151 research outputs found

    'Structure-from-Motion' photogrammetry: A low-cost, effective tool for geoscience applications

    Get PDF
    High-resolution topographic surveying is traditionally associated with high capital and logistical costs, so that data acquisition is often passed on to specialist third party organisations. The high costs of data collection are, for many applications in the earth sciences, exacerbated by the remoteness and inaccessibility of many field sites, rendering cheaper, more portable surveying platforms (i.e. terrestrial laser scanning or GPS) impractical. This paper outlines a revolutionary, low-cost, user-friendly photogrammetric technique for obtaining high-resolution datasets at a range of scales, termed ‘Structure-from-Motion’ (SfM). Traditional softcopy photogrammetric methods require the 3-D location and pose of the camera(s), or the 3-D location of ground control points to be known to facilitate scene triangulation and reconstruction. In contrast, the SfM method solves the camera pose and scene geometry simultaneously and automatically, using a highly redundant bundle adjustment based on matching features in multiple overlapping, offset images. A comprehensive introduction to the technique is presented, followed by an outline of the methods used to create high-resolution digital elevation models (DEMs) from extensive photosets obtained using a consumer-grade digital camera. As an initial appraisal of the technique, an SfM-derived DEM is compared directly with a similar model obtained using terrestrial laser scanning. This intercomparison reveals that decimetre-scale vertical accuracy can be achieved using SfM even for sites with complex topography and a range of land-covers. Example applications of SfM are presented for three contrasting landforms across a range of scales including; an exposed rocky coastal cliff; a breached moraine-dam complex; and a glacially-sculpted bedrock ridge. The SfM technique represents a major advancement in the field of photogrammetry for geoscience applications. Our results and experiences indicate SfM is an inexpensive, effective, and flexible approach to capturing complex topography

    Are longitudinal ice-surface structures on the Antarctic Ice Sheet indicators of long-term ice-flow configuration?

    Get PDF
    Abstract. Continent-wide mapping of longitudinal ice-surface structures on the Antarctic Ice Sheet reveals that they originate in the interior of the ice sheet and are arranged in arborescent networks fed by multiple tributaries. Longitudinal ice-surface structures can be traced continuously down-ice for distances of up to 1200 km. They are co-located with fast-flowing glaciers and ice streams that are dominated by basal sliding rates above tens of m yr-1 and are strongly guided by subglacial topography. Longitudinal ice-surface structures dominate regions of converging flow, where ice flow is subject to non-coaxial strain and simple shear. Associating these structures with the AIS' surface velocity field reveals (i) ice residence times of ~ 2500 to 18 500 years, and (ii) undeformed flow-line sets for all major flow units analysed except the Kamb Ice Stream and the Institute and Möller Ice Stream areas. Although it is unclear how long it takes for these features to form and decay, we infer that the major ice-flow and ice-velocity configuration of the ice sheet may have remained largely unchanged for several thousand years, and possibly even since the end of the last glacial cycle. This conclusion has implications for our understanding of the long-term landscape evolution of Antarctica, including large-scale patterns of glacial erosion and deposition. </jats:p

    Numerical modeling of glacial lake outburst floods using physically based dam-breach models

    Get PDF
    The instability of moraine-dammed proglacial lakes creates the potential for catastrophic glacial lake outburst floods (GLOFs) in high-mountain regions. In this research, we use a unique combination of numerical dam-breach and two-dimensional hydrodynamic modelling, employed within a generalised likelihood uncertainty estimation (GLUE) framework, to quantify predictive uncertainty in model outputs associated with a reconstruction of the Dig Tsho failure in Nepal. Monte Carlo analysis was used to sample the model parameter space, and morphological descriptors of the moraine breach were used to evaluate model performance. Multiple breach scenarios were produced by differing parameter ensembles associated with a range of breach initiation mechanisms, including overtopping waves and mechanical failure of the dam face. The material roughness coefficient was found to exert a dominant influence over model performance. The downstream routing of scenario-specific breach hydrographs revealed significant differences in the timing and extent of inundation. A GLUE-based methodology for constructing probabilistic maps of inundation extent, flow depth, and hazard is presented and provides a useful tool for communicating uncertainty in GLOF hazard assessment

    Modelling outburst floods from moraine-dammed glacial lakes

    Get PDF
    In response to climatic change, the size and number of moraine-dammed supraglacial and proglacial lake systems have increased dramatically in recent decades. Given an appropriate trigger, the natural moraine dams that impound these proglacial lakes are breached, producing catastrophic Glacial Lake Outburst Floods (GLOFs). These floods are highly complex phenomena, with flood characteristics controlled, in the first instance, by the style of breach formation. Downstream, GLOFs typically exhibit transient, often non-Newtonian fluid dynamics as a result of high rates of sediment entrainment from the dam structure and channel boundaries. Combined, these characteristics introduce numerous modelling challenges. In this review, the historical, contemporary and emerging approaches available to model the individual stages, or components, of a GLOF event are introduced and discussed. A number of methods exist to model the stages of a GLOF event. Dam-breach models can be categorised as being empirical, analytical or numerical in nature, with each method having significant advantages and shortcomings. Empirical relationships that produce estimates of peak discharge and time to peak are straightforward to implement, but the applicability of these models is often limited by the nature of the case study data from which they are derived. Furthermore, empirical models neglect the inclusion of basic hydraulic principles that describe the mechanics of breach formation. Analytical or parametric models simulate breach development using simplified versions of the physically based equations that describe breach enlargement, whilst complex, physically-based codes represent the state-of-the-art in numerical dam-breach modelling. To date, few of the latter have been applied to investigate the moraine-dam failure problem. Despite significant advances in the physical complexity and availability of higher-order hydrodynamic solvers, the majority of published accounts that have attempted to reconstruct or predict GLOF characteristics have been limited, often by necessity, to the use of relatively simplistic models. This is in part attributable to the unavailability of terrain models of many high-mountain catchments at the fine spatial resolutions required for the effective application of numerically-sophisticated codes, and their proprietary (and often cost-prohibitive) nature. However, advanced models are experiencing increasing use in the glacial hazards literature. In particular, the suitability of emerging mesh-free, particle-based methods for simulating dam-breach and GLOF routing may represent a solution to many of the challenges associated with modelling this complex phenomenon. Sources of uncertainty in the GLOF modelling chain have been identified by various workers. However, to date their significance for the robustness of reconstructive and predictive modelling efforts have been largely unexplored and quantified in detail. These sources include the geometric and material characterisation of moraine dam complexes, including lake bathymetry and the presence and extent of buried ice, initial conditions (freeboard, precise spillway dimensions), spatial discretisation of the down-valley domain, hydrodynamic model dimensionality and the dynamic coupling of successive components in the GLOF model cascade

    Modelled glacier response to centennial temperature and precipitation trends on the Antarctic Peninsula

    Get PDF
    The northern Antarctic Peninsula is currently undergoing rapid atmospheric warming1. Increased glacier-surface melt during the twentieth century2, 3 has contributed to ice-shelf collapse and the widespread acceleration4, thinning and recession5 of glaciers. Therefore, glaciers peripheral to the Antarctic Ice Sheet currently make a large contribution to eustatic sea-level rise6, 7, but future melting may be offset by increased precipitation8. Here we assess glacier–climate relationships both during the past and into the future, using ice-core and geological data and glacier and climate numerical model simulations. Focusing on Glacier IJR45 on James Ross Island, northeast Antarctic Peninsula, our modelling experiments show that this representative glacier is most sensitive to temperature change, not precipitation change. We determine that its most recent expansion occurred during the late Holocene ‘Little Ice Age’ and not during the warmer mid-Holocene, as previously proposed9. Simulations using a range of future Intergovernmental Panel on Climate Change climate scenarios indicate that future increases in precipitation are unlikely to offset atmospheric-warming-induced melt of peripheral Antarctic Peninsula glaciers
    corecore