202 research outputs found

    Piecing Together Prehistoric Life: Scanning and Articulating Gorgosaurus

    Get PDF
    The Skull bones of a Gorgosaurus Libratus was laser scanned in order to articulate the model into software and 3D print. The model had to be articulated due to some missing bone, making it unrealistic to put together. Using the scanned pieces we articulated the model making a skull of The Gorgosaurus Libratus. This detailed computer skull can be sent anywhere in the world, for anyone to study. These scans could also be used to find out how the Gorgosaurus Libratus bit down or determine the way these animals moved. Prior to laser scanning, a method known as Photogrammetry was used. This method involves taking photos of the model and processing the images on a computer, which slow down the process. Another way used to replicate bones was by making silicone molds. This could damage the bone which makes it a method used less often. Laser scanning is the fastest and safest method in order to scan a bone. After the bones were articulated on the computer they were sent to a 3D printer. Unfortunately, the printer beds could not hold the massive skull. Due to this, the bones were printed half size. In order to 3D print, the holes of the model had to be filled using another program. The holes were caused by the light of the laser scanner not being able to go into all the holes creating shadows that the laser scanner could not pick up. However, after the holes were filled some of the objects were still too big to fit on the printer bed. Therefore, some of the objects were cut in half to fit. The 3D printed models were then printed and assembled

    A plea for scale, and why it matters for invasive species management, biodiversity and conservation

    Get PDF
    Invasive species are suspected to be major contributors to biodiversity declines worldwide. Counterintuitively, however, invasive species effects are likely scale dependent and are hypothesized to be positively related to biodiversity at large spatial scales. Past studies investigating the effect of invasion on biodiversity have been mostly conducted at small scales (\u3c100 m2) that cannot represent large dynamic landscapes by design. Therefore, replicated experimental evidence supporting a negative effect of invasive plants on biodiversity is lacking across many landscape types, including large grasslands. We collected data across eight large (333–809 ha) grassland landscapes managed with pyric herbivory—that is the recoupling of fire and grazing—to test how an invasive legume Lespedeza cuneata affected plant and bird communities at spatial grains ranging from 0.1 m2 to \u3e3,000,000 m2. Lespedeza cuneata invasion effects on grassland plant diversity and composition changed with scale, being negative at small spatial grains (0.1 m2) and neutral or positive at large spatial grains (\u3e3,000,000 m2). Lespedeza cuneata abundance did not significantly affect bird diversity at any spatial grain measured. Lespedeza cuneata may negatively affect biodiversity if abundances are greater than those observed in this study. However, previous research suggests that Lespedeza cuneata may not be capable of exceeding 20% canopy cover across large landscapes (\u3e400 ha). Control and eradication strategies can be costly and are fraught with risk. If data do not clearly support a negative Lespedeza cuneata abundance–biodiversity relationship, and if invasion is spatially limited across large landscapes, ongoing control and eradication efforts may be unwarranted and ineffective. Synthesis and applications: Invasive species effects gleaned from small-scale studies may not reliably predict their effects at larger scales. Although we recognize the importance of small-scale studies in potentially isolating individual mechanisms, management strategies based solely on results from small-scale studies of invasion are unlikely to increase or conserve biodiversity across large landscapes. Rather, processes that generate landscape heterogeneity—like pyric herbivory—are probably more important for promoting biodiversity across all scales. Scale is a central problem in ecology, and defining scale in management objectives is essential for effective biodiversity conservation

    Introducing an automated high content confocal imaging approach for Organs-on-Chips

    Get PDF
    Organ-Chips are micro-engineered systems that aim to recapitulate the organ microenvironment. Implementation of Organ-Chips within the pharmaceutical industry aims to improve the probability of success of drugs reaching late stage clinical trial by generating models for drug discovery that are of human origin and have disease relevance. We are adopting the use of Organ-Chips for enhancing pre-clinical efficacy and toxicity evaluation and prediction. Whilst capturing cellular phenotype via imaging in response to drug exposure is a useful readout in these models, application has been limited due to difficulties in imaging the chips at scale. Here we created an end-to-end, automated workflow to capture and analyse confocal images of multicellular Organ-Chips to assess detailed cellular phenotype across large batches of chips. By automating this process, we not only reduced acquisition time, but we also minimised process variability and user bias. This enabled us to establish, for the first time, a framework of statistical best practice for Organ-Chip imaging, creating the capability of using Organ-Chips and imaging for routine testing in drug discovery applications that rely on quantitative image data for decision making. We tested our approach using benzbromarone, whose mechanism of toxicity has been linked to mitochondrial damage with subsequent induction of apoptosis and necrosis, and staurosporine, a tool inducer of apoptosis. We also applied this workflow to assess the hepatotoxic effect of an active AstraZeneca drug candidate illustrating its applicability in drug safety assessment beyond testing tool compounds. Finally, we have demonstrated that this approach could be adapted to Organ-Chips of different shapes and sizes through application to a Kidney-Chip.</p

    Species-specific differences in the Pro-Ala rich region of cardiac myosin binding protein-C

    Get PDF
    Cardiac myosin binding protein-C (cMyBP-C) is an accessory protein found in the A-bands of vertebrate sarcomeres and mutations in the cMyBP-C gene are a leading cause of familial hypertrophic cardiomyopathy. The regulatory functions of cMyBP-C have been attributed to the N-terminus of the protein, which is composed of tandem immunoglobulin (Ig)-like domains (C0, C1, and C2), a region rich in proline and alanine residues (the Pro-Ala rich region) that links C0 and C1, and a unique sequence referred to as the MyBP-C motif, or M-domain, that links C1 and C2. Recombinant proteins that contain various combinations of the N-terminal domains of cMyBP-C can activate actomyosin interactions in the absence of Ca2+, but the specific sequences required for these effects differ between species; the Pro-Ala region has been implicated in human cMyBP-C whereas the C1 and M-domains appear important in mouse cMyBP-C. To investigate whether species-specific differences in sequence can account for the observed differences in function, we compared sequences of the Pro-Ala rich region in cMyBP-C isoforms from different species. Here we report that the number of proline and alanine residues in the Pro-Ala rich region varies significantly between different species and that the number correlates directly with mammalian body size and inversely with heart rate. Thus, systematic sequence differences in the Pro-Ala rich region of cMyBP-C may contribute to observed functional differences in human versus mouse cMyBP-C isoforms and suggest that the Pro-Ala region may be important in matching contractile speed to cardiac function across species

    A comparison of low-dose risperidone to paroxetine in the treatment of panic attacks: a randomized, single-blind study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because a large proportion of patients with panic attacks receiving approved pharmacotherapy do not respond or respond poorly to medication, it is important to identify additional therapeutic strategies for the management of panic symptoms. This article describes a randomized, rater-blind study comparing low-dose risperidone to standard-of-care paroxetine for the treatment of panic attacks.</p> <p>Methods</p> <p>Fifty six subjects with a history of panic attacks were randomized to receive either risperidone or paroxetine. The subjects were then followed for eight weeks. Outcome measures included the Panic Disorder Severity Scale (PDSS), the Hamilton Anxiety Scale (Ham-A), the Hamilton Depression Rating Scale (Ham-D), the Sheehan Panic Anxiety Scale-Patient (SPAS-P), and the Clinical Global Impression scale (CGI).</p> <p>Results</p> <p>All subjects demonstrated a reduction in both the frequency and severity of panic attacks regardless of treatment received. Statistically significant improvements in rating scale scores for both groups were identified for the PDSS, the Ham-A, the Ham-D, and the CGI. There was no difference between treatment groups in the improvement in scores on the measures PDSS, Ham-A, Ham-D, and CGI. Post hoc tests suggest that subjects receiving risperidone may have a quicker clinical response than subjects receiving paroxetine.</p> <p>Conclusion</p> <p>We can identify no difference in the efficacy of paroxetine and low-dose risperidone in the treatment of panic attacks. Low-dose risperidone appears to be tolerated equally well as paroxetine. Low-dose risperidone may be an effective treatment for anxiety disorders in which panic attacks are a significant component.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov Identifier: NCT100457106</p

    Associations between sleep disturbance, cognitive functioning and work disability in Bipolar Disorder

    Get PDF
    Bipolar Disorder (BD) is associated with impairment in a number of areas including poor work functioning, often despite the remission of mood symptoms. The present study aimed to examine the role of sleep disturbance and cognitive functioning in occupational impairment in BD. Twenty-four euthymic BD participants and 24 healthy control participants completed a week of prospective assessment of sleep disruption via self-report and actigraphy, a battery of neuropsychological tests of executive functioning, working memory, and verbal learning, and assessments of work functioning. BD participants experienced significantly poorer cognitive functioning as well as greater months of unemployment and greater incidence of being fired than controls. Moderation analyses revealed that both poor sleep and cognitive functioning were associated with poor work performance in BD participants, but not control participants. Sleep and cognitive functioning may be impaired in euthymic BD and are associated with poor work functioning in this population. More research should be conducted to better understand how sleep and cognitive functioning may interact in BD
    corecore