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Abstract. The mesoscale structures of a glacier express the history of

flow, temperature, and stress. Thus, in principle, numerical ice dynamics mod-

els have sufficient physics to examine the formation and transport of these

structures. In this study we use a vertically integrated thermomechanical ice

dynamics model to simulate the temporally evolving patterns of surficial moraine,

stratification, foliation, and folding of glacier ice, and the density and ori-

entation of traces of former crevasses. The modeled glaciers are simplified

versions of Trapridge Glacier in northwest Canada that allow diagnostic mod-

eling of influences on glacier structure and help to clarify the physics and nu-

merics. In the model, surges occur every 50 years in response to a prescribed

cyclic change in bed friction. Medial moraine patterns are simulated by track-

ing the englacial and supraglacial trajectory of debris injected at fixed points

in the accumulation region. Stratification is assumed to be associated with

isochronal surfaces, and vertical foliation is explained in terms of horizon-

tal flattening of strain ellipsoids. Crevasses form when and where the inten-

sity of tensile stress exceeds a prescribed threshold; crack damage is cumu-

lative so that crevasse traces observed at sampling sites are a superposition

of the damage accumulated en route. Folding is parameterized but not re-

solved. By evaluating the deformation gradient tensor along ice particle tra-

jectories and applying the polar decomposition to this tensor, we isolate the

cumulative effects of rotation and stretching by ice flow and calculate strain

ellipsoids as well as other practical indicators of deformation.

Keypoints:
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• Ice dynamics models have sufficient physics to explain many of the struc-

tural features of surging and non-surging glaciers.

• Model calculations of the deformation gradient indicate that convergent

ice flow favors development of longitudinal foliation structures.

• The propensity for folding can be parameterized using scalar invariants

of a rank 3 tensor derived from the deformation gradient.
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1. Introduction

For as long as geologists have contemplated glaciers they have sought to explain the

structural features of glaciers in terms of their internal processes [e.g., Agassiz , 1840;

Forbes , 1842]. Efforts to test these ideas using numerical ice flow models, following devel-

opments in structural geology [Ramsay , 1967], are comparatively recent and remain at an

early stage [e.g., Hambrey & Milnes , 1978; Hooke & Hudleston, 1978; Hubbard & Hubbard ,

2000; Hambrey et al., 2005]. The spatial resolution of glacier flow models limits the scale

at which mechanical processes can be resolved and thus the range of processes that can

be usefully examined. From the perspective of the generation and evolution of structure,

surging glaciers command special attention. Surges can cause large and rapid changes in

ice flow rate and internal stresses, potentially amplifying the processes of interest.

This contribution aims to provide a quantitative framework for interpreting a compan-

ion paper [Hambrey & Clarke, 2019] on the measured and modeled structure of Trapridge

Glacier, Yukon, Canada (61◦ 14′N, 140◦ 20′W), a well-studied glacier that from ca. 1980–

1999 experienced a slow surge [Frappé-Sénéclauze & Clarke, 2007]. Combining field ob-

servations and numerical modeling, Hambrey & Clarke [2019] analyzed the post-surge

structure of Trapridge Glacier including the medial moraine pattern, stratification and

foliation, folding, and the density and orientation of crevasse traces. That paper was

concerned with the observed structures and the skill of prognostic models to reproduce

observations. It avoided the physics and numerics of structure simulation modeling and

did not exploit diagnostic models to isolate influences on the formation and transport of

structures. In the present paper we test the ability of numerical ice dynamics models to
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simulate the processes that produce structures in surging and non-surging glaciers and

examine how various forms of flow complexity influence these structures.

We follow the template of Table 1 in Hambrey & Clarke (2019) and use standard

structural geological notation to label glacier structures: S0, S1, etc. for sequential planar

structures and F1, F2, etc. for successive fold phases. In the present paper we consider

primary stratification (S0), longitudinal foliation (S1), transverse foliation (S2), fractures

(surface crevassing and crevasse traces) (S4), recumbent folds (F3), and medial moraines.

2. Model Overview

Attempts to model the structural evolution of glaciers have mainly focused on strain

history [Hambrey & Milnes , 1978; Hooke & Hudleston, 1978; Hubbard & Hubbard , 2000;

Hambrey et al., 2005] or on efforts to examine the generation and transport of ice crystal

fabric [e.g., Seddik et al., 2011]. Strain history models tend to be based on the calculation

of stress and strain-rate ellipsoids and such models are incapable of representing the

accumulation of strain. Those approaches are at odds with how structural information is

commonly represented by field workers, for example as points projected onto stereographic

nets such as Schmidt diagrams and rose diagrams [e.g., Hubbard & Glasser , 2005].

The scale at which ice flow velocity components vk(xm, t) = (u, v, w) are calculated in

a numerical ice dynamics model is set by the cell size of the computational grid. For our

flow models we use a Cartesian map grid (∆x=∆y=30 m) with a linearly-stretched vertical

axis. Ice temperature is calculated at 11 vertical levels (Nζ=11) and flow velocity at 21

levels (Nξ=21). At this resolution, small-scale folding and thrusting are sub-grid processes

that cannot be modeled. Furthermore faulting can result in substantial displacements that

introduce void space and discontinuous changes in [u, v, w] which are not consistent with
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a simple continuum mechanical model. We allow ice cracks to form but represent these as

subgrid properties and do not consider the volume change that is associated with crack

formation. The model focuses on the extent to which passive transport and rotation

during glacier flow can be combined with the accumulated effects of strain and episodic

fracture to explain observed patterns of medial moraines, stratification, foliation, folding,

and crevasse traces that were identified in a companion paper [Hambrey & Clarke, 2019].

The use of vertically-stretched coordinate systems simplifies the numerics but greatly

reduces the comprehensibility of the associated mathematical expressions. For this reason

we present the model physics in Cartesian coordinates but with the understanding that

for numerical analysis the expressions need to be converted to stretched coordinates. A

table summarizing the notation for this study can be found at the end of this article.

Physical constants and parameter values are listed in Table 1.

2.1. Ice Flow and Surging

Glaciers in the study region are known to have sub-polar thermal regimes [e.g., Clarke

& Blake, 1991] that can affect both the flow and fracture of ice. Thus we use a thermome-

chanical numerical ice dynamics model to simulate the evolution of glacier geometry. The

flow solver [Jarosch et al., 2013; Clarke et al., 2015] assumes the shallow ice approximation

and is supplemented by a temperature solver similar to that of Greve & Blatter [2009].

The basic equations of the thermomechanical flow model are

∂H

∂t
= −∇xy ·Q + ḃ,

Q = −2A(ρg)n

n+ 2
|∇xyS|n−1Hn+2∇xyS + vsH,

vs = −C(ρg)mHm |∇xyS|m−1∇xyS,
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∂T

∂t
= −u ∂T

∂x
− v ∂T

∂y
− w ∂T

∂z
+

1

ρc

∂

∂z

(
k
∂T

∂z

)
+

2Aτn+1

ρc
, (1)

where H = ice thickness, Q = volume discharge of ice per unit width, ḃ= ice-equivalent

surface mass balance rate, A= temperature-dependent coefficient in Glen’s flow law for

ice (Glen, 1955), ρ= ice density (900 kg m−3), g= gravity acceleration (9.80 m s−2), n = 3

(Glen’s flow law exponent), S= surface elevation, C(x, y, t) = sliding law coefficient, m = 2

(sliding law exponent), with constitutive equations: A = A0 exp(−E/RT ) (temperature-

dependent creep law coefficient), k = k0 exp(−k1T ) (thermal conductivity), c = c0 + c1T

(specific heat capacity), Tm = T0−β(S− z) (depth-dependent melting temperature), and

physical constants from Cuffey & Paterson [2010].

Components of the ice flow velocity field (u, v, w) are reconstructed following a standard

approach [Marshall et al., 2000; Greve & Blatter , 2009]. As in Greve & Blatter [2009],

we assume a vertically-stretched coordinate system for both the temperature and velocity

fields. For the temperature grid we assume ζk = [zk−B(x, y)]/H(x, y) and for the velocity

grid ξk = [zk−B(x, y)]/H(x, y); both grids are linearly stretched but Nζ and Nξ can differ.

Cyclic surging is an important feature of our flow models. Without invoking a surge

mechanism we attribute surges to cyclic variations in the basal sliding rate

vS = −C (ρg)mHm |∇xyS|m−1∇Sxy (2)

caused by cyclic variations in the rate coefficient C which varies with space and time and

takes the limiting values

C =

{
Cslide normal sliding

Csurge surging.
(3)

Spatiotemporal variations in C are managed by introducing a spatial mask M(x, y) for

which M = 1 in regions where fast-sliding is possible and M = 0 elsewhere; a temporally-
c©2019 American Geophysical Union. All Rights Reserved.



varying mask M∗(x, y, t) with 0 ≤ M∗ ≤ 1 is obtained from M by introducing a moving

boundary L∗(t) that sweeps across the sliding mask M and serves as a shutter that controls

the size of the surge activation zone M∗ and hence the magnitude of the sliding parameter

C(x, y, t) = Cslide + [Csurge − Cslide]M
∗(x, y, t) (4)

(Figure 1a). The function L∗(t) is piecewise linear and determines the surge cycle. For a

single cycle

L∗(t) =



Lmin not surging, t ≤ tstart

Lmin +
t− tstart

tpeak − tstart

[Lmax − Lmin] accelerating phase of surge, tstart ≤ t ≤ tpeak

Lpeak −
t− tpeak

tstop − tpeak

[Lpeak − Lmin] decelerating phase of surge, tpeak ≤ t ≤ tstop

Lmin not surging, t ≥ tstop

(5)

(Figure 1b). As a final refinement, we smooth the step changes in C that occur at the

upflow and downflow boundaries of the activation zone by applying the smoothing function

M∗(x, y, t) =
1

2
M(x, t)

{
tanh [α(L− Lmin)/∆L]− tanh [α(L− L∗)/∆L]

}
(6)

(Figure 1c). In equation 6, we take α=2.5 and ∆L=150 m.

Based roughly on what is known of the surge history for Trapridge Glacier [Frappé-

Sénéclauze & Clarke, 2007], we take the surge cycle to be 50 years, with a 13-year duration

of the active phase and a 37-year quiescent phase. The duration of the accelerating part

of the surge phase is 3 years and that of the decelerating phase is 2 years. Surges are

initiated in years 1985 ± 50N where N is an integer. Thus, for example, 1945 and 1995

each correspond to year 10 of the surge cycle. We take Cslide=5 × 10−11 m yr−1 Pa−2 and

Csurge=2.5 × 10−9 m yr−1 Pa−2 which yield reasonable flow rates for the non-surging and

surging states.

c©2019 American Geophysical Union. All Rights Reserved.



3. Structure Modeling

The observed structure of Trapridge Glacier [Hambrey & Clarke, 2019] provides the

motivation for this study. The complexity of that glacier can obscure our understanding

of how various structure-forming processes function and how they are influenced by spatial

irregularites in bed topography, sliding friction, and surface mass balance and by whether

a glacier does or does not surge. We begin by developing a digital elevation model of bed

topography that corresponds to a simplified version of Trapridge Glacier which we refer

to as “Traplike Glacier”. Traplike Glacier flows from west to east and is symmetric about

its centerline flow axis. This symmetry is produced by taking the digital elevation model

for Trapridge Glacier bed topography B(x, y) (derived from Flowers & Clarke [1999] and

extended using a simplified version of Clarke et al. [2013]) and identifying the central flow

axis for Trapridge Glacier (refer to Figure 11 of Hambrey & Clarke [2019]), rotating the

DEM to align with this axis, resampling the DEM in the rotated grid, and then cropping

the new DEM to isolate the Trapridge Glacier catchment. We denote the gridded bed

elevation for the new DEM as Bi,j, where i=1, 2, . . . , Nx and j=1, 2, . . . , Ny and assume

that Ny is an odd number so that j=1 + (Ny − 1)/2 corresponds to the j index of the

glacier centerline. The smoothed and symmetric bed topography is given by

B∗i,j =
1

2
(Bi,j +Bi,Ny+1−j) (7)

and taken as the bed topography of the Traplike Glacier reference model (Figure 2). The

mass balance forcing ḃ is assumed to be elevation-dependent and time-invariant with

ḃ =

[
dḃ

dz

]
acc

max(S − Zela, 0) +

[
dḃ

dz

]
abl

min(S − Zela, 0) (8)

Zela=2475 m, [dḃ/dz]acc=3.8095× 10−3 yr−1, and [dḃ/dz]abl=7.6190× 10−3 yr−1.

c©2019 American Geophysical Union. All Rights Reserved.



Large bedrock bumps complicate the flow of Trapridge Glacier (e.g., Hambrey and

Clarke, 2019, Fig. 3). By avoiding the full complexity of Trapridge Glacier we can

systematically examine how subglacial topography influences ice flow and ice structure.

To break the symmetry we can optionally introduce bed bumps (inset Figure 2) centered

at various points in the bed (denoted by ‘+” in Figure 2). Surges occur when a region of

reduced bed friction is activated (dashed outline in Figure 2 and equations 4–6).

The Traplike models that we consider are identified as the “reference”, “non-surging”,

“pinched”, “bed bump”, “balance bump” and “right channel surge” models. The reference

model is simplest and has north–south symmetry across its central flowline. The right

channel surge model examines the case where the southern half of the glacier experiences

cyclic changes in the basal sliding friction while the northern half has constant sliding

friction throughout the surge cycle (Figure 2). Hambrey & Clarke [2019] suggest that

the south channel (i.e., to the south of the medial moraine) shows clearer evidence for

surging than the north channel. The simplified model allows the consequences of such a

channelization to be explored. The bed bump model examines the effect of bed topography

on surges. The north–south symmetry of the reference model is broken by placing bedrock

bumps at three points on the bed to create a slalom course for ice flow (Figure 2). The

balance bump model assumes the symmetric bed topography of the reference model but

breaks symmetry by introducing spatial bumps in the steady mass balance field. These

bumps are located at the same spatial positions as the three bumps of the bed bump

model and have the same spatial form as the inset of Figure 2. The amplitude of each

bump is ∆ḃ=+0.60 m yr−1 (ice-equivalent). Balance bumps are especially relevant to the

c©2019 American Geophysical Union. All Rights Reserved.



S0 stratification because they distort the layering. We shall describe the pinched model

in a subsequent section.

4. Methods and Algorithms

To compute particle trajectories we employ a one-step two-level scheme in which, for

forward tracking, information at time levels tn and tn + ∆t is used to find the position

at time step tn + ∆t (e.g., Staniforth & Côté, 1991). From the point of ice deposition in

the accumulation zone Xd to the point of emergence in the ablation zone Xe the particle

follows a trajectory X(t). The position vector along the trajectory satisfies the equations

dX

dt
= v(X, t) (9)

or, equivalently,

dXk

dt
= vk(Xm, t). (10)

The numerical ice dynamics model calculates the velocity field v at grid points (xi, yj, zk)

and times tn. For forward (top-down) tracking we approximate equation 10 by

Xk(xm + am, tn + ∆t) = Xk(xm, tn) + vk(xm +
am
2
, tn +

∆t

2
) ∆t, (11)

which represents a time- and space-centered finite-difference approximation of equation

10 where ak = Xk(xm + am, tn + ∆t)−Xk(xm, tn). Solving for am by iteration

ap+1
k = vk(xm +

apm
2
, tn +

∆t

2
) ∆t (12)

and applying these values to equation 11 yields the next down-flow point along the forward

particle trajectory.

For backtracking (bottom-up tracking) equation 9 is approximated by

Xk(xm − am, tn −∆t) = Xk(xm, tn)− vk(xm −
am
2
, tn −

∆t

2
) ∆t, (13)
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and am is found by iterating

ap+1
k = vk(xm −

apm
2
, tn −

∆t

2
) ∆t. (14)

Together, the particle tracking equations allow accurate calculation of the particle tra-

jectories and the possibility of checking integration accuracy by comparing end points

for bottom-up and top-down tracking. We find that typical bottom-up vs. top-down

spatial and temporal discrepancies seldom exceed 3 cm and 0.05 yr. In rare cases the

round-trip closure errors are very large (e.g., with spatial closure errors exceeding 100 m

and time closure errors exceeding 10 yr) and the results must be rejected. Such errors

indicate a complete failure of the trajectory integration and arise when the starting point

for backtracking is at the glacier surface and near the equilibrium line. For this situation

the bottom-up and top-down trajectories are very shallow and small errors can cause de-

layed downward penetration of the bottom-up trajectory or premature emergence of the

top-down trajectory.

Round-trip closure errors are not strongly affected by varying the size of ∆t or ∆ξ

but this result can be misleading because particle trajectories change somewhat when ∆t

and ∆ξ are changed. Comparing the endpoints and emergence times of the bottom-up

trajectories among models having different space- and time-step sizes allows the effects

of changing these values to be assessed. For example, if both ∆t and ∆ξ are halved (by

setting ∆t = 0.005 yr and Nξ = 41) and the results compared with those for the Traplike

reference model, the root mean square difference in the emergence positions for a large

suite of trajectories is 0.88 m and that of the emergence times is 0.86 yr.
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4.1. Semi-Lagrangian Tracers

Numerical modeling of ice particle trajectories in surging glaciers began with the simu-

lation of the isotopic structure of Steele Glacier in Yukon (Waddington & Clarke, 1988).

Here we use an established semi-Lagrangian approach [Clarke & Marshall , 2002; Clarke

et al., 2005; Lhomme et al., 2005] to evaluate the modeled ice deposition time td(x, y, z, t)

for all englacial points and times. Passive tracers such as td and other depositional prove-

nance labels are transported like material particles so the labels are conserved as they

move along ice-flow trajectories; thus

dΨ

dt
= 0, (15)

where dΨ/dt denotes a material derivative. Along a trajectory Ψ is constant and it follows

that

Ψ(xm, t) = Ψ(xm − dxm, t− dt) (16)

where the points (xm−dxm, t−dt) and (xm, t) are on the same flow trajectory. Our model

uses small time steps (∆t=0.01 yr) so that equation 16 can be satisfactorily approximated

as

Ψ(xm, t) = Ψ
(
xm − vm(xm, t)∆t, t−∆t

)
, (17)

and higher-order approximations [e.g., Goelles et al., 2014] are unwarranted. (The semi-

Lagrangian scheme is explicit, however, so combining a coarse time step (large ∆t) with

a fine space step (small ∆ξ) can cause integration failure if the Courant–Friedrichs–Lewy

(CFL) condition (e.g., Strang, 2007) is violated.) By setting Ψ to correspond to the

depositional year td of an ice particle at the deposition site [Xd, Y,d, S(Xd, Yd, td)] one can

evaluate td(xi, yj, zk, tn) for points on the spatial grid at subsequent time steps.
c©2019 American Geophysical Union. All Rights Reserved.



4.2. Characterization of Deformation

A variety of tensors that characterize the rate and magnitude of deformation can

be derived from the ice velocity field v(x, y, z, t). These include the velocity gradient

L = grad v, strain rate D = 1
2
(L + LT ) (where LT is the matrix transpose of L), and

spin W = 1
2

(L − LT ) which, in subscript notation, can be written as Ljk = ∂vj/∂xk,

Djk = 1
2
(Ljk + Lkj), and Wjk = 1

2
(Ljk − Lkj). Here and elsewhere in this contribution,

we shall move freely between boldface and subscript notation and assume the Einstein

summation convention for repeated subscripts in vector and tensor expressions. Subscript

notation has the merit of being completely explicit but can sometimes obscure underly-

ing simplicity. For example, the matrix product AB becomes AijBjk; most computing

languages support matrix multiplication, whereas the evaluation of AijBjk by repeated

summation is unnecessarily tortuous.

For glaciological deformations the strains are typically finite and the deformation gradi-

ent F and its polar decomposition are particularly useful. The evolution of F is obtained

by solving the differential equation

dF

dt
= LF (18)

[e.g. Hutter & Jöhnk , 2004] or, in subscript notation,

dFij
dt

= LikFkj. (19)

Equation 19 can be integrated using the McKenzie [1979] algorithm

Fn+1 = A−1BFn, (20)

where A = I− 1
2
∆tL, B = I+ 1

2
∆tL, I = δjk is the identity tensor (Kronecker delta), A−1

denotes the matrix inverse of A, and subscripts n + 1 and n are time indices. McKenzie
c©2019 American Geophysical Union. All Rights Reserved.



applied this algorithm to a two-dimensional time-independent flow but it also works for

three-dimensional time-variable flows. For incompressible flows det(F) = 0 and this yields

a check on the accuracy of the trajectory integrations.

A conceptually simpler approach to evaluating F that we have not explored is to track

individual trajectories of tetrahedral configurations of particles, rather than that of indi-

vidual particles, and estimate F by calculating changes in inter-particle distances. If the

aim was to evaluate F at a single downglacier sampling site this could offer a shortcut but

several of the structure calculations (for example, the rotation of fracture planes) require

F to be evaluated at selected points along a particle trajectory so, to preserve flexibility,

we choose to evaluate and archive F for every point. For this purpose our method is

probably simpler and faster.

The polar decomposition of F [e.g., Malvern, 1969; Hutter & Jöhnk , 2004; Brannon,

2018]

F = RU = VR (21)

gives useful information about the deformation: R is a rigid body rotation and U and

V are symmetric tensors that represent stretching and from which strain ellipsoids can

be calculated. In effect, the polar decomposition presents alternative representations of

the total deformation F. Assuming that the initial state is undeformed (i.e., F0 = I), the

final state F can be achieved by a non-unique series of deformation steps

F = Fn Fn−1 . . .F2 F1 I. (22)

c©2019 American Geophysical Union. All Rights Reserved.



The two-step sequences F = RU and F = VR represent, respectively, a pure stretch

U followed by a rigid body rotation R and a rigid body rotation R followed by a pure

stretch V (where R is the same for both operations but U and V differ).

4.3. Particle Tracking Archive and Post Processing

The thermomechanical ice dynamics model calculates the ice geometry H(x, y, t), tem-

perature T (x, y, z, t), and velocity field v(x, y, z, t) at every grid point and time step. In

principle all these calculations could be archived. However, because of the assumed pe-

riodicity of the modeled surges, it is sufficient to archive the results for a single surge

cycle. In practice we start the model from an initial ice-free state and run it until it ap-

proaches a periodically-repeating state (typically 750–950 years depending on the model).

At this time the td tracers are introduced and the simulation continues until the elapsed

model time is 1150 years. Results of the final 50 years of the simulation are placed in an

archive. The particle trajectory calculations and remaining evaluations are performed as

post-processing steps. The observation time and spatial locations of surface and englacial

sampling sites are defined and back-tracking from these points allows the depositional time

and position of the sampled ice to be calculated. Forward tracking from the ice deposition

sites to the measurement sites is then performed to confirm the accuracy of the trajectory

calculations. During the forward tracking step, the following properties are calculated and

archived at each time and location along the trajectories: ice temperature T , ice velocity

v, velocity gradient tensor L, strain rate tensor D, eigenvalues and eigenvectors of D, spin

tensor W, flow law coefficient A, ice viscosity η, deviatoric stress tensor s, eigenvalues

and eigenvectors of s, full stress tensor σjk (in the hydrostatic approximation), resistive

stress Rjk, deformation gradient tensor F, rotation tensor R, stretch tensors U and V,
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and the eigenvalues and eigenvectors of U. Not all these archived properties are put to

use but it seemed prudent to make them available for potential use rather than generate

them at some later stage.

Figure 3 shows two simulated particle trajectories for the Traplike reference model. The

head and tail of each track are marked by green triangles. Red and blue segments of the

trajectories distinguish between parts of the trajectory that are traversed during surges

(red) and parts that are traversed during quiescence (blue). Open circles mark decadal

times along the trajectories with the farthest downstream markers corresponding to 2000

and the trajectory end points to 2006.6 (the observation year).

The tracks differ both in their length and penetration depth. The map view (Figure 3a)

shows that the trajectories start by converging toward the central flow axis then, farther

downstream, diverging slightly. The trajectory profiles (Figure 3b) show that the longer

track is associated with a greater penetration depth. Here we use the linearly-stretched

vertical coordinate ξ = (z − B)/H to avoid graphing complications resulting from the

spatially- and temporally-varying ice thickness.

Table 2 is concerned with three points on the long trajectory. Point A represents the

starting point, B an intermediate point, and C the end point and sampling site. The

location and launch time for the particle at A were chosen so that ice exiting at point C

arrives at the pre-determined observation point and observation time 2006.6. Point A was

found by backtracking from the known position and time of C. Table 2 gives the calculated

start year for A as 1886.99 and the end year as 2006.60; point B corresponds to 1980.00.

From the positions and times associated with points A, B, and C, the physical conditions

at these points can be calculated using tri-linear interpolation of data extracted from the
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flow model archive. For the 0.01 year time step of the flow model and the 119.61 year

length of the ABC flow trajectory, there are 11961 evaluations of the various physical

properties such as those appearing in Table 2. We do this for all models and trajectories.

4.4. Formation and Transport of Medial Moraines

As for Trapridge Glacier we assume that medial moraine tracks formed by exposed rock

debris in the glacier ablation zone were originally deposited at discrete sites in the accumu-

lation zone. Thus the debris trajectories have an englacial component which starts at the

surface deposition site and ends where the debris emerges in the glacier ablation zone and

a supraglacial component which starts at the point where debris emerges and ends where

solid debris is deposited, by surface melting, on an ice-free bed. We assume that englacial

debris and material particles of ice move together and that the englacial trajectory is

given by the previously introduced solution of the top-down trajectory equation

Xk(xm + am, tn + ∆t) = Xk(xm, tn) + vk(xm +
am
2
, tn +

∆t

2
) ∆t. (23)

For debris following a supraglacial path the velocity field for debris particles becomes

vS
k(x, y, t) = vk[x, y, S(x, y, t), t] and the numerical solution is a two-dimensional version

of equation 23 with am = (a, b) found by iterating

X1(x+ ap+1, y + bp+1, tn + ∆t) = X1(x, y, tn) + vS
1 (x+

ap

2
, y +

bp

2
, tn +

∆t

2
)

X2(x+ ap+1, y + bp+1, tn + ∆t) = X2(x, y, tn) + vS
2 (x+

ap

2
, y +

bp

2
, tn +

∆t

2
) (24)

to obtain the solutions

a = ∆t vS
1 (x+ a, y + b, tn +

∆t

2
)

b = ∆t vS
2 (x+ a, y + b, tn +

∆t

2
) (25)
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which, through equation 23, yields the spatial position of the next supraglacial point on

the down-flow trajectory.

Figure 4 shows simulated medial moraine patterns for five different Traplike models

viewed at the completion of a surge (cycle year 13 or 1998 for the 1985 surge). For each

model there are three debris input points located in the ablation area (marked by colored

circles). The equilibrium line altitude (ELA, blue line) is indicated on each plot. Figure

4a is for a non-surging model (obtained by setting Csurge=Cslide to eliminate fast sliding

episodes) and shows the simplest moraine pattern. Figure 4b is for the Traplike reference

model and the differences relative to the non-surging model can be attributed to the cyclic

flow rate. The oldest (farthest upstream) visible moraine debris dates to around 1950 so

only one complete surge cycle is represented in these moraine patterns. The remaining

models explore the consequences of breaking the north–south symmetry of the reference

model. Figure 4c accomplishes this by introducing bed bumps to the reference model. In

Figure 4d the reference bed topography is used and the symmetry is broken by adding

bumps to the mass balance field. In Figure 4e the reference bed topography and mass

balance are applied but the fast-sliding surging zone is limited to the southern half (right

channel) of the glacier (see Figure 4).

Figure 5 shows the time progression of medial moraine patterns that are associated with

four of the five models of Figure 4 (the non-surging model has been excluded because the

pattern does not change with time). The north–south symmetry of the reference model

(Figures 5a1 to 5a5) is maintained throughout the surge cycle and the moraine patterns

are quite similar to those for the asymmetrical balance bump model, where symmetry is

broken by an asymmetrical mass balance field. The moraine patterns are directly related
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to ice dynamics and the effect of balance bumps on ice dynamics is not large. The bed

bump model produces highly contorted moraine patterns and the extreme contortions of

the right channel surge model produce a surprisingly complex pattern for the northern-

most (red line) moraine. This serves as a reminder that the moraine lines are formed

by aggregating the distinct trajectories of each debris particle and have no necessary

relationship to ice flow trajectories.

4.5. Formation and Transport of the S0 Stratification

In Hambrey & Clarke [2019] the earliest structure to form was identified as primary

stratification, labeled S0 (i.e., formed at the time of surface accumulation) and described

as a set of gently dipping layers of coarse bubbly ice separated by diffuse dirty layers.

For the model we therefore assume that each of the surfaces that account for the S0

stratification was formerly subaerial and isochronal; to simulate these surfaces of constant

depositional year td, we use a semi-Lagrangian tracer transport model (equations 15–17).

In nature, temporal variations in the deposition of wind-blown dust, volcanic ash, and the

like, account for differences in the delineation of these surfaces.

Figure 6 shows simulations of the S0 stratification for five Traplike models. The S0

stratification is associated with the depositional date of surface ice exposed in the ablation

zone. In the accumulation zone the depositional date of all surface ice corresponds to the

observation year (2000 in these figures). For the non-surging model (Figure 6a) and the

reference model (Figure 6b) the S0 stratification is not complicated and there is little in

the patterns that would distinguish a surging from a non-surging glacier. The comparative

complexity of the pattern in Figure 6c results from the complex flow produced by surging

flow over asymmetrical bed bumps. In contrast the complexity in Figure 6d is caused by
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bumps in the surface mass balance field. These perturbations of the mass balance field,

though large, do not have a profound influence on the ice velocity field (the glacier margins

and medial moraine patterns for the reference model and the balance bumps model are

very similar). An important implication is that complexity of the S0 stratification pattern

is not necessarily a reliable indicator of complex flow. Finally, Figure 6e shows the pattern

for the right channel surge model. The sharp boundary between surging and non-surging

ice produces a dramatic discontinuity in the simulated S0 horizons.

4.6. Formation and Transport of the S1 Foliation

On Trapridge and other glaciers, the S1 foliation is described as longitudinally-oriented,

near-vertical, and defined principally by bubble elongation, bubble density, and variations

in ice crystal size (layers of fine grained ice alternating with coarse bubbly and coarse

clear ice). We shall base our simulations of the formation and transport of S1 on the de-

formation gradient tensor Fjk found by integrating equation 19 using the McKenzie [1979]

algorithm. Unlike calculations of td(x, y, z, t), which yield isochrons of the S0 stratifica-

tion, the deformation gradient is only available at points along ice flow trajectories. Thus

producing a surface map of S1 at grid points (xi, yj) entails back-tracking the trajectories

for each of these points of interest, then performing forward integrations of F along the

trajectory. There is no semi-Lagrangian alternative that might simplify this task. Because

particle tracking is computationally intensive, we limit our efforts to a grid of 61 surface

observation sites (Figure 7). We proceed by back-tracking from these measurement sites

(xs, ys, zs) and measurement times ts to their up-glacier depositional sites (xd, yd, zd) and

deposition times td. Here, the vertical coordinates zs and zd correspond to zs=S(xs, ys, ts)

and zd=S(xd, yd, td) from the ice dynamics model. Having found these points, we com-

c©2019 American Geophysical Union. All Rights Reserved.



mence forward-tracking from (xd, yd, zd, td) to (xs, ys, zs, ts) and perform the trajectory

integrations that yield Fjk(xs, ys, zs, ts), the total strain at the measurement site.

The deformation gradient tensor carries information about the strain ellipsoid, which

is the focus of our interest in the S1 foliation. The polar decomposition F = RU = VR

decomposes F into a stretch U followed by a rotation R or, alternatively, a rotation R

followed by a stretch V. The rotation is the same for both cases but the stretch tensors

U and V differ; they have identical eigenvalues but differing eigenvectors. The stretch

tensors U and V are symmetric with identical eigenvalues λU1 , λU2 , and λU3 that correspond

to the principal semi-axis lengths of the strain ellipsoid. The eigenvectors of U, written

NU
1 , NU

2 , and NU
3 , are mutually orthogonal but have no particular orientation relative

to the (x, y, z) coordinate system of the ice dynamics model. The eigenvalues and their

associated eigenvectors are ordered so that λU1 ≥ λU2 ≥ λU3 and the eigenvectors form the

basis vectors for a right-handed coordinate system. The S1 foliation is assumed to coincide

with the plane formed by the maximum and intermediate eigenvalues of U, i.e., NU
1 and

NU
2 ; the eigenvector NU

3 is perpendicular to this plane. It remains to apply the rotation R

and place these vectors in their final configuration: RNU
1 , RNU

2 , and RNU
3 . However this

is needlessly circuitous because the eigenvectors of V yield the same information directly

because NV
1 = RNU

1 , NV
2 = RNU

2 , and NV
2 = RNU

2 .

The unit vector NV
3 is normal to the plane of the S1 foliation. As in Figure 6 of Hambrey

& Clarke [2019], this vector can be mapped as a point on a lower hemisphere stereographic

projection by choosing the sense of NV
3 to be downward-pointing. Thus, for example, if

(xp, yp, zp) are components of the unit vector NV
3 and zp is positive, the sense is reversed
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by setting NV
3 =−(xp, yp, zp). The plunge angle of NV

3 is ϕ3=arctan(zp/
√
x2
p + y2

p) and the

dip of the plane normal to NV
3 is δ3=π/2−ϕ3 (in radians).

Alone, the orientation of the NV
3 plane says nothing about the strength of the foliation

that is associated with it. It is reasonable to assume that the geometry of strain ellipsoids

influences foliation development but the processes that connect ice strain and ice foliation

merit future study. For Trapridge Glacier the S1 foliation was attributed to enhanced

ablation of ice that contained a high density of elongated bubbles. Bubbles have been

taken as strain indicators although diffusion processes can complicate this idea [e.g., Alley

& Fitzpatrick , 1999; Gay , 1968; Hudleston, 1977; Nakawo & Wakahama, 1981]. Our

association of the S1 foliation with the geometry and orientation of strain ellipsoids is

contingent on the extent to which the geometry of strain ellipsoids influences the geometry

of bubbles and the orientation of ice fabric. For the present study we assume that the

following ellipsoid properties favor development of the S1 foliation: the dip angle δ3 of the

NV
3 eigenvector cannot be small (δ3 > 30◦) and the axis ratio κ2:3=λU2 /λ

U
3 must be large

enough to significantly flatten the ellipsoid (κ2:3 > 5). We suspect that a small axis ratio

κ1:2=λU1 /λ
U
2 (yielding a disk-like ellipsoid rather than a blade-like one) is also favorable

but do not apply this restriction.

Figure 8a shows simulation results for the Traplike reference model presented in the

form of equal-area lower-hemisphere stereographic projections of the poles of the NV
3

eigenvector in the form of a scatterplot (left) and contoured density plot (right) of the

same data. Most of the 61 plotted points fail one or both of the criteria that we consider

favorable for the S1 foliation. For yellow points: δ3 < 30◦; for green points: κ2:3 < 5;

red points fail both tests. These exclusion criteria would not eliminate steeply-dipping
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transverse features if such existed. Figure 8b shows stereoplots for data that has been

“edited” to remove the excluded points. Figure 8c shows the site locations and uses the

same color coding. The accepted points unquestionably correspond to a steeply dipping

longitudinal foliation, defining characteristics of S1, but there are too few points to yield a

pleasing contour plot. For additional insight, Table 3 summarizes the calculated ellipsoid

properties and results of exclusion tests for selected points plotted in Figures 8a and 8c.

In contrast to Figure 8, the Trapridge Glacier simulation [Hambrey & Clarke, 2019,

Fig. 17] yielded 45 (of 121) suitable points. We speculate that the channel geometry for

the Traplike reference model does not favor development of the S1 foliation. Previous

publications on this foliation, including Hambrey & Clarke [2019], have called attention

to the association of the S1 with converging flow. For example, the conspicuous “longitu-

dinal septum” of Blue Glacier (Washington State) appears to form at the confluence of ice

flowing from north and south basins of that glacier [Allen et al., 1960], and White Glacier

(Axel Heiberg Island) has a wide accumulation area feeding a long, straight, and narrow

tongue [Hambrey & Müller , 1978], as does Midtre Lovénbreen (Svalbard) [Hambrey et al.,

2005]. To assess these interpretations we modified the bed topography of the reference

model to obtain a channel that would favor convergence of ice flow toward the central

flow axis. This was accomplished by smoothly distorting the DEM of bedrock topography

(Figure 2) so that the north–south symmetry was preserved but the channel width was

narrowed. In the map coordinate system of Figure 2, the zone of progressive narrow-

ing is 1170 E–1920 E, with a maximum narrowing at 1920 m; between 1920 E–2670 E the

constricted channel progressively widens. Upstream from 1170 E and downstream from

2670 E the DEM is identical to that for the reference model. These zones of narrowing

c©2019 American Geophysical Union. All Rights Reserved.



and widening are indicated on the site map (Figure 8c1). We reasoned that the flow con-

vergence introduced by modifying the channel geometry would favor increased flattening

of the strain ellipsoids and thus promote development of the S1 foliation. We call this

modification of the Traplike reference model the “pinched” model.

Figures 8a1 to 8c1 show the simulation results for the Traplike pinched model. Of

the 61 points examined in the pinched model, 19 pass the exclusion criteria and the

resulting edited plots (Figure 8b1) correspond to a steeply dipping longitudinal foliation.

Comparison of the site map for the pinched model and the reference model clearly indicates

that flow convergence leads to significant increases in ellipsoid flattening and thus to

significant enhancement of S1.

Figure 9 presents the results of efforts to simulate the S1 foliation for four Traplike

Glacier models and as many as 61 surface sites (Figure 9). The stereographic projection

for the reference model (Figure 9a) and the no-surge model (Figure 9b) are closely similar

and indicate a strongly developed near-vertical S1 foliation that is aligned with the ice

flow direction. These points break the predominant north–south symmetry of Figures

9a and 9b and complicate the contour plots. A closer study reveals that the discordant

points seem to be associated with compressive flow which under some circumstances can

cause the minor axis of the ellipsoids to be aligned with the ice flow direction and the

plane of NV
1 and NV

2 to be sub-horizontal.

By focusing attention on the geometry of strain ellipsoids we have blurred the distinction

between ellipsoids and foliations. For Trapridge Glacier, Hambrey & Clarke [2019] noted

that the S1 foliation is defined principally by crystal size, bubble elongation, and bubble

density and associated variations in surface ablation rate. If the ice and bubbles experience
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and preserve the same strain history then it seems reasonable to expect that horizontally

flattened disk-like bubbles would intersect the melting ice surface more frequently than

the same number density of spheroidal bubbles and melt penetration would be enhanced.

In this case it is likely that our requirement that κ2:3<5 is too stringent.

In the course of this examination of the S1 foliation, we remained open to the possibility

that examples of the S2 transverse foliation identified in Hambrey & Clarke [2019] might

be generated by the same processes that produced discordant points that do not match the

observed longitudinal foliation in Figures 9a to 9d. However strain ellipsoid simulations do

not support this hypothesis and the interpretation that the S2 foliation originally formed

as crevasse traces seems to be the correct one. We return to this discussion following the

sections on crevasse traces and crack density.

4.7. Formation and Transport of Folded Ice

Our model does not attempt to resolve the intricate strain that can result from recum-

bent englacial folding (F3 in Hambrey & Clarke [2019]). Instead we propose a simple

scalar parameterization that aims to identify strain conditions that favor folding. First,

we seek a tensor that contains the desired information and then examine its scalar invari-

ants which, like the tensor, are independent of the coordinate system. Tensors such as

L, D, and W are not useful because they involve rates of deformation rather than the

time-integrated consequences. The deformation gradient F has the merit of quantifying

the accumulated strain but is nonetheless unsatisfactory because the deformations that it

can characterize are insufficiently complex to produce folding.

We therefore focus on the gradient of the deformation gradient F which we write as

T = grad(F). T is a rank three tensor (Tijk = ∂iFjk in subscript notation) which has
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12 scalar invariants [Ahmad , 2011]. One of these invariants is linear L = εijkTijk where

εijk is the alternating tensor [e.g., Malvern, 1969, p. 21]; the remaining invariants are

quadratic, for example, Q1 = TiikTppk and Q11 = 1
2
(TijkTkij +TijkTjki). By inspection and

numerical experiments we find that the quadratic invariants Q2 = TijiTpjp, Q4 = TijkTijk,

and Q7 = TijkTkji are useful indicators of deformation fields that favor folding. Results

are similar for each of the three invariants and have comparable scaling so there is no

clear basis for preferring one over another. We take

Q2 = (T111 + T212 + T313)2 + (T121 + T222 + T323)2 + (T131 + T232 + T333)2 (26)

as our scalar folding parameter. Additional features of Q2 are that it is non-negative,

increases when conditions favor folding, and decreases when conditions favor unfolding.

Evaluating Tijk = ∂iFjk is not straightforward and we extend the scheme of McKen-

zie [1979] as follows: we note that T1jk, T2jk and T3jk are rank two tensors, then we

differentiate (19)

∂

∂x1

dFij
dt

=
∂

∂x1

LikFkj =
∂Lik
∂x1

Fkj + Lik
∂Fkj
∂x1

(27)

to get

∂

∂x1

dF

dt
=

∂L

∂x1

F + L
∂F

∂x1

. (28)

An algorithm for integrating equation 28 can be obtained by taking derivatives of equation

20, for example,

∂Fn+1

∂x1

=
∂A−1

∂x1

BFn + A−1 ∂B

∂x1

Fn + A−1B
∂Fn

∂x1

, (29)

and similarly for x2 and x3. Finally, the results of the three integrations can be assembled

to form Tn+1 = grad(Fn+1).
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Figure 10 shows the results of efforts to model the propensity for folding along cen-

terline profiles (Figure 7) for the non-surging, reference, and bed bump Traplike Glacier

models. The contoured variable is log10Q2 where Q2 is the folding parameter. Large

positive values of log10Q2 (warm colors) indicate deformations that are conducive to fold-

ing and large negative values the opposite. The procedure for evaluating Q2 at tobs is

not straightforward. First, a vertical centerline grid is defined and an observation year

chosen. This yields an array of grid points (xi, zk) at time t=tobs. In this application the

backtracking involves englacial as well as supraglacial sites. Points near the bed or the

glacier terminus are challenging to backtrack accurately and points far up-glacier have a

short strain history and are unlikely to experience appreciable folding. Thus we omit the

bottom-most layer from the plot as well as points in the accumulation zone and near the

glacier terminus.

Comparison of the plotted results for the non-surging, reference, and bed bump models

(Figure 10) does not reveal striking differences among the models. Warm colors correspond

to regions where folds are most likely to be located and cool colors to highly-unfavorable

regions; the color scales for each panel are identical. In every case, folds are concentrated

near the glacier bed, especially near bedrock topography, and with an increasing trend

toward the glacier terminus. Near the terminus the thickness of the folding zone increases.

The plotted profiles suggest that the non-surging model is most conducive to folding, as

was also the case for the non-surging Trapridge Glacier model [Hambrey & Clarke, 2019,

Fig. 18]. This might be explained because creep deformation is greatest for non-surging

models and we cannot simulate thrusting, which would surely be an important process for
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fold generation in surging glaciers. We do not regard the results of our fold simulations

to be authoritative.

4.8. Formation and Transport of Crevasse Traces

Modeling the formation and transport of crevasse traces proved to be challenging. Judg-

ing from comparisons of observed and modeled crevasse trace records for Trapridge Glacier

[Hambrey & Clarke, 2019] much more work will be needed to achieve success. The heart

of the problem is that glacier flow models rely on a non-linear viscous flow law and for

such materials, fractures cannot occur. What follows is based on how fracture processes

and viscous flow are reconciled using the linear elastic fracture mechanics (LEFM) model.

Although, in glaciology, the LEFM is strongly associated with van der Veen [1999, 2007]

and the crack model he advocates, the essential features of the LEFM are that viscous

stresses are treated as elastic stresses and that cracking occurs when some stress threshold

is exceeded.

4.8.1. Ice Fracture Model

We postulate that the cracks tend to form during the active phase of surges and are

caused by tensile stresses in the ice. At the time of their formation the normal vector to

crack planes is assumed to be coaligned with the principal axis of tension, as for Mode

I cracks. To quantify these ideas we first evaluate components of the deformation rate

tensor Djk from the modeled velocity field vj(xm, t). The corresponding deviatoric stress

is taken to be

sjk = 2ηDjk, (30)
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where η is the effective viscosity and

1

η
=

1

η0

+ 2Aτn−1, (31)

where η0 = 1015 Pa s is the residual viscosity; τ = 1
2

(sjkskj)
1
2 is the effective stress. The

full stress tensor σjk can be calculated from the deviatoric stress tensor using the following

approximations from Greve & Blatter [2009]:

σ11 = 2s11 + s22 − ρg(S − z) (32)

σ22 = 2s22 + s11 − ρg(S − z) (33)

σ33 = −ρg(S − z), (34)

with σ12=σ21=s12, σ13=σ31=s13, and σ23=σ32=s23. The full stress tensor can be expressed

in terms of its principal components, the eigenvalues of σjk,

σjk =

 σ1 0 0
0 σ2 0
0 0 σ3

 , (35)

where σ1 ≥ σ2 ≥ σ3 and the associated eigenvectors Nσ = [Nσ1
x , N

σ2
y , N

σ3
z ], etc., are unit

vectors that form the columns of the matrix

Nσ
jk =


Nσ1
x Nσ2

x Nσ3
x

Nσ1
y Nσ2

y Nσ3
y

Nσ1
z Nσ2

z Nσ3
z

 . (36)

We assume that crevasse traces are the healed record of Mode I cracks formed as ice

moves through the glacier. At the time of formation, the crack plane is near-vertical and

oriented so that the outward normal to the crack plane is orthogonal to the direction of

maximum tensile stress. We experimented with both the Nye [1957] and van der Veen

[1999] crack criteria and prefer the Nye model for our purposes. From equation 32, a

rotation about the z axis allows the maximum stress to be written, giving

σ1 = 2s1 − ρg(S − z) (37)c©2019 American Geophysical Union. All Rights Reserved.



where s1 is the maximum principal value of the deviatoric stress tensor sjk and s2 = 0.

Nye’s condition is simply that σ1 > 0, i.e., the maximum stress must be tensile.

In the model, as in nature, cracks form episodically along the flow trajectory

[Xp(t), Yp(t), Zp(t)] in response to spatially- and temporally-changing stresses so that

parcels of ice accumulate crack damage en route to downglacier sampling sites. We as-

sume that all cracks are Mode I and are initially oriented so the crack plane is vertical

and the normal vector to the crack plane is aligned with the direction of the maximum

tensile stress σ1 (equation 37). At the time of formation tp of an individual crack at

(Xp, Yp, Zp) the crack plane has the unit normal vector [np]j = Nσ1
j (Xp, Yp, Zp, tp) where

Nσ1
j = Nσ1 is the eigenvector associated with the maximum principal stress σ1 (i.e., the

direction of maximum tensile stress). For the crack event at (Xp, Yp, Zp, tp) the deforma-

tion gradient is F(Xp, Yp, Zp, tp) and polar decomposition gives the cumulative rotation

from the deposition point to the crack point as R(Xp, Yp, Zp, tp). Subsequent to the crack

event the ice particle is transported downflow to an observation site (Xs, Ys, Zs) at time ts.

The cumulative rotation from the point of deposition (Xd, Yd, Zd) at time td to the point

and time of observation is R(Xs, Ys, Zs, ts) (calculated from F(Xs, Ys, Zs, ts)) and rotation

of the crack plane from the point and time of crack formation to the point and time of

observation is found from Rs = Rp→sRp

Rp→s = RsR
−1
p . (38)

Equation 38 can be applied to the outward normal unit vectors for each of the crack

planes np to determine the amount of rotation each crack experiences between its place

and time of origin and its point and time of exhumation at a sampling site

np→s = Rp→snp. (39)
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4.8.2. Blanking Model

The LEFM model is capable of predicting when conditions are favorable for crack for-

mation but neglects important physics. Ice fracture is accompanied by stress release and

modification of the stress field, whereas the LEFM model is most useful in describing

the behavior of undamaged material. The occurrence of a crack at some point (xp, yp, zp)

and time tp prevents or inhibits the occurrence of a new crack at a nearby point and

time. Over time, cracks can close and anneal so that ice can recover its former strength,

allowing the possibility of a new crack if stress conditions are favorable. All this is be-

yond the reach of the LEFM and viscous flow models such as those based on Glen’s creep

law. For these models (ours is one of them), stress conditions that cause a crack at point

(xp, yp, zp) and time tp continue to prevail after a crack has formed; thus there is nothing

to prevent the occurrence of cracks at subsequent times tp + ∆t, tp + 2∆t, etc. As a

remedy, we turn to a rule-based approach and propose that the occurrence of a crack at

(xp, yp, zp, tp) prevents the occurrence of a fresh crack at that site until one of the follow-

ing conditions is satisfied: (1) a healing time τ? has elapsed so that t ≥ tp + τ?; (2) the

cracked-damaged ice has traveled a distance ∆s? from the crack-formation site so that

(x−xp)2 +(y−yp)2 +(z−zp)2 > ∆s2
? or, equivalently, (u2

p+v2
p +w2

p)(t− tp)2 > ∆s2
? where

(up, vp, wp) are scalar components of vp. For the present work and that of Hambrey &

Clarke [2019] we take τ?=0.5 yr and ∆s?=2.5 m. We refer to this procedure as “blanking”

because it is rule-based, motivated by the wish to limit the number of modeled crack

events, and only loosely connected to ice physics.

4.8.3. Other Considerations

c©2019 American Geophysical Union. All Rights Reserved.



In Figures 8 and 17 of Hambrey & Clarke [2019] the Schmidt diagrams (equal-area,

lower hemisphere projections) are based on roughly 50 samples for each site. In the present

paper and for the modeled cracks in Hambrey & Clarke [2019], the number of counted

cracks, though limited by the blanking rule, commonly exceeds N=50 and we must select

50 from this larger collection in order to maintain consistency with the Trapridge Glacier

field study [Hambrey & Clarke, 2019]. We do this by randomly choosing 50 events from

those identified, using a random number generator to ensure objectivity.

A second consideration is that modeled crevasse traces differ from the observed traces

in an important way. Unlike modeled crevasse traces, those observed in the field at a

given time ts are not concentrated at a single site (xs, ys, zs) but separately identified in a

patch of ice that surrounds the sampling site. Thus, for field measurements, the observed

ice constitutes a “parcel” whereas for the model it is a single point. This difference

has implications for observation vs. model comparisons. There is nothing in the field

procedure to prevent two cracks from having identical orientations thus we do not purge

near-duplicates from the field data or from the modeled traces. Crack history is recorded

in different ways in the glacier and the model. The model treats the crack history as a

palimpsest of cracks applied to a single material point as it migrates through the glacier.

Whereas in the field situation the observed cracks are located at different, though nearby,

points and then aggregated to produce a stereoplot that supposedly represents the cracks

at a site. In reality a single particle of ice is not subjected to a multiplicity of cracking

events.

4.8.4. Modeled Crevasse Trace Orientations
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Figure 11 presents the simulated orientation of surface cracks at 21 sites for the Traplike

reference model observed in 2006.6 (year 21.6 of the surge cycle). The modeled 2006.6 ice

flow direction at each measurement site is indicated by arrow annotations. The modeled

flow has perfect north–south symmetry and this is reflected in the north–south symmetry

of the stereo- and rose plots (e.g., E1S1 and E1N1). The slight asymmetry in the point

scatter and contour plots, most obvious for the centerline sites (E1C, E2C, EC3), results

from random selection of the plotted points (section 4.8.3) and, for the rose plots, because

the boundaries for rose segment bins lack north–south symmetry (e.g., 0–10◦, 10–20◦,

relative to East)

For centerline sites, cracks are oriented transverse and parallel to the eastward ice

flow direction and remain near-vertical along the track. Post-crack rotation is slight and

confined to the vertical plane. The contrast between centerline sites and S1 (southline)

sites is striking, despite the small (90 m) separation of these lines. The cause of the

surprising complexity of the simulated crack patterns cannot be inferred from close study

of these plots and can only be clarified by examination of the ice particle trajectories (as

for Figure 3b), with special attention to the orientation and timing of crack formation.

For example, the simplicity of the patterns for E3S1 compared to those for E2S1 appears

to relate to the fact that ice at E3S1 experienced only three major episodes of mainly-

transverse cracking whereas, despite its shorter trajectory, ice at E2S1 experienced four

main cracking episodes and the crack orientation at the time of formation was variably,

transverse, longitudinal, and diagonal. Another consideration is that long trajectories

tend to have greater depth penetration than short trajectories, allowing ice to descend

below the maximum depth of crevasses and avoid cracking.
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Figure 12 gives the modeled orientation of crevasse traces for the Traplike bed bump

model. The topographical asymmetry is reflected in the asymmetry of the stereographic

and rose plots but the increased complexity of the bed topography and ice flow does not

appear to result in greater complexity of the crack orientation plots.

4.8.5. Modeled Crack Counts

The analysis of crack counts and the classification of crevasse traces as transverse,

diagonal, or longitudinal, is intended to complement the similar analysis [Hambrey &

Clarke, 2019] of Trapridge Glacier data. For this analysis we count all cracks produced by

a model and culled by a blanking rule (hence no random selection is performed). Crack

orientations relative to the ice flow direction ∆ϑ = |ϑcrack−ϑflow| at the time of observation

(2006.6 or year 21.6 of the modeled surge cycle) are classified as diagonal (∆ϑ=20−70◦),

longitudinal (∆ϑ=70−90◦), or transverse (∆ϑ=0−20◦). The foregoing specifications are

the same as those used in Hambrey & Clarke [2019].

Figure 13 shows the crack count and orientation for surface cracks at 21 sites observed

at 2006.6 (year 21.6 of the modeled surge cycle). Figures 13a and 13b are for the no-surge

and reference model; both show the expected north-south symmetry relative to the central

flow axis. Interestingly, there is little difference in the crack count for the non-surging and

surging cases. The greatest difference is that for the E1 line (farthest upglacier) where

there is a substantially higher crack count for the reference (surging) glacier. For a non-

surging glacier the region near the ELA is not subjected to large tensile stresses so this

could explain the discrepancy. For the E3 line (farthest downglacier), the non-surging

model yields a substantially higher proportion of longitudinal cracks than the reference
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(surging) model. Figures 13c and 13d are for the bed bump and right channel surge

models.

One of the intriguing results for Trapridge Glacier (Hambrey & Clarke, 2019, Fig. 20)

was the observation that the maximum crack count was recorded at an up-glacier site,

contradicting the intuitive idea that the oldest ice would experience the greatest crack

damage. The crack counts for the reference model and non-surging model (Figures 13a

and 13b) show a similar tendency, although for the surging model the feature is less

pronounced than for the observed and modeled counts for Trapridge Glacier. For the

reference, bed bump, and right channel surge models (all of which surge) longitudinal

crevasses are the least common whereas they are abundant in the non-surging model.

4.8.6. Possible Crack Origin for the S2 Foliation

In Hambrey & Clarke [2019] the S2 foliation was described as a transverse foliation hav-

ing a 30–50◦ up-glacier dip and interpreted as a structure originally formed as near-vertical

transverse crevasse traces that were subsequently compressed and rotated. Here we exam-

ine this interpretration from a modeling perspective. Figure 14 illustrates the simulated

compression and rotation of transverse cracks as they approach the glacier terminus. We

choose the Traplike reference model to remove distractions such as asymmetric bed to-

pography and choose centerline (E3C–E5C) and southline (E3S1–E5S1) sites to minimize

flow complexity. Figure 14a shows the site locations and Figures 14b and 14c the cor-

responding stereographic projections for the simulated crack planes. For up-glacier sites

along the centerline (E3C and E3.5C) the crack planes are transverse to flow, mutually

parallel, and near-vertical. At site E4C the verticality and parallelism of the crack planes

start to diverge, a few planes dip slightly down-glacier but the majority dip up-glacier
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with dips in the 80–90◦ range. The tendency for rotation and spreading of the crack

planes continues with sites E4.5C and E5C having a dip range of 20–90◦.

The picture is more complicated for the southline sites but leads to the same gen-

eral conclusion. For sites E3S1–E4S1 the majority of simulated cracks, though broadly

transverse to flow, are near-vertical with slight up-glacier dips that lie well outside of

the observed 30–50◦ dip range. At site E4.5S1, the crack distribution changes abruptly

with the appearance of a cluster of non-vertical cracks that are transverse to flow and

have moderate (30–50◦) up-glacier dip angles. A second cluster of points, representing

near-vertical cracks dipping upglacier but southward, also appears. At site E5S1, nearest

the terminus, the pattern simplifies to a single cluster of points corresponding to sets of

transverse cracks dipping upglacier at moderate angles. To interpret this complicated

site-to-site variation it is important to recognize that the ice emerging at each site follows

completely different pathways; differences between adjacent sites cannot be attributed to

changes that occur while ice moves from one site to the next. (In fact ice does not move

from one site to the next since; it melts where it emerges.) The longest and deepest

penetrating flow trajectories emerge near the glacier terminus and parcels of this ice can

experience substantial flow rotation, in a vertical plane, caused by frictional interaction

with the glacier bed. In contrast, ice emerging farther up-glacier may follow a shallower

trajectory and have little frictional interaction with bed but might experience horizontal

shearing and rotation from interaction with channel sidewalls.

To shed light on the magnitude of the cumulative rotation of ice parcels at measurement

sites, Table 4 summarizes information on the total rotation experienced by ice at the cen-

terline and southline sites. The calculations are based on the rotation tensor R, computed
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from the polar decomposition of F, where R corresponds to the cumulative rigid-body

rotation. To illustrate the procedure we consider the tutorial example presented in section

4.3. The values of the rotation tensor along trajectory ABC in Figure 3) are tabulated in

Table 4. At the start (A) and endpoint (C) of the trajectory

RA =

 1 0 0
0 1 0
0 0 1

 (40)

and

RC =

 0.207 −0.965 0.160
0.972 0.185 −0.146
0.111 0.186 0.976

 . (41)

Columns of R correspond to unit vectors that are embedded in and transported with

an ice parcel and which form a Cartesian coordinate system. Thus for RA these vec-

tors are [1, 0, 0], [0, 1, 0], and [0, 0, 1], corresponding to an (x, y, z) system that is aligned

with geographical East, North, and the zenith. For RC these vectors have rotated to

[0.207, 0.972, 0.111], [−0.965, 0.185, 0.186], and [0.160,−0.146, 0.976]. The rotated axis

vectors remain mutually orthogonal unit vectors with det(RC)=1, but it is apparent that

the first axis has experienced a substantial rotation to the North, the second a substan-

tial rotation to the West, and the third has changed only slightly. An efficient way of

representing these changes is with Euler angles which we compute using the MATLAB

function rotm2eul with the default order of operations. For this, the series of rotations

that transform RA to RC is as follows: anticlockwise rotation through an angle Φα about

the initial +z axis; anticlockwise rotation through and angle Φβ about the new +y′ axis;

anticlockwise rotation through an angle Φγ about the final +x′′ axis. (Note that alterna-

tive ordering conventions are common.) For RC these angles are Φα=78.0◦, Φβ=−6.4◦,

and Φγ=10.8◦.
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5. Discussion

Modeling of medial moraine patterns, which was based on accepted understanding of

the relevant processes and established simulation methods, was aimed at isolating glacio-

logical influences on moraine patterns. As is well recognized, oscillating flow produces

looped moraine patterns and these patterns are further complicated by variations in bed

topography and spatial variations in bed friction. We find that spatial variations in surface

mass balance have an insignificant influence on moraine patterns because such balance

irregularities have little impact on flow dynamics (Figures 5c1 to 5c5).

The modeling study of S0 stratification reinforces the point that patterns of S0 can be

unrelated to flow dynamics. Glacier flow can unquestionably influence the S0 stratification,

as evidenced in Figures 6c and 6e, but spatial variations in surface mass balance can

greatly complicate the character of this stratification (Figure 6c). Temporal variations

in balance bumps, not considered in this study, would contribute additional complexity.

The implication for glaciologists is that attempts to associate S0 patterns with ice flow

irregularities demand caution.

The S1 foliation has been observed in many locations and our efforts to explain them

by modeling strain ellipsoids is persuasive. Working with a less sophisticated model,

Hooke & Hudleston [1978] used similar thinking to reach similar conclusions. Much of the

antecedent literature on the S1 foliation emphasizes “shear” as a significant contributor to

this foliation but the assertion is either simplistic or incomplete because shear is associated

with all forms of ice deformation. Both simple shear and pure shear produce flattened

strain ellipsoids, in our view an essential requirement for the S1 foliation.
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An important question for future effort is to identify the processes that link ice strain

with foliation development. A significant role for air bubbles received early attention

(Hooke & Hudleston, 1978) and is consistent with field observations on Trapridge Glacier

(Hambrey & Clarke, 2019). This line of thinking raises question concerning the extent to

which bubble geometry reflects the geometry of strain ellipsoids (e.g., Alley & Fitzpatrick,

1999; Nakawo & Wakahama, 1981). If the two are similar then one might imagine that

strain ellipsoids that are flattened by horizontal compression, would produce bubbles that,

when exposed by surface melting, would favor vertical penetration of meltwater and hence

enhanced ice ablation. However, none of this has received scientific attention and, for now,

the questions of if and how ice deformation could produce this foliation are unsettled.

As already noted, folding and thrusting are sub-grid processes that cannot be resolved

using conventional ice dynamics models. Nested models, in which a high-resolution model

having appropriate physics is embedded within a conventional ice dynamics model is an

obvious step forward. Despite this disclaimer, we think our approach to characterizing

folding using scalar invariants of a rank 3 tensor has wider potential. The gradient of the

deformation gradient tensor Tijk = ∂iFjk has 12 scalar invariants and these might provide

an efficient basis for categorizing the types of strain to which a glacier is subjected.

In Hambrey & Clarke [2019] there was poor quantitative agreement between measured

and modeled crevasse trace orientations. The follow-up analysis in the present paper sheds

additional light on the complexity of this undertaking and raises the question of whether

this is a rewarding path to follow. Small differences in the model physics and strain

history of ice parcels, for example the ice fracture model and the parcel location during

surge episodes, can produce large differences in the simulation results and, we suggest,
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in the observations as well. At this point, the best use of crevasse trace modeling is as

a diagnostic tool to learn more about the sources of complexity. The use of diagnostic

crevasse trace modeling to gain better understanding of S2 foliation provides an example.

6. Concluding Remarks

In structural glaciology, as for many branches of the earth sciences, it can be challenging

to confirm the links between processes and products. For glaciers, most of the relevant

processes are slow and glaciers are sufficiently individual that comparing results from

different glaciers has limited potential. Using numerical ice dynamics models to represent

glaciers allows true experiments to be performed and hypotheses that are rooted in field

observations to be formally tested. The power of such an approach depends on the skill

of the computational model. Ice dynamics models have their own shortcomings and tend

to be tailored to have skill at simulating the areal extent, thickness, and response time of

a glacier. Advanced models also simulate layering and ice fabric. We suggest that models

can be tested and improved by adding targets, such as ice structure, to the list.

In our work, the deformation gradient tensor F has played a central role because it

encapsulates the total strain experienced by an ice parcel. Although the deformation

gradient tensor is not new to the glaciological literature [e.g., Hutter , 1983; Herzfeld et

al., 2004; Greve & Blatter , 2009] its potential has not been exploited. We consider this

to be a promising direction for model improvement. Evaluation of F currently involves

ice trajectory calculations and integrations along these trajectories using the McKenzie

[1979] algorithm. With Eulerian ice dynamics models this cumbersome approach may be

unavoidable but finding something simpler would be a significant contribution.
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Notation
A Temperature-dependent flow law coefficient [M−n Ln T2n−1].
B Bed surface elevation [L].

ḃ Surface mass balance rate [L T−1].

[dḃ/dz]abl Elevation gradient of mass balance in glacier ablation zone [T−1].

[dḃ/dz]acc Elevation gradient of mass balance in glacier accumulation zone [T−1].
C Sliding rate coefficient [M−m Lm+1 T2m−1].
Cslide Sliding rate coefficient when not surging [M−m Lm+1 T2m−1].
Csurge Sliding rate coefficient when surging [M−m Lm+1 T2m−1].
c Specific heat capacity of ice [L2 T−2 Θ−1].
D Strain rate tensor [T−1].
Djk Strain rate tensor in subscript notation [T−1].
F Deformation gradient tensor [·].
Fjk Deformation gradient tensor in subscript notation [·].
g Gravity acceleration [L T−2].
H Ice thickness [L].
I Identity tensor [·].
k Thermal conductivity [M L T−3 Θ−1].
L Velocity gradient tensor [T−1].
Ljk Velocity gradient tensor in subscript notation [T−1].
L∗ Function controlling timing of surge cycle [·].
M∗ Temporally- and spatially-varying sliding mask [·].
m Sliding law exponent [·].
NU
k k-th eigenvector of U [·].

NV
k k-th eigenvector of V [·].

Nσ
jk k-th eigenvector of σjk [·].
n Flow law exponent [·].
Q Ice volume discharge per unit width [L2 T−1].
Q2 Second quadratic invariant of Tijk [L−2].
R Rotation tensor [·].
Rjk Rotation tensor in subscript notation [·].
S Ice surface elevation [L].
sjk Deviatoric stress tensor [M L−1 T−2].
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sk k-th eigenvalue of sjk [M L−1 T−2].
T Gradient of the deformation gradient tensor, T = grad(F) [L−1].
Tijk Gradient of the deformation gradient tensor in subscript notation, Tijk = ∂Fjk/∂xi [L−1].
T Ice temperature [Θ].
t Time [T].
td Depositional year [T].
U Right stretch tensor [·].
Ujk Right stretch tensor in subscript notation [·].
u x component of velocity vector [L T−1].
V Left stretch tensor [·].
Vjk Left stretch tensor in subscript notation [·].
v Ice velocity [L T−1].
vk Ice velocity in subscript notation [L T−1].
vs Glacier sliding velocity [L T−1].
v y component of velocity vector [L T−1].

W Spin tensor [T−1].
Wjk Spin tensor in subscript notation [T−1].
w z component of velocity vector [L T−1].
X Spatial coordinates of an ice particle [L].
Xk Spatial coordinates of an ice particle in subscript notation [L].
x Easting distance coordinate [L].
y Northing distance coordinate [L].
Zela Equilibrium line altitude [L].
z Vertical distance coordinate [L].

∆t Time increment [T].
δjk Kronecker delta (identify tensor in subscript notation) [·].
ζ Vertically-stretched coordinate, ζ = (z −B)/H [·].
η Ice viscosity [M L−1 T−1].
κ1:2 Eigenvalue ratio, κ1:2 = λU

1 /λ
U
2 [·].

κ2:3 Eigenvalue ratio, κ2:3 = λU
2 /λ

U
3 [·].
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λUk k-th eigenvalue of U [·].
λVk k-th eigenvalue of V [·].
ξ Vertically-stretched coordinate, ξ = (z −B)/H [·].
ρ Density of ice [M L−3].
σjk Stress tensor [M L−1 T−2].
σk k-th eigenvalue of σjk [M L−1 T−2].
τ Effective stress [M L−1 T−2].
Ψ A generalized passive tracer [problem-dependent].
∇xy Two-dimensional gradient operator [L−1].
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Staniforth, A., & Côté, J. (1991). Semi-Lagrangian integration schemes for

atmospheric models—A review. Monthly Weather Review, 119, 2206–2223.

https://doi.org/10.1175/1520-0493(1991)119¡2206:SLISFA¿2.0.CO;2

Strang, G. (2007). Computational Science and Engineering. Wellesley: Wellesley-

Cambridge Press.

van der Veen, C. J. (1999). Fundamentals of Glacier Dynamics. Rotterdam: Balkema

Publishers.

van der Veen, C. J. (2007). Fracture propagation as means of rapidly transferring sur-

face meltwater to the base of glaciers. Geophysical Research Letters, 34, L01501.

https://doi.org/10.1029/2006GL028385

Waddington, E. D., & Clarke, G. K. C. (1988). Stable-isotope pattern pre-

dicted in surge-type glaciers. Canadian Journal of Earth Sciences, 25 (5), 657–668.

https://doi.org/10.1139/e88-063

c©2019 American Geophysical Union. All Rights Reserved.



Table 1. Physical properties and parameters of the Traplike reference model

Property Value Units

Ice density, ρ 900 kg m−3

Water density, ρw 1000 kg m−3

Gravity acceleration, g 9.80 m s−2

Creep coefficient, A0 7.42× 105 Pa−3 yr−1

Creep exponent, n 3
Creep activation energy, E 115 kJ mol−1

Gas constant, R 8.314462 J mol−1 K−1

Kelvin temperature, TK 273.15 C
Residual ice viscosity, η0 1.0× 1015 Pa s
Equilibrium line altitude, Zela 2475 m

Mass balance gradient (accumulation), [dḃ/dz]acc 3.8095× 10−3 yr−1

Mass balance gradient (ablation), [dḃ/dz]abl 7.6190× 10−3 yr−1

Sliding coefficient (non-surging), Cslide 5.0× 10−11 m yr−1 Pa−2

Sliding coefficient (surging), Csurge 2.5× 10−9 m yr−1 Pa−2

Sliding exponent, m 2
Surge cycle, ∆tcycle 13 yr
Surge peak time, ∆tpeak 11 yr
Width of surge front, ∆L 150 m
Thermal conductivity parameter, k0 9.828 W m−1 K−1

Thermal conductivity parameter, k1 0.0057 K−1

Specific heat capacity parameter, c0 152.5 J kg−1 K−1

Specific heat capacity parameter, c1 7.122 J kg−1 K−2

Pressure melting temperature coefficient, β 8.7× 10−4 K m−1

Grid spacing, ∆x and ∆y 30 m
Outer time step, ∆t 0.01 yr
Easting dimension of computational grid, Nx 144
Northing dimension of computational grid, Ny 57
Vertical levels for ξ grid, Nξ 21
Vertical levels for ζ grid, Nζ 11
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Table 2. Tensor values along a particle trajectory

Tensor Start year Intermediate year End year
1886.99 1980.00 2006.60

F

 1 0 0
0 1 0
0 0 1


 1.209 −4.199 0.239

0.379 −0.552 0.046
−0.078 1.074 1.037


 0.718 −3.183 0.208

0.305 −0.014 0.024
0.113 0.514 1.024



U

 1 0 0
0 1 0
0 0 1


 0.561 −1.125 0.178
−1.125 4.221 0.054
0.178 0.054 1.049


 0.458 −0.616 0.180
−0.616 3.165 −0.006
0.180 −0.006 1.030



λUjk

 1 0 0
0 1 0
0 0 1


 4.539 0 0

0 1.089 0
0 0 0.202


 3.299 0 0

0 1.070 0
0 0 0.283



NU

 1 0 0
0 1 0
0 0 1


 0.272 0.207 −0.940
−0.962 0.057 −0.266
−0.001 0.977 0.215


 0.213 0.219 −0.952
−0.977 0.067 −0.203
0.020 0.973 0.228



V

 1 0 0
0 1 0
0 0 1


 4.264 0.600 −0.779

0.600 0.293 −0.068
−0.779 −0.068 1.274


 3.254 0.080 −0.308

0.080 0.290 0.055
−0.308 0.055 1.108



λVjk

 1 0 0
0 1 0
0 0 1


 4.539 0 0

0 1.089 0
0 0 0.202


 3.299 0 0

0 1.070 0
0 0 0.283



NV

 1 0 0
0 1 0
0 0 1


 0.962 0.222 −0.155

0.140 0.085 0.987
−0.233 0.971 −0.050


 0.990 0.136 −0.035

0.024 0.083 0.996
−0.139 0.987 −0.079



R

 1 0 0
0 1 0
0 0 1


 0.162 −0.955 0.250

0.983 0.133 −0.129
0.090 0.266 0.960


 0.207 −0.965 0.160

0.972 0.185 −0.146
0.111 0.186 0.976


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Table 2. Continued. Tensor values along a particle trajectory

Tensor Start year Intermediate year End year
1886.99 1980.00 2006.60

σjk

 17.75 −67.74 0.15
−67.74 38.14 13.82

0.15 13.82 −0.04


−296.50 −54.05 15.71
−54.05 −223.20 12.83
15.71 12.83 −184.91


−52.82 −36.51 7.61
−36.51 −6.15 6.88

7.61 6.88 −0.00



λσjk

 97.56 0 0
0 0.84 0
0 0 −42.55


−181.00 0 0

0 −195.69 0
0 0 −327.93


 14.28 0 0

0 0.91 0
0 0 −74.16



Nσ

−0.643 0.231 0.730
0.758 0.060 0.649
0.106 0.971 −0.214


−0.015 0.487 0.873

0.308 −0.829 0.468
0.951 0.276 −0.138


 0.455 0.202 0.867
−0.873 −0.094 0.479
−0.179 0.975 −0.133


Data in the 1886.99 column correspond to point A in Figure 3, 1980.00 to point B, and

2006.60 to Point C. Units of σjk and λσjk are kPa.
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Table 3. Strain ellipsoids for centerline sites and selected off-line sites of the Traplike Glacier

reference model at 2006.6

Site Deposition k λVk NV
k Axis ratios Dip Status

date NV
x NV

y NV
z κ1:2 κ2:3 δ3

E1.5C 1942.7 1 1.227 −1.000 0.000 −0.022 1.25 1.17 1.2◦ Fail (κ2:3,δ3)
2 0.978 0.000 1.000 0.000
3 0.833 0.022 0.000 −1.000

E2C 1923.0 1 2.416 −0.999 0.000 0.054 2.70 1.93 90.0◦ Fail (κ2:3)
2 0.894 0.054 0.000 0.999
3 0.463 −0.000 −1.000 0.000

E2.5C 1910.9 1 2.792 −1.000 0.000 0.009 2.42 3.73 90.0◦ Fail (κ2:3)
2 1.155 0.009 0.000 1.000
3 0.310 −0.000 −1.000 0.000

E3.5C 1876.7 1 3.042 −0.819 0.000 −0.575 2.92 3.30 90.0◦ Fail (κ2:3)
2 1.041 0.575 −0.000 −0.819
3 0.316 0.000 1.000 −0.000

E3C 1893.8 1 3.122 −0.996 0.000 −0.093 2.44 5.09 90.0◦ Pass
2 1.277 0.093 −0.000 −0.996
3 0.251 0.000 1.000 −0.000

E3S1 1904.3 1 3.038 0.979 −0.061 0.196 2.01 6.93 89.6◦ Pass
2 1.511 −0.196 0.005 0.980
3 0.218 0.060 0.998 0.007

E3S2 1902.7 1 1.840 0.959 0.253 0.125 1.86 1.81 81.6◦ Fail (κ2:3)
2 0.990 −0.082 −0.175 0.981
3 0.549 0.271 −0.951 −0.147

E3S3 1887.0 1 3.300 0.990 −0.024 −0.139 3.08 3.78 85.5◦ Fail (κ2:3)
2 1.070 −0.136 0.083 −0.987
3 0.283 −0.035 −0.996 −0.079

E4C 1854.1 1 8.139 −0.978 0.000 −0.209 20.40 1.30 12.1◦ Fail (κ2:3)
2 0.399 −0.000 −1.000 0.000
3 0.308 −0.209 0.000 0.978
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Table 3. Continued: Strain ellipsoids for centerline sites and selected off-line sites of the

Traplike Glacier reference model at 2006.6

Site Deposition k λVk NV
k Axis ratios Dip Status

date NV
x NV

y NV
z κ1:2 κ2:3 δ3

E4.5C 1835.4 1 18.744 −0.997 −0.000 0.074 64.85 1.57 4.3◦ Fail (κ2:3,δ3)
2 0.289 −0.000 1.000 −0.000
3 0.185 −0.074 −0.000 −0.997

E4.5S1 1809.0 1 17.679 0.984 0.103 −0.147 24.71 9.06 45.6◦ Pass
2 0.716 0.177 −0.692 0.699
3 0.079 0.030 0.714 0.699

E4.5S2 1741.2 1 14.479 −0.982 −0.062 0.179 24.06 5.24 22.6◦ Fail (δ3)
2 0.602 −0.121 0.932 −0.340
3 0.115 0.145 0.356 0.923

E4.5S3 1693.3 1 23.081 0.488 −0.872 −0.041 34.06 10.60 4.4◦ Fail (δ3)
2 0.678 −0.869 −0.490 0.065
3 0.064 0.077 −0.004 0.997

E5C 1822.0 1 16.820 0.994 −0.000 −0.110 66.11 1.09 6.3◦ Fail (κ2:3)
2 0.254 0.000 −1.000 0.001
3 0.234 −0.110 −0.001 −0.994

E5S1 1787.5 1 19.239 0.974 −0.183 −0.136 23.10 13.35 56.8◦ Pass
2 0.833 0.010 −0.565 0.825
3 0.062 −0.228 −0.805 −0.548

E5S2 1590.4 1 20.652 −0.939 −0.111 0.325 7.07 176.17 20.1◦ Fail (δ3)
2 2.921 −0.155 0.981 −0.113
3 0.017 −0.306 −0.157 −0.939

To save space we have excluded sites that lie to the north of the centerline. These are mirror

images of the southern sites. Results for site E1C are omitted because of inaccuracy of the

trajectory integrations.
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Table 4. Total rotation of ice emerging at measurement sites near the terminus of Traplike

Glacier reference model at 2006.6

Site Deposition Euler angles
date Φα Φβ Φγ

Centerline

E3C 1893.8 0.0 2.4 0.0
E3.5C 1876.7 0.0 3.0 0.0
E4C 1854.1 0.0 24.9 0.0
E4.5C 1835.4 0.0 42.1 0.0
E5C 1822.0 0.0 47.8 0.0

South line

E3S1 1904.3 −73.7 −6.35 −2.80
E3.5S1 1878.8 −60.7 0.4 −10.1
E4S1 1845.3 −7.37 27.4 −16.9
E4.5S1 1809.0 −11.8 42.8 −16.1
E5S1 1787.5 −28.8 48.1 −28.1
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Figure 1. Zone of fast sliding. (a) Plan view showing glacier outline and outline of zone of

enhanced sliding. Dark shading corresponds to fast sliding; light shading indicates the maximum

extent of the fast-sliding zone. (b) Temporal evolution of L∗(t). (c) Downflow variation of the

sliding rate parameter C.
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Figure 2. Bed topography for the Traplike Glacier reference model. The post-surge ice extent

is indicated by a blue outline. Zones where bed sliding friction is subject to cyclic changes are

indicated by shading (light pink for the north zone and dark pink for the south). The center

points for optional bed bumps are indicated by bold ”+” symbols. The upper right (UR), middle

left (ML), and lower right (LR) bump positions are labeled. Elevation contours are in meters with

a contour interval of 10 m. The arrow indicates the direction of grid North. Inset: Topography

of a bed bump.
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Figure 3. Simulated particle trajectories for two measurement sites and the Traplike

Glacier reference model. (a) Map view. (b). Profile view with a stretched vertical coordinate

ξ=(z−B)/H where ξ=1 corresponds to the glacier surface and ξ=0 to the bed. For both plots,

segments of the trajectory that are associated with surging are plotted in red, and non-surging

segments in blue.
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Figure 4. Maps of simulated medial moraine patterns immediately following surge termination

(year 13 of the surge cycle or 1998 for Trapridge Glacier). The ELA is indicated (blue line) as well

as source points for moraine debris and the associated supraglacial debris tracks. The colored

circle markers near the left map boundary indicate points where moraine debris is added at the

glacier surface. (a) Traplike non-surging model. (b) Traplike reference model. (c) Traplike bed

bump model. (d) Traplike balance bump model. (e) Traplike right channel surge.
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Figure 5. Maps of simulated medial moraine patterns. (a1–a5) Traplike reference model.

(b1–b5) Traplike bed bump. (c1–c5) Traplike balance bump. (d1–d5) Traplike right channel

surge. Output is for Years 0, 10, 20, 30, and 40 of the 50-year surge cycle. In terms of Trapridge

Glacier calendar years these correspond to 1985±N , 1995±N , 2005±N . 1965±N and 1975±N

where N is any integer.
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Figure 6. Maps of simulated primary stratification S0 for observation year 2006.6 (year 21.6 of

the modeled surge cycle). The contours delineate the exposed isochronal surfaces and therefore

are not plotted for the accumulation zone. The contour interval is 10 years with bold contours

every 50 years. The uppermost bold contour corresponds to year 2000 and approximates the

ELA (which would be the 2006.6 contour). (a) Non-surging model. (b) Traplike reference model.

(c) Traplike bed bump model. (d) Traplike balance bump model. (e) Traplike right channel

surge model.
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Figure 7. Location of measurement sites for the suite of Traplike simulation models. There

are three transverse (north–south) measurement lines: E1, E2, and E3; each transverse line has

a centerline site, e.g., E1C and offsets to the north and south, e.g., E1N1, E1N2, and E1N3.

Primary sites are indicated by red markers and secondary sites by black dots. The centerline

is plotted as a blue line and the ELA as a green curve. The glacier margin is for the Traplike

reference model viewed immediately after a surge termination (year 13 of the surge cycle or 1998

in calendar years).
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Figure 8. Stereographic projections of the simulated orientation of the S1 foliation for Traplike

Glacier models. The observation year is 2006.6 (year 21.6 of the modeled surge cycle). (a)

Reference model (all points). (b) Reference model (edited points). (c) Map of S1 simulation

sites for reference model. (a1) Pinched channel model (all points). (b1) Pinched channel model

(edited points). (c1) Map of S1 simulation sites for pinched channel model. For points, the fill

colors indicate whether the point passes all our criteria for S1 development (black fill) or fails

because the dip angle is less than 30◦ (yellow), or the axis ratio κ2:3 is less than 5 (green), or

both (red).
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Figure 9. Stereographic projections of simulated orientation of the S1 foliation for Traplike

Glacier models. The observation year is 2006.6 (year 21.6 of the modeled surge cycle). (a)

Reference model (all points). (b) Non-surging model (all points). (c) Bed bump model (all

points). (d) Right channel surge model (all points). (a1) Reference model (edited). (b1) Non-

surging model (edited). (c1) Bed bump model (edited). (d1) Right channel surge model (edited).

For points, the fill colors indicate whether the point passes all criteria for S1 development (black

fill) or fails because the dip angle is less than 30◦ (yellow), or the axis ratio κ2:3 is less than 5

(green), or both (red).
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intensity of folding, for Traplike Glacier models and observation year 2006.6 (year 21.6 of the

modeled surge cycle). (a) Reference model. (b) Non-surging model. (c) Bed bump model.
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Figure 11. Simulated orientation of surface cracks at 21 sites for Traplike reference model

and observation year 2006.6 (year 21.6 of the modeled surge cycle). Each panel shows simulation

results in the form of a Schmidt diagram (equal-area, lower hemisphere projections of poles of

crevasse traces), a contoured point density plot of the same data, and a rose diagram of the dip

directions of the crevasse traces.
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Figure 12. Simulated orientation of surface cracks at 21 sites for Traplike bed bump model

and observation year 2006.6 (year 21.6 of the modeled surge cycle). Each panel shows simulation

results in the form of a Schmidt diagram (equal-area, lower hemisphere projections of poles of

crevasse traces), a contoured point density plot of the same data, and a rose diagram of the dip

directions of the crevasse traces.
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Figure 13. Simulated density and orientation of surface cracks at 21 sites for Traplike Glacier

models. The observation year is 2006.6 (year 21.6 of the modeled surge cycle). (a) Reference

model. (b) Non-surging model. (c) Bed bump model. (d) Right channel surge model.
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Figure 14. Simulated orientation of surface cracks at centerline (black markers) and southline

(blue markers) sites near the glacier terminus for reference model. The observation year is 2006.6

(year 21.6 of the modeled surge cycle). Near the terminus the crack planes are transverse to ice

flow and dip up-glacier, as for the transverse S2 foliation identified in Hambrey & Clarke [2019].

(a) Map showing site locations. (b) Schmidt diagrams (equal-area, lower hemisphere projections

of poles of crevasse traces) and contoured point density plots for the centerline sites. (c) Schmidt

diagrams and contoured density plots for southline sites.
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