approximation to truly local light-ray rotation and
an idealization5 of the effect of passage through local-light-ray rotators based on Dove-prism
sheets [9].

The question then is whether or not it is possible to construct a continuous phase function
from the rotated pieces of φ(x, y) by moving the rotated pieces individually up or down. (We
are not concerned here with the mechanism by which such a spatially varying phase shift
might happen; all we want to know is whether or not a phase function with the derivatives
corresponding to the locally rotated ray-direction field can exist.) Figure 3(c) shows the phase
after all the pieces have been vertically shifted such that they fit together along the dashed lines.
It is immediately clear that the resulting phase function is still full of discontinuities along at
least two of each piece’s edges, irrespective of the size of the pieces.

If we consider the case of rotation of the phase gradient at every point as a similar kind
of piecewise rotation in the limit of infinitely small pieces, we find that discontinuities along at
least one edge of each piece of the phase translate into discontinuities which are infinitely small

5 Dove-prism ray-rotation sheets do not rotate the ray direction in square pieces, but they mirror the ray direction
in stripes, twice, whereby the stripes have a different orientation; they do not even mirror the phase in the stripes
perfectly; and they change not only the phase, but the entire complex field.
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(they scale linearly with the size of the pieces), but which exist at every point of the resulting
phase function. Such a phase function can be continuous everywhere, but it is not differentiable
anywhere, and therefore it does not have an associated ray direction according to equation (3).

Mathematically, an effect of the pieces not fitting together like in figure 3(c) is that the path
integral of the phase gradient along closed paths, for example the path shown in figure 3(d), is
nonzero. The closed-loop path integral around an infinitesimally small square of side length δ,
centered at (x0, y0), can be written in the form

1φ = δ
(
∂xφ|(x0,y0−δ/2) + ∂yφ|(x0+δ/2,y0) − ∂xφ|(x0,y0+δ/2) − ∂yφ|(x0−δ/2,y0)

)
, (13)

the condition for the path integral to be zero is

1φ = 0. (14)

The partial derivatives in equation (13) can be linearized to become

∂xφ|(x0,y0+δ/2) = ∂xφ|(x0,y0−δ/2) + δ ∂x∂yφ
∣∣
(x0,y0)

(15)

and

∂yφ
∣∣
(x0+δ/2,y0)

= ∂yφ
∣∣
(x0−δ/2,y0)

+ δ ∂y∂xφ
∣∣
(x0,y0)

. (16)

Equation (14) then becomes

∂y∂xφ
∣∣
(x0,y0)

= ∂x∂yφ
∣∣
(x0,y0)

. (17)

We have therefore derived equation (5) as a necessary condition for the existence of a function
φ(x, y) which is continuous and differentiable at position (x0, y0). As we want φ(x, y) to have
these properties wherever the intensity is nonzero, equation (5) has to hold wherever this is
the case.

4. Formulation in terms of topological-charge density

The closed-loop path integral (13) can be interpreted as enclosing a topological charge (phase
change divided by 2π ) of

1m =
1φ

2π
=

δ2

2π

(
∂xry − ∂yrx

)
. (18)

As the area enclosed by the path is δ2, we can define the topological-charge density (topological
charge per area)

µ =
1m

δ2
=

∂xry − ∂yrx

2π
. (19)

The condition on light-ray fields to have a wave-optical analog can then be formulated in terms
of this topological-charge density: Equation (6), which has to hold wherever the intensity is
nonzero, becomes µ = 0. At those points where the topological-charge density is not zero, the
light intensity has to be zero. This means that the product of topological-charge density and
intensity, a quantity closely related to the density of optical orbital angular momentum [18], has
to be zero everywhere:

µI = 0. (20)
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5. Relationship with holographic geometric mappings

Our work is closely related to work on phase holograms that map the intensity cross-section
in the hologram plane of a collimated light beam into the hologram’s Fourier plane [19, 20].
Interesting mappings include rotation of the entire intensity pattern around a point, which
requires an everywhere-discontinuous phase pattern that contradicts equation (5).

In practice, such transformations have been approximated with holograms that concentrate
the discontinuities. One approach [20] concentrates the discontinuities in points with integer
topological charge (optical vortices). A similar approach could perhaps be applied to meta-
refraction, leading to an alternative type of METATOYs. In an alternative approach [19], the
phase is piecewise continuous, and the discontinuities are concentrated in lines (the edges
of the pieces). This latter approach is analogous to the piecewise phase rotation discussed in
section 3.

6. Wave-optical analog of meta-refraction

The conditions for which a type of meta-refraction has a wave-optical analog are those under
which equation (6) is satisfied by any light-ray field resulting from meta-refraction of an incident
light-ray field that satisfies equation (6).

As our example we use ray rotation again. The incident light-ray field

r(x, y) =

(
rx

ry

)
(21)

corresponds to a wave-optical field, so it satisfies equation (6). The rotated light-ray field is(
r (α)

x

r (α)
y

)
=

(
rx cos α − ry sin α

rx sin α + ry cos α

)
. (22)

It has a wave-optical analog if it satisfies equation (6) with rx and ry replaced by r (α)
x and r (α)

y ,
respectively:

∂xrx sin α + ∂xry cos α = ∂yrx cos α − ∂yry sin α. (23)

Because the incident light-ray field satisfies equation (6), all terms proportional to cos α cancel,
so the condition becomes(

∂xrx + ∂yry

)
sin α = 0. (24)

This means local ray rotation through an angle α can have a wave-optical analog that works
for any input field, and therefore any arbitrary functions rx(x, y) and ry(x, y), only if sin α = 0,
which is the case for rotation angles 0 and 180◦. The rotation angle 0◦ trivially corresponds to
no refraction at all, and the rotation angle 180◦ formally corresponds to negative refraction in
which the refractive index changes sign, but not magnitude (n1 = −n2)6. For other angles, the
rotated light-ray field can still have a wave-optical analog, provided it satisfies equation (24).

6 Note, however, that genuine negative refraction produces a field in which the phase gradient points in the
direction opposite [21] to that due to 180◦ rotation around the z-direction of the local phase gradient.
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7. Conclusions

We argue here that METATOYs are ray-optical analogs of metamaterials, and that they can
produce visual effects best described by ray-optical transformations that have no simple wave-
optical analog. This might be the reason why such transformations have never been considered
before, let alone realized.

We have restricted ourselves here to the ray-optics limit of wave optics, as this is easiest
to tackle. A natural continuation of this work would be a full, non-scalar, wave-optics treatment
that translates light-ray direction into a suitable quantity like the Poynting vector.
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