3,945 research outputs found

    External fishing effort regulates positive effects of no-take marine protected areas

    Get PDF
    Marine protected areas (MPAs) have been established across the globe to mitigate the effects of multiple stressors on marine communities. In many locations, MPAs have generated positive effects on fish communities, but the impacts of fishing pressure—the primary stressor MPAs seek to manage—have not been well investigated. We examined changes in fish biomass inside and outside of no-take MPAs over 14 years in central California, USA. Using data from the community-based science program, the California Collaborative Fisheries Research Program, we tested which environmental and human-induced stressors most influence the strength of MPA responses. While temperature and productivity were included in the best fit model, we found that fine-scale fishing effort data, following reserve implementation, best explained the spatial variation in fish community responses to MPAs. Specifically, differences in fish biomass between MPAs and sites open to fishing were larger for reserves near heavily fished locations and these areas exhibited the highest rate of change in fish biomass, indicating strong positive effects of the MPA on the most heavily exploited fish communities. As MPAs continue to be used as a prominent conservation strategy in coastal systems, managers should consider both the suite of human-induced (socio-ecological interactions) and environmental conditions that may alter MPA success as well as establish long-term monitoring programs to fully assess the functionality of marine reserves into the future

    Marine protected areas, marine heatwaves, and the resilience of nearshore fish communities

    Get PDF
    Anthropogenic stressors from climate change can affect individual species, community structure, and ecosystem function. Marine heatwaves (MHWs) are intense thermal anomalies where water temperature is significantly elevated for five or more days. Climate projections suggest an increase in the frequency and severity of MHWs in the coming decades. While there is evidence that marine protected areas (MPAs) may be able to buffer individual species from climate impacts, there is not sufficient evidence to support the idea that MPAs can mitigate large-scale changes in marine communities in response to MHWs. California experienced an intense MHW and subsequent El Niño Southern Oscillation event from 2014 to 2016. We sought to examine changes in rocky reef fish communities at four MPAs and associated reference sites in relation to the MHW. We observed a decline in taxonomic diversity and a profound shift in trophic diversity inside and outside MPAs following the MHW. However, MPAs seemed to dampen the loss of trophic diversity and in the four years following the MHW, taxonomic diversity recovered 75% faster in the MPAs compared to reference sites. Our results suggest that MPAs may contribute to long-term resilience of nearshore fish communities through both resistance to change and recovery from warming events

    On the evolution of clustering of 24um-selected galaxies

    Full text link
    This paper investigates the clustering properties of a complete sample of 1041 24um-selected sources brighter than F[24um]=400 uJy in the overlapping region between the SWIRE and UKIDSS UDS surveys. We have concentrated on the two (photometric) interval ranges z=[0.6-1.2] (low-z sample) and z>1.6 (high-z sample) as it is in these regions were we expect the mid-IR population to be dominated by intense dust-enshrouded activity such as star formation and black hole accretion. Investigations of the angular correlation function produce a correlation length are r0~15.9 Mpc for the high-z sample and r0~8.5 Mpc for the low-z one. Comparisons with physical models reveal that the high-z sources are exclusively associated with very massive (M>~10^{13} M_sun)haloes, comparable to those which locally host groups-to-clusters of galaxies, and are very common within such (rare) structures. Conversely, lower-z galaxies are found to reside in smaller halos (M_min~10^{12} M_sun) and to be very rare in such systems. While recent studies have determined a strong evolution of the 24um luminosity function between z~2 and z~0, they cannot provide information on the physical nature of such an evolution. Our clustering results instead indicate that this is due to the presence of different populations of objects inhabiting different structures, as active systems at z<~1.5 are found to be exclusively associated with low-mass galaxies, while very massive sources appear to have concluded their active phase before this epoch. Finally, we note that the small-scale clustering data seem to require steep profiles for the distribution of galaxies within their halos. This is suggestive of close encounters and/or mergers which could strongly favour both AGN and star-formation activity.Comment: 13 pages, 8 figures, to appear in MNRA

    Celebrating 20 Years of the ExCEEd Teaching Workshop

    Get PDF
    In response to the clear need for faculty training, the American Society of Civil Engineers (ASCE) developed and funded Project ExCEEd (Excellence in Civil Engineering Education) which is celebrating its twentieth year of existence. For the past two decades, 38 ExCEEd Teaching Workshops (ETW) have been held at six different universities. The program has 910 graduates from over 267 different U.S. and international colleges and universities. The ExCEEd effort has transformed from one that relied on the grass roots support of its participants to one that is supported and embraced by department heads and deans. This paper summarizes the history of Project ExCEEd, describes the content of the ETW, assesses its effectiveness, highlights changes in the program as a result of the assessment, and outlines the future direction of the program

    Circadian profiles in young people during the early stages of affective disorder

    Get PDF
    Although disturbances of the circadian system are strongly linked to affective disorders, no known studies have examined melatonin profiles in young people in early stages of illness. In this study, 44 patients with an affective disorder underwent clinical and neuropsychological assessments. They were then rated by a psychiatrist according to a clinical staging model and were categorized as having an ‘attenuated syndrome' or an ‘established disorder'. During the evening, salivary melatonin was sampled under dim light conditions over an 8-h interval and for each patient, the time of melatonin onset, total area under the curve and phase angle (difference between time of melatonin onset and time of habitual sleep onset) were computed. Results showed that there was no difference in the timing of melatonin onset across illness stages. However, area under the curve analyses showed that those patients with ‘established disorders' had markedly reduced levels of melatonin secretion, and shorter phase angles, relative to those with ‘attenuated syndromes'. These lower levels, in turn, were related to lower subjective sleepiness, and poorer performance on neuropsychological tests of verbal memory. Overall, these results suggest that for patients with established illness, dysfunction of the circadian system relates clearly to functional features and markers of underlying neurobiological change. Although the interpretation of these results would be greatly enhanced by control data, this work has important implications for the early delivery of chronobiological interventions in young people with affective disorders

    Celebrating 20 Years of the ExCEEd Teaching Workshop

    Get PDF
    In response to the clear need for faculty training, the American Society of Civil Engineers (ASCE) developed and funded Project ExCEEd (Excellence in Civil Engineering Education) which is celebrating its twentieth year of existence. For the past two decades, 38 ExCEEd Teaching Workshops (ETW) have been held at six different universities. The program has 910 graduates from over 267 different U.S. and international colleges and universities. The ExCEEd effort has transformed from one that relied on the grass roots support of its participants to one that is supported and embraced by department heads and deans. This paper summarizes the history of Project ExCEEd, describes the content of the ETW, assesses its effectiveness, highlights changes in the program as a result of the assessment, and outlines the future direction of the program

    Effective modeling for integrated water resource management: a guide to contextual practices by phases and steps and future opportunities

    Get PDF
    The effectiveness of Integrated Water Resource Management (IWRM) modeling hinges on the quality of practices employed through the process, starting from early problem definition all the way through to using the model in a way that serves its intended purpose. The adoption and implementation of effective modeling practices need to be guided by a practical understanding of the variety of decisions that modelers make, and the information considered in making these choices. There is still limited documented knowledge on the modeling workflow, and the role of contextual factors in determining this workflow and which practices to employ. This paper attempts to contribute to this knowledge gap by providing systematic guidance of the modeling practices through the phases (Planning, Development, Application, and Perpetuation) and steps that comprise the modeling process, positing questions that should be addressed. Practice-focused guidance helps explain the detailed process of conducting IWRM modeling, including the role of contextual factors in shaping practices. We draw on findings from literature and the authors’ collective experience to articulate what and how contextual factors play out in employing those practices. In order to accelerate our learning about how to improve IWRM modeling, the paper concludes with five key areas for future practice-related research: knowledge sharing, overcoming data limitations, informed stakeholder involvement, social equity and uncertainty management. © 2019 Elsevier Lt

    Ubiquitin transfer by a RING E3 ligase occurs from a closed E2~ubiquitin conformation

    Get PDF
    Funding: Investigator Award from the Wellcome Trust (098391/Z/12/Z) and (217196/Z/19/Z) and a Programme grant from Cancer Research UK (C434/A21747) to R.T.H.; J.C.P. thanks the University of St Andrews for financial support.Based on extensive structural analysis it was proposed that RING E3 ligases prime the E2~ubiquitin conjugate (E2~Ub) for catalysis by locking it into a closed conformation, where ubiquitin is folded back onto the E2 exposing the restrained thioester bond to attack by substrate nucleophile. However the proposal that the RING dependent closed conformation of E2~Ub represents the active form that mediates ubiquitin transfer has yet to be experimentally tested. To test this hypothesis we use single molecule Förster Resonance Energy Transfer (smFRET) to measure the conformation of a FRET labelled E2~Ub conjugate, which distinguishes between closed and alternative conformations. We describe a real-time FRET assay with a thioester linked E2~Ub conjugate to monitor single ubiquitination events and demonstrate that ubiquitin is transferred to substrate from the closed conformation. These findings are likely to be relevant to all RING E3 catalysed reactions ligating ubiquitin and other ubiquitin-like proteins (Ubls) to substrates.Publisher PDFPeer reviewe

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm
    • …
    corecore