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Abstract 

In response to climatic change, the size and number of moraine-dammed 

supraglacial and proglacial lake systems have increased dramatically in recent 

decades. Given an appropriate trigger, the natural moraine dams that impound these 

proglacial lakes are breached, producing catastrophic Glacial Lake Outburst Floods 

(GLOFs). These floods are highly complex phenomena, with flood characteristics 

controlled, in the first instance, by the style of breach formation. Downstream, 

GLOFs typically exhibit transient, often non-Newtonian fluid dynamics as a result of 

high rates of sediment entrainment from the dam structure and channel boundaries. 

Combined, these characteristics introduce numerous modelling challenges. In this 

review, the historical, contemporary and emerging approaches available to model 

the individual stages, or components, of a GLOF event are introduced and 

discussed.  

 

A number of methods exist to model the stages of a GLOF event. Dam-breach 

models can be categorised as being empirical, analytical or numerical in nature, with 

each method having significant advantages and shortcomings. Empirical 

relationships that produce estimates of peak discharge and time to peak are 

straightforward to implement, but the applicability of these models is often limited by 

the nature of the case study data from which they are derived. Furthermore, 

empirical models neglect the inclusion of basic hydraulic principles that describe the 

mechanics of breach formation. Analytical or parametric models simulate breach 

development using simplified versions of the physically based equations that 

describe breach enlargement, whilst complex, physically-based codes represent the 

state-of-the-art in numerical dam-breach modelling. To date, few of the latter have 

been applied to investigate the moraine-dam failure problem. 

 

Despite significant advances in the physical complexity and availability of higher-

order hydrodynamic solvers, the majority of published accounts that have attempted 

to reconstruct or predict GLOF characteristics have been limited, often by necessity, 

to the use of relatively simplistic models. This is in part attributable to the 

unavailability of terrain models of many high-mountain catchments at the fine spatial 

resolutions required for the effective application of numerically-sophisticated codes, 

and their proprietary (and often cost-prohibitive) nature. However, advanced models 

are experiencing increasing use in the glacial hazards literature. In particular, the 

suitability of emerging mesh-free, particle-based methods for simulating dam-breach 

and GLOF routing may represent a solution to many of the challenges associated 

with modelling this complex phenomenon.  
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Sources of uncertainty in the GLOF modelling chain have been identified by various 

workers. However, to date their significance for the robustness of reconstructive and 

predictive modelling efforts have been largely unexplored and quantified in detail. 

These sources include the geometric and material characterisation of moraine dam 

complexes, including lake bathymetry and the presence and extent of buried ice, 

initial conditions (freeboard, precise spillway dimensions), spatial discretisation of the 

down-valley domain, hydrodynamic model dimensionality and the dynamic coupling 

of successive components in the GLOF model cascade.  

 

Keywords: Glacial Lake Outburst Flood (GLOF), Moraine dam, Dam-breach modelling, 

Hydrodynamic modelling 
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1. Introduction 

 

The recession of many glaciers in response to climate warming has led to a dramatic 

increase in the size and number of moraine-dammed supraglacial and proglacial lake 

systems (e.g. Ageta et al., 2000; Sakai et al., 2000; Benn et al., 2001; Iwata et al., 2002; 

Komori, 2008; Röhl, 2008; Gardelle et al., 2009; Janský et al., 2009; Thompson et al., 

2012a).  In Peru alone, outburst floods from glacial sources caused ~32,000 deaths in the 

20th century, as well as destroying vital economic infrastructure, settlements and valuable 

arable land (Table 1; Lliboutry et al., 1977a; Reynolds, 1992; Richardson and Reynolds, 

2000a). In the Nepal Himalaya, it has been estimated that the costs associated with the 

destruction of a mature single hydropower installation by an outburst flood could exceed 

$500 million (Richardson and Reynolds, 2000a). 

 

Glacial Lake Outburst Floods (GLOF) are extremely complex phenomena. Each is a 

distinctly unique event, the characteristics of which are determined by, among other things, 

the triggering mechanism(s), reservoir hypsometry, the geometry, composition and structural 

integrity of the moraine dam, as well as the topography and geology of the flood path (Fig. 

1). In this review, our definition of a GLOF refers exclusively to sudden-onset outburst floods 

which arise from the failure of a moraine-dam (Richardson and Reynolds, 2000; Table 1). 

This contrasts with other glacially sourced outburst floods, such as those resulting from the 

failure of an ice dam (e.g. Walder and Costa, 1996; Tweed and Russell, 1999; Roberts et al., 

2003), volcanically triggered ‘jökulhlaups’ (e.g. Carrivick et al., 2004; Russell et al., 2010; 

Dunning et al., 2013), or the sudden release of water from englacial or subglacial reservoirs 

(Korup and Tweed, 2007). 

 

A GLOF typically requires a trigger event. Triggers include ice and/or rock avalanches (e.g. 

Vuichard and Zimmerman, 1986; Evans, 1987; Costa and Schuster, 1988; Clague and 

Evans, 1994; Hubbard et al., 2005) or calving from the terminal face of a lake-terminating 

glacier (e.g. Lliboutry et al., 1977a; Blown and Church, 1985) which cause a displacement or 

seiche wave that has the capacity to overtop the dam-crest and initiate its failure. Additional 

triggers include the rapid input of glacial meltwater as a result of the sudden release of an 

englacial or subglacial reservoir (Clague and Evans, 2000; Richardson and Reynolds, 2000), 

atmospheric triggers such as a high-intensity rainstorm or snowmelt event associated with a 

period of increased air temperatures (Korup and Tweed, 2007; Janský et al., 2010; Worni et 

al., 2012), or an earthquake that causes dam settlement or partial or full mechanical failure 

of the moraine dam  (e.g. Osti et al., 2011). 
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In many cases, the rapid input of large volumes of material results in the displacement of 

lake water and subsequent overtopping of the dam structure, initiating breach formation 

(Richardson and Reynolds, 2000a; Balmforth et al., 2008). The degradation of a massive 

ice-core or permafrost may lower the dam crest and reduce freeboard, resulting directly in 

overspill and breach development, or reducing the minimum wave amplitude required to 

overtop the dam. Alternatively, an increase in lake volume, either suddenly, from a discrete 

rainfall or snowmelt event or the sudden release of water from an englacial or subglacial 

reservoir, or gradually, through a prolonged period of precipitation (e.g. Worni et al., 2012) 

may also trigger failure.   

 

Breach formation is often manifested as the progressive erosion and enlargement of an 

incipient channel in the downstream face of the dam (e.g. Balmforth et al., 2008; Xu and 

Zhang, 2009). Eventually, the dam is compromised, and water is released through the 

newly-formed outflow channel. Depending on factors including the cohesiveness of the dam 

material, breaching may be rapid, or more prolonged, and will result in either the partial or 

full breaching of the dam structure.  The ultimate outcome is the downstream propagation of 

an outburst flood wave, which may take the form of a ‘clearwater’ low-viscosity flow, or, as 

has been more commonly documented, a high-viscosity, hyperconcentrated (sediment 

comprising ~20% of flow volume) or debris flow arising from the entrainment of vast 

quantities of debris sourced from the eroded dam structure and unconsolidated channel and 

floodplain material (e.g. Lliboutry et al., 1977a; Blown and Church, 1985; Clague et al., 1985; 

Vuichard and Zimmerman, 1987; Clague and Evans, 2000; O’Connor et al., 2001; Kershaw 

et al., 2005).  

 

Our understanding of the conditioning factors required for lake development and expansion  

has advanced considerably in recent decades, and can be largely attributed to advances in 

the capabilities of space-borne sensor technology and Geographic Information Systems 

(GIS) (e.g. Wessels et al., 2002; Quincey et al., 2005, 2007; Bolch et al., 2008), combined 

with field-based investigations of the morphology, sedimentology and internal structure of 

contemporary dams using ground-penetrating radar, self-potential or resistivity techniques 

(e.g. Pant and Reynolds, 2000; Richardson and Reynolds, 2000a, b; Haeberli et al., 2001; 

Reynolds, 2006, 2011; Hambrey et al., 2009; Langston et al., 2011; Moore et al., 2011; 

Thompson et al., 2012a, 2012b) (Fig. 2), and surveys of expanding supraglacial lake 

systems (Benn et al., 2000, 2001; Richardson and Reynolds, 2000b; Thompson et al., 

2012a) (Fig. 3).  
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This review considers the various modelling approaches that have been used for the 

reconstruction of palaeoGLOF (historical, typically ungauged) dynamics, and the prediction 

of potential future GLOF events. We first provide a detailed overview of the hazard, before 

considering hazard assessment of the lake basin and the modelling of potential triggering 

mechanisms. Dam overtopping and breach initiation and growth are then considered, before 

available hydrodynamic modelling approaches are introduced and discussed.  The review 

concludes with a discussion of the advantages and limitations of various models and 

modelling approaches, including the identification of key areas for future research. 

 

2. Moraine-dammed lakes 

 

2.1. Neoglacial moraine dams 

 

Moraine-dammed glacial lakes are found in the majority of alpine and high-mountain regions, 

with concentrations in the Andes (e.g. Lliboutry et al., 1977a; Reynolds, 1992; Emmer and 

Vilímek, 2013), the Hindu-Kush-Himalaya (HKH) arc (e.g. Richardson and Reynolds, 2000a; 

Mool et al., 2001; Komori, 2008; Bajracharya and Mool, 2009), the Tien Shan (Janský et al., 

2010) and western Cordillera of North America (e.g. Evans and Clague, 1994; Clague and 

Evans, 1994, 2000; Kershaw et al., 2005). The majority of lateral and terminal moraine 

complexes, which impound present-day proglacial lakes were constructed during the ‘Little 

Ice Age’; a globally-synchronous period of glacial advance extending from the 15th century to 

the end of the 19th century (Grove, 2004).  

 

The main factors dictating the type of moraine dam that exists at a particular location are the 

longitudinal elevation profile of the parent glacier, or glaciers, and the availability of debris for 

supraglacial, englacial, or subglacial transport. Short, steep glaciers will respond to mass 

balance variations by advancing and retreating considerable distances. In contrast, long 

valley glaciers with shallow longitudinal profiles will respond to changes in mass balance by 

thickening and thinning, while the snout position remains relatively stable (Richardson and 

Reynolds, 2000a). Large, wide moraines thus tend to be associated with the latter glacier 

style, with steep, dynamic glaciers often lacking any significant terminal ridge at all. The 

mobilisation of supraglacial debris onto the former subglacial surface will result in the 

formation of ‘dump’ moraines (Benn and Owen, 2002). Most moraine-dams possess steep 

proximal and distal slopes, which may exceed angles of 40°, are typically devoid of any 

substantial vegetation cover, and are composed of poorly consolidated, unsorted, and 

uncohesive sediment (Costa and Schuster, 1988) (Fig. 4). Width-to-height ratios are 
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controlled by the volume of material delivered to the glacier snout through the pathways 

mentioned above, and the length of time the terminus location remains stationary. 

 

2.2.  Lake formation 

 

Provided the moraine is sufficiently consolidated and stable, glacial meltwater will pond in 

the deglaciated basin between the glacier terminus and moraine. This development pathway 

typically requires the presence of an overdeepened glacier bed (Frey et al., 2010). In the 

absence of a glacial overdeepening, the ponding of glacial meltwater may not be effective 

enough to produce a fully formed moraine-dammed lake. Depending on the permeability of 

the moraine, the lake will either continue to increase in volume until overtopping or piping 

occurs, or its volume will be naturally regulated as water seeps through the structure or over 

the dam crest (e.g. Lliboutry et al., 1977a; Costa and Schuster, 1988; Rana et al., 2000; 

Hubbard et al., 2005). In the case of the latter, a stable drainage regime will persist 

indefinitely if flow discharge is unable to entrain the coarser fraction of morainic material, 

resulting in natural armouring of the outflow channel (Costa and Schuster, 1988).  

 

Alternatively, in situ glacier downwasting may result from the presence of inverted ablation 

gradients in the lower reaches as a result of downglacier increases in surface debris cover. 

This leads to a decrease in driving stresses and glacier velocity and causes, in turn, glacier 

stagnation (Benn et al., 2001, 2012). This, in turn, promotes the development of supraglacial 

ponds which, if drainage through englacial or supraglacial conduits is avoided, may coalesce 

to form a ‘proto’ moraine-dammed lake (Hochstein et al., 1995; Reynolds, 2000; Sakai et al., 

2000; Benn et al., 2001; Wessels et al., 2002; Röhl, 2008; Sakai et al., 2009; Sakai and 

Fujita, 2010; Benn et al., 2012; Thompson et al., 2012) (Fig. 3). Lakes that have originated in 

this way are particularly associated with debris-covered glaciers (Benn et al., 2000, 2001; 

Reynolds, 2000; Thompson et al., 2012a), as the irregular surface topography and typically 

low surface gradients of the glacier tongue are conducive to supraglacial lake formation 

(Reynolds, 1981, 2000; Quincey et al. 2007). Geometrically, moraines that have developed 

from the surface lowering of glacier tongues with thick supraglacial debris are typically large, 

complicated complexes with steep outwash fans (see geomorphological and 

sedimentological analyses in Hambrey et al., 2009, and Benn and Owen, 2002), whereas 

moraines and outwash fans formed by comparatively ‘clean’ glaciers are somewhat more 

subdued (Benn and Owen, 2002).  

 

2.3. Trigger mechanism  
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Many documented GLOFs have been initiated by overtopping waves caused by external 

triggers (e.g. Lliboutry et al., 1977a; Clague and Evans, 2000; Richardson and Reynolds, 

2000a; Kershaw et al., 2005). Triggers include (often combined) ice and rock avalanches or 

landslides (e.g. Vuichard and Zimmerman, 1987; Harrison et al., 2006), or discrete glacier 

calving events (both sub-aerial and sub-aqueous) (e.g. Lliboutry et al., 1977a; Blown and 

Church, 1985). Additional triggers include dam settlement, piping, and lateral moraine 

collapse as a result of seismic activity (e.g. Osti et al., 2011), temporary blockage of an 

overflow channel (e.g. Huggel et al., 2004; Mergili and Schneider, 2011) or the flotation of 

submerged dead ice, resulting in water displacement (Richardson and Reynolds, 2000b). A 

number of conditioning factors may also predispose a particular moraine dam to fail, such as 

low freeboard, a high height-to-width dam ratio (Huggel et al., 2002; Quincey et al., 2007; 

McKillop and Clague, 2007; Emmer and Vilímek, 2013), and sedimentological and structural 

characteristics (e.g. loosely consolidated, saturated sediment), as well as the presence of 

degrading permafrost or a massive buried ice core (Watanabe, 1995; Richardson and 

Reynolds, 2000b) (Fig. 2). A consideration of approaches to model the various triggers is 

presented in section 3.1. 

 

3. Approaches to modelling 

 

A number of methods can be used to model the various stages or ‘components’ of a GLOF 

(Fig. 1), either empirically, analytically, or numerically. We classify these components 

according to their physical location and temporality in the GLOF modelling cascade, and 

define them as follows:  

 

1. Trigger mechanism  

2. Breach initiation and development 

3. Downstream routing of the outburst flood wave(s) 

 

3.1  Trigger mechanism 

 

3.1.1.   Ice, snow, and rock avalanching 

 

The increasing capability of Geographic Information Systems (GIS), coupled with the wide 

availability and affordability of multi-temporal imagery and topographic data products from 

space- and airborne platforms has facilitated the production of largely desk-based natural 

hazard assessments (e.g. Huggel et al., 2002, 2004, 2006; Salzmann et al., 2004; Kääb et 

al., 2005; Quincey et al., 2005; McKillop and Clague, 2007; Allen et al., 2008). Potential 
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triggering events, such as avalanche or landslide starting zones in close proximity to glacial 

lakes, can be identified using a relatively straightforward procedures including spectral band 

segmentation, thresholding, and DEM-derived slope classification, in combination with 

detailed aerial photography or high-resolution satellite imagery (Margreth and Funk, 1999; 

Salzmann et al., 2004; Quincey et al., 2005; Huggel et al., 2006; Allen et al., 2008).  

 

The identification of potentially dangerous glaciers or rock slopes, followed by the mapping 

of potential avalanche run-out tracks, and the identification of potentially hazardous process 

combinations, such as an avalanche or landslide entering a glacial lake can then form the 

basis for more detailed investigation (Salzmann et al., 2004). The identification of subtle 

features such as bedrock tension cracks and jointing or overhanging glacial seracs which 

may provide clues as to the location of potential rock or ice avalanche starting zones 

remains challenging, particularly in the absence of very fine-resolution spaceborne or 

airborne imagery for many areas of interest (e.g. Huggel et al., 2006). GIS-based 

identification of contemporary or, in light of climate warming, potential future avalanche or 

landslide starting zones (see, e.g. Frey et al, 2010) remains the most viable approach. Mass 

movement trajectory modelling based on statistical parameters (e.g. Alean, 1985; Huggel et 

al., 2004) one-dimensional centre-of-mass models (e.g. Mergili et al., 2011), or more 

advanced physically based distributed models (e.g. Hungr, 1995; Sampl and Zwinger, 2004) 

may be used to predict plausible avalanche run-out distances and inundation areas, 

although advanced two- and three-dimensional models based on computational fluid 

dynamic (CFD) theory are required if dynamic behaviour such as deformation and lateral 

spreading of the avalanche or landslide body are to be realistically simulated (e.g. Sampl 

and Zwinger, 2004; Sailer et al., 2008).  Progress in our understanding of the dynamics of 

rock-ice avalanches has been made in recent years by workers including Schneider et al. 

(2010), who used a two-dimensional numerical model, RAMMS (Christen et al., 2010), in 

combination with seismic data recordings to infer a proportional relationship between the 

latter and the frictional work rate of an avalanche. 

 

3.1.2.   Glacier calving 

 

Prediction of calving rates, or more importantly for hazard assessment, the prediction of 

volumes of discrete calving events and characteristics of triggered impulse waves is far from 

straightforward. Progress in understanding the glaciological (e.g. Benn et al., 2007) and 

limnological factors governing thermo-erosional notch development (e.g. Röhl, 2006) has 

improved in recent years, and has provided insights into the prediction of future calving rates 

under future warming scenarios. Long-term monitoring of calving frequency, including 
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impulse wave heights, may aid prediction of the likely occurrence of waves capable of 

overtopping terminal moraine structures. Alternatively, an artificial reduction in dam 

freeboard through manual intervention, specifically lake level lowering (e.g. Grabs and 

Hanisch, 1993), has been carried out at sites in the Peruvian Andes (e.g. Lliboutry et al. 

1977a; Reynolds, 1992, 1998, Reynolds et al., 1998) and Nepal Himalaya (e.g. Reynolds, 

1998; Yamada, 1998). As well as reducing hydrostatic pressure in the moraine dam 

complex, this also serves to increase the minimum wave amplitude required for overtopping, 

though at the risk of increasing calving activity via decreased ice-tongue support by 

buoyancy forces, with potentially disastrous consequences (Lliboutry et al., 1977a).  

 

3.1.3.  Wave overtopping 

 

Many documented moraine dam failures have been initiated by overtopping by waves 

generated from landslides or ice avalanches (e.g. Lliboutry et al., 1977a; Costa and 

Schuster, 1988; Clague and Evans, 2000; Richardson and Reynolds, 2000a). Numerous 

moraine dams, both failed and intact, show evidence of overtopping by displacement waves 

(Lliboutry et al., 1977a, 1977b; Blown and Church, 1985; Costa and Schuster, 1988; Clague 

and Evans, 2000; Richardson and Reynolds, 2000a; Hubbard et al., 2005; Kershaw et al., 

2005). Whilst these waves might not technically be a trigger for moraine-dam failure in their 

own right, as a preceding initiation mechanism must have occurred, it is often the erosive 

power of their run-up and passage across a moraine-dam that may initiate its failure. 

 

Waves generated by sub-aerial mass flows such as landslides or avalanches fall into one of 

two categories. The first is a solitary displacement wave formed by the ‘pushing’ of the top 

level of the water column. The second is classified as a standing wave, or ‘seiche’, formed 

when the volume and entry velocity of the external mass is large enough to trigger the 

mobilisation of the entire water column (Fig. 5). Resultant ‘sloshing’ of the water in the 

enclosed moraine basin causes the repeated run-up of water at the lake boundaries and 

may be highly effective at eroding the dam structure (e.g. Hubbard et al., 2005; Balmforth et 

al., 2008). Based on geomorphological evidence, Hubbard et al. (2005) undertook a 

comprehensive reconstruction of seiche dynamics in a moraine-dammed glacial lake in 

Peru. On 22 April 2002 a rock avalanche deposited 8-20 x 106 m3 of material onto the 

surface of the terminus of Glaciar Pucajirca, ~5 x 106 m3 of which directly entered moraine-

dammed Laguna Safuna Alta and triggered a seiche. The lake had been artificially lowered 

prior to the event, though still posed a potential failure risk. The initial overtopping wave 

height is estimated to have exceeded 100 m. The presence of multiple erosion 

discontinuities on the proximal face of the latero-terminal moraine complex suggests that at 
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least ten seiche waves reached the moraine dam, with at least one wave becoming entirely 

airborne. Whether more than one wave overtopped the dam structure is unknown. Following 

two failures in 1951 (Reynolds, 1992), evidence of multiple wave run-ups was also observed 

by Lliboutry et al. (1977a) at Artesoncocha, another Peruvian moraine-dammed lake.  

 

The dimensions and propagation rate of a displacement wave are determined by the mass, 

geometry, velocity (both subaerial and subaqueous), and angle of entry of material into a 

standing body of water, as well as the lake area and bathymetry (e.g. Fritz et al., 2003a; 

Walder et al., 2003). For obvious reasons, empirical equations to represent impulse wave 

characteristics have been derived almost exclusively from physical scale, laboratory-based 

experiments (e.g. Fritz et al., 2003a, 2003b; Walder et al., 2003; Ataie-Ashtiani and Nik-

Khah, 2008; Balmforth et al., 2008, 2009). As a result, such experiments are typically not 

able to simulate the effects of, for example, observed, complex basin bathymetry on wave 

propagation and run-up (Synolakis, 1987). Few studies also appear to have taken into 

consideration the effects of lateral spreading where the source of the landslide or avalanche 

is the valley flanks (e.g. Risley et al., 2006), though such problems may be overcome by the 

use of numerical flow models (e.g. Cannata et al., 2012). 

 

From a hazard development perspective, the interaction of a displacement wave, or a series 

of seiche waves with the moraine dam structure is important. Required, therefore, are 

estimates of overtopped water volumes and inundation depths with which to force breach 

erosion and flood-routing models. Of note are recent scaled experiments conducted by 

Balmforth et al. (2008, 2009), who used a combination of physical and theoretical modelling 

to assess the impact of large displacement waves on moraine dam structures. Their results 

demonstrated that initiation of the breaching process ultimately amounts to a competition 

between erosion and rates of lake drainage and seiche damping. A threshold was identified 

whereby the amplitude of the initial wave, or rate of erosion, should exceed a critical value 

for catastrophic dam failure to be initiated (Balmforth et al., 2009).  

 

3.1.4. Atmospheric triggers 

 

Heavy precipitation (e.g. Worni et al., 2012) or a glacial outburst flood from an adjacent ice 

mass may trigger a rapid increase in lake volume and level and the subsequent enlargement 

and down-cutting of an existing spillway, or the initiation of a new channel (Clague and 

Evans, 1992, 2000). Quantifying the minimum volume of water required to fill a lake is 

relatively straightforward if basin perimeter and freeboard are known and seasonal variations 

in water level are taken into account (e.g. Janský et al., 2010). However, it is difficult to 
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predict the timing and volume of water released, particularly where historical outbursts from 

the glacier in question have not been documented.  

 

3.1.5.   Ice-cored moraine degradation 

 

Modelling the degradation of ice-cored moraine complexes is challenging. Subsidence 

caused by the melting of interstitial ice or a massive ice core reduces the structural integrity 

of a dam, thereby increasing the propensity for failure (Richardson and Reynolds, 2000b). 

Consequently, dam freeboard is reduced through lowering of the dam crest, thereby 

reducing the minimum amplitude of displacement waves required to overtop the dam, or 

reducing the additional volume of glacially- or meteorologically-derived water required to fill 

the reservoir and overflow the dam. Quantification of moraine surface lowering has been 

achieved either by in situ monitoring (e.g. Reynolds, 1992; Watanabe, 1995; Pant and 

Reynolds, 2000; Janský et al., 2009), or the assessment of multi-temporal, high-resolution 

digital terrain models (DTMs) (cf. Irvine-Fynn et al., 2011; Bennett et al. 2012; Sawagaki et 

al., 2013). The disadvantage of the former is that it is typically extremely challenging from a 

logistical perspective, whilst DTM errors associated with the latter should not exceed the 

anticipated change in moraine surface elevation over the investigation timescale, which is 

often small. 

 

3.1.6.   Earthquake-triggered dam failure 

 

Modelling the response of a glacier-moraine-dammed lake system to an earthquake (Dai et 

al., 2005; Strasser et al., 2008) is incredibly difficult, not least because of the unpredictability 

associated with estimating the timing and magnitude of a seismic event (and its seismic 

signature in the vicinity of a glacial lake, which may be hundreds of kilometres from the 

earthquake epicentre). Analysis of geological maps may help to identify whether an area that 

contains moraine-dammed lakes lies close to active faults, and is therefore at an elevated 

risk of experiencing earthquake-induced GLOFs. However, by their very nature, many 

mountain ranges are tectonically active, and so it might be argued that this trigger should be 

automatically considered as a trigger in the majority of cases. Detailed field investigation in 

support of geotechnical characterisation of a moraine-dam may provide an indication of its 

susceptibility to settlement and piping in the event of an earthquake, whilst semi-quantitative 

analysis of the structural characteristics of calving faces of lake-terminating glaciers from 

field investigation or remotely sensed imagery may aid prediction of the likelihood of mass 

failure and the estimation of displacement wave dimensions, this is far from an exact 

science.  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

14 
 

 

  

3.2   Dam-breach 

 

3.2.1.   Breach initiation 

 

Sudden or gradual overtopping and inundation, or internal failure as a result of piping and 

seepage may result in the development of a breach through the moraine dam (Fig. 4). In the 

case of the former, overtopping water is likely to traverse the width of the dam crest as a 

uniform sheet (e.g. Kershaw et al, 2005). Alternatively, flow through an existing outlet will be 

augmented (Costa and Schuster, 1988). Erosion of the dam will occur if the increased 

boundary shear stresses exerted by the overtopping or channelized flow exceed the 

cohesive strength of the surface material (Korup and Tweed, 2007). This permits increased 

discharge from the lake, which in turn may result in runaway incision. Incision will cease 

when one of the following occurs: i) the base-level of the moraine is reached; ii) a bedrock 

abutment (or a significant decrease in material erodibility) is encountered; or iii) the outflow 

channel becomes sufficiently armoured to halt down-cutting (e.g. Clague and Evans, 1992).  

 

Breaches initiated by internal failure of the dam structure are considerably less well 

understood, although the underlying principle is that saturation and subsequent seepage of 

lake water through the dam structure causes the finer fraction of the sediment to be 

removed, forming ‘pipes’ and thereby reducing the local physical strength of the dam 

material (Clague and Evans, 2000; Korup and Tweed, 2007). In addition, thermokarst 

degradation of buried ice contained within the moraine structures has been observed 

(Richardson and Reynolds, 2000b). Collapse of subsurface cavities may lead to a lowering 

of dam crest elevation, thereby increasing the likelihood of an overtopping failure. The 

transition to open breach formation is initiated through slumping and mechanical failure and 

collapse of the overlying material. 

 

The detailed simulation of breach formation processes is central to an assessment of the 

downstream hazards posed by a GLOF, since the shape of the breach hydrograph (Fig. 6, 

Table 2) will determine, in the first instance, the peak discharge at the flood source. This 

hydrograph will typically be used as an upstream boundary condition for subsequent flood 

routing. In order of increasing complexity, models used in published simulations of moraine 

dam failure events may be generally classed as one of the following: i) empirical regression 

models; ii) analytical and parametric models; iii) physically-based, numerical models. 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

15 
 

 

 

3.2.2.  Empirical dam-breach models 

 

Empirical models represent the simplest approach to dam-break modelling (Table 3). These 

models are not process-based and comprise a single or series of regression relationships 

derived from test case studies or observed historical dam failures (e.g. Macdonald and 

Langridge-Monopolis, 1984; Blown and Church, 1985; Costa and Schuster, 1988; Froehlich, 

1995; Wahl, 1998). Examples of empirical equations used for dam-break modelling are 

provided in Wahl (2004), who also undertook a comprehensive investigation of uncertainty 

estimates surrounding the use of such equations, and also Thornton et al. (2011).  Input 

parameters typically include a combination of the following: dam width, height, lake area and 

volume. If unknown, lake volume may also be approximated using a separate empirically-

derived equation (see e.g. Huggel et al., 2002). Model output typically comprises a single 

discrete value, such as peak discharge (Qp) (e.g. Hagen, 1982; Walder and O’Connor, 1997) 

or time to peak (Tp) (e.g. MacDonald and Langridge-Monopolis, 1984; Froehlich, 1995). 

Such models have been widely used in the glacial hazards literature. One of the earliest 

examples is presented by Clague and Mathews (1973), who discovered that the magnitude 

of the peak discharge of a glacial outburst flood arising from the failure of an ice-dammed 

lake is approximately proportional to the available volume of stored water. An applied 

example of the use of empirical models is provided by Vuichard and Zimmerman (1986, 

1987), who applied the relationships of Hagen (1982), MacDonald and Langridge-Monopolis 

(1984), and Blown and Church (1985) to estimate the peak discharge (6-8,000 m3/s) of the 

1985 Dig Tsho GLOF, Nepal. 

 

However, such relations are limited in their suitability for predictive purposes, as they neglect 

the inclusion of basic hydraulic principles pertaining to breach initiation and enlargement and 

are typically derived from a range of failed dam types and settings, including artificial 

constructs (Walder and O’Connor, 1997).  In their appraisal of pre-existing empirical 

relations, Walder and O’Connor (1997) maintained that such relationships were flawed in 

their assumption that Qp may be simply approximated as the product of volume of water 

released and the resulting drop in lake level, instead recognizing that hydraulic principles 

and constraints, such as breach erosion rate, are equally as important. Though theoretically 

more robust than standard empirical equations, this approach assumes that the user is able 

to quantify breach erosion rates. The impracticalities of quantifying the physical processes at 

work during breach formation are numerous, and although experimental progress in this field 

has been made in recent years (e.g. Morris et al., 2007), in practice these parameters are 
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generally unknown and extremely challenging to quantify in the field. Providing the geometric 

characteristics of the dam structure and attendant lake basin are known, empirical relations 

represent an expeditious and simple approach to estimating Qp, and, at first glance, would 

appear suitable for relatively basic hazard assessment. Taking the above into account and 

without reliable estimates of time to peak flow and consideration of the form of rising and 

falling limbs of the outflow hydrograph, such data have limited value for the assembly of 

inundation maps and reach-specific hydrograph and flood attenuation data.  However, whilst 

the derivation of individual hydrographs may be appropriate for reconstructive GLOF 

modelling efforts, where detailed process analysis and geomorphological inference might be 

applied to constrain model boundary conditions and input parameters, the merits of adopting 

a deterministic approach for predictive GLOF modelling is questionable given the inherent 

variability of material properties and model boundary conditions.  We consider the extent and 

significance of uncertainty in the GLOF model chain in section 5. 

 
3.2.3.  Analytical and parametric dam-breach models 

 

Analytical and parametric models are semi-physically based, given their consideration of 

simplified physical processes (Morris et al., 2009). These models incorporate simplified 

numerical treatments of the physical processes involved during the breach development 

phase (e.g. Capart, 2013), and typically assume that the rate of breach growth is purely 

time-dependent. Accordingly, the user is required to enter morphometric boundary 

conditions including final breach geometry (e.g. base width and side slope angle) and the 

time required for full formation. The model then proceeds to iteratively calculate the outflow 

hydrograph as the breach develops. Another assumption is that weir equations can be used 

to represent flow over the dam. Such equations typically assume the form: 

 

� = ��	�	�
�

�                Eq. 1 

with: 

� = 	ℎ� + 	�
�

��
              Eq. 2 

and: 

     � = 	��

�
              Eq. 3

    
 
where Q is flow discharge (m3 s-1), Cd is a weir coefficient, L is the width of the weir, hw is the 

hydraulic head of the impounded water above the dam crest, V is the average velocity (m/s) 

of flow immediately upstream of the weir, Qa is the actual flow rate, and A is the cross-
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sectional channel area (m2). Cd can be determined by dividing Qa by the theoretical flow 

rate, Qt. Where one or more input parameters must be approximated, there exists an 

associated danger of over- or underestimation of dam-breach peak discharge or time to 

peak (or both), making sensitivity analyses of input parameter combinations an essential 

undertaking.  

 

Early flood routing models developed by the United States National Weather Service (NWS), 

including DAMBRK (Fread, 1988a) and FLDWAV (Fread, 1993), utilise the parametric model 

BREACH (Fread, 1988b) to compute an upstream hydrograph. GLOF modelling studies that 

have adopted semi-physical breach models include Meon and Schwarz (1993), who used 

DAMBRK to reconstruct the 1981 GLOF from Zhangzanbo Lake, Nepal, and Shrestha et al. 

(2010), who used BOSS-DAMBRK (an enhanced version of the original DAMBRK model) to 

estimate patterns of flood inundation in the Sun Koshi basin, Nepal. Osti and Egashira 

(2009) used the NWS Simplified Dam Break (SMPDBK) model (see Whetmore et al., 1991), 

combined with an empirical predictor of failure duration (Froehlich, 1995) to reconstruct the 

1998 GLOF from Sabai Tsho glacial lake in the Khumbu Himal, Nepal. Dam-breach 

modelling undertaken fails to account for dead ice and the heterogeneous nature of the 

moraine dam structure, and thereby precluding an accurate simulation of the moraine 

breaching process. 

 

3.2.3.  Fully physically based numerical models 

 

Complex numerical models are based predominantly on the physical processes observed 

during failure, including breach flow hydraulics and sediment transport, as well as soil 

erodibility relationships and structural models to simulate breach widening (e.g. Mohamed et 

al., 2002; Worni et al., 2012). Purely numerical models have not seen widespread use in the 

dam-breach literature. This may be attributed in part to their comparatively high 

computational cost, although with the rapid advent of affordable, high-end desktop 

computers this should cease to be an issue in the near future. With respect to outbursts from 

moraine-dammed lakes, the most commonly used numerical models have been NWS 

DAMBRK (Fread, 1988a; Carling and Glaister, 1987) and BREACH (Fread, 1988b; 

O’Connor et al., 2001; Bajracharya et al., 2007; Xin et al., 2008; Shrestha et al., 2010), 

although the adoption of advanced models appears to be becoming more commonplace. 

 

 

3.3  Glacial Lake Outburst Flood routing 
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Floods from sudden dam failures, often termed ‘dam-break outburst floods’, are 

characterised by the often short-lived passage of high-magnitude floodwaters and 

associated transient flow hydraulics (Marren, 2005; Carrivick, 2010).  The rate and style of 

breach formation, which, in the first instance, determines breach hydrograph form (Fig. 6), 

exerts a dominant control on flood dynamics in the ‘near field’, or through immediate 

downstream reaches. However, with increasing distance from the flood source, valley 

characteristics including topography (e.g. channel slope, bends, and channel geometry), 

vegetation (e.g. Lancaster et al., 2003) and sediment availability play a more dominant role 

(Richardson and Reynolds, 2000a). Floods which entrain vast quantities of uncohesive 

sediment, sourced from the moraine dam and deposits on the valley floor and sides may 

become transformed into debris flows (Clague et al., 1985; Evans, 1986; Rickenmann, 1999; 

Clague and Evans, 2000). Such flows are capable of achieving far greater runout distances 

than typical clearwater flows, owing to the increased momentum afforded by the combination 

of fluid and solid forces (and resultant transition to a non-Newtonian flow regime) and 

continuing addition of material through bed and bank erosion (Iverson, 1997). However, 

evidence from historical GLOFs and debris flows suggests such flows are unlikely to form or 

be sustained on slopes of less than 10-15° (e.g. Clague and Evans, 1994; O’Connor et al., 

1994; Clague and Evans, 2000; Procter et al., 2010). 

 

3.3.1. Palaeohydraulic reconstruction 

 

The simplest form of hydraulic modelling involves the use of palaeocompetence and 

palaeohydraulic techniques to reconstruct flood stage and discharges, typically at the reach 

scale (e.g. Costa, 1983; Williams, 1984; Kershaw et al., 2005; Bohorquez and Darby, 2008). 

Using this method, empirical equations are used to relate clast size to hydraulic parameters. 

When combined with measures of cross-sectional channel geometry, longitudinal channel 

slope, and roughness coefficients of the reach in question (known as the ‘slope-area’ 

method), these relationships are capable of providing estimates of peak discharge and flood 

velocity for ‘steady’ hydraulic conditions, where it is assumed that hydraulic variables 

including flow depth, velocity, and discharge may vary at successive points downstream, but 

are considered as remaining temporally constant  (Riggs, 1976; Williams, 1978; Costa, 

1983; Baker, 1988; Baker, 2000). In reality, GLOFs are inherently ‘unsteady’ and are 

typically characterised as exhibiting spatially and temporally varying flow discharges, 

velocities, stage and sediment transport conditions. 
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3.3.2. GIS-based methods  

 

The simplest computational models are GIS-based flow-routing algorithms, which transfer 

flow sequentially downslope across a digital elevation model (DEM) (e.g. Desmet and 

Govers, 1996; Liang and Mackay, 2000). Modified single-flow (MSF) models assign flow 

from a cell to one of its eight neighbours (the ‘D8’ method), based on the direction of 

steepest descent (O’Callaghan and Mark, 1984).  The obvious limitation of this method is its 

inability to transfer flow to more than one adjacent cell (Tarboton, 1997). Accordingly, more 

advanced algorithms are capable of allocating the contents of a given cell to its neighbours 

(the ‘multiple-flow direction’ (MF) model, weighted according to slope angle. MSF and MF 

models also assume a critical slope angle, below which runout will cease (Huggel et al., 

2003). Such models have seen an appreciable amount of use in the natural hazards 

literature, most likely as a result of their general applicability to many types of gravitational 

flows (e.g. Huggel et al., 2008). Their use in GLOF simulation has been rather more limited. 

Relevant studies include the work of Huggel et al. (2002b, 2003), who used a combination of 

MSF and MF modelling to simulate outbursts from a number of lakes in the Swiss Alps and 

the Peruvian Andes, and Allen et al. (2009), who used MSF modelling to investigate 

potential ice avalanche-debris flow interactions and flood hazard in Mount Cook National 

Park, New Zealand.  

 

3.3.3. One-dimensional numerical modelling  

 

Numerical models used for flood reconstructions may be broadly subdivided according to 

their dimensionality. One-, two- and three-dimensional models (hereafter referred to as 1-, 2-

, and 3-D, respectively) are more process- and physically-based than their GIS counterparts, 

and attempt to solve modified versions of the Navier-Stokes equations (see Batchelor, 

1967). 1-D flood routing models are based on a one-dimensional version of the St-Venant, or 

‘shallow water’ equations (SWE) (Barré de St-Venant, 1871):   
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where Eq.4 and Eq. 5 are the conservation of mass and conservation of momentum 

equations respectively. Q is flow discharge, A the cross-section surface area, t is time, g is 
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gravitational acceleration (9.81 m/s) , h is the cross-sectional averaged water depth, S0 is 

the longitudinal bed slope, and Sf  is the friction slope 

 

One-dimensional models typically use the step-backwater procedure. This is essentially a an 

automated, numerical adaptation of the slope-area method, with model output comprising 

energy-balanced water surface profiles (a function of discharge, channel roughness and 

channel geometry), cross-sectional averaged velocity and discharge (e.g. USACE, 2010). 

Cross-sectional profiles may be either derived from field surveys, or using a DEM with 

sufficiently high spatial resolution. Flow may be modelled as either subcritical (wave velocity 

> flow velocity), supercritical (wave velocity < flow velocity), or as a mixed regime. As well as 

predefined cross-sections, initial boundary conditions include either an input hydrograph at 

the uppermost cross-section, or, if unavailable, downstream water profiles calculated either 

from direct measurement during a flood event, or using palaeo-stage indicators (PSI). The 

latter approach has typically been used for GLOF reconstruction (e.g. Cenderelli and Wohl, 

2003; Kershaw et al., 2005; Bohorquez and Darby, 2008), as high discharges and flow 

velocities, turbulence, and the inclusion of large clasts renders them virtually impossible to 

instrument, particularly in upper reaches. Consequently, the few directly measured GLOF 

hydrographs that exist are from locations tens or hundreds of kilometres downstream where 

relatively subdued flow dynamics permits instrumentation (Richardson and Reynolds, 

2000a). Popular freely or commercially available 1-D models that have been used in the 

glacial hazards literature include HEC-RAS (USACE, 2010; Cenderelli and Wohl, 2001, 

2003; Alho et al., 2005; Alho and Aaltonen, 2008; Carling et al., 2010), and the NWS 

DAMBRK (Meon and Schwarz, 1993) and FLDWAV models (Bajracharya et al., 2007).  

 

 

3.3.4. Higher-order numerical modelling 

 

Two-dimensional models are based on depth-averaged versions of the SWE, derived by 

integrating the Reynolds-averaged Navier-Stokes equations over the depth of the flow 

(Chanson, 2004; Hervouet, 2007). Advantages of using 2-D models include their ability to 

simulate multi-directional and multi-channel flows (in contrast, and as their name implies, 1-

D models are only capable of routing flow in one direction, i.e. downstream), super-elevation 

of flow around channel bends, hydraulic jumps (i.e. in-channel transitions between 

supercritical and subcritical flow regimes) and turbulent eddying. These are dynamic 

characteristics intrinsic to GLOFs. Two-dimensional models are often capable of simulating 

non-Newtonian flow dynamics (e.g. Pitman et al., 2013) such as those observed when a 

GLOF has entrained a volume of debris from the moraine-dam and valley floor to sufficiently 
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alter its flow rheology (see e.g. O’Brien, 2003; Rickenmann et al., 2006; Armanini et al., 

2008; Stolz and Huggel, 2008). Fully 3-D models are capable of solving the full Navier-

Stokes equations, resulting in calculation of variations in flow velocity across both the flow 

width and depth. Despite their representation of the more complex hydraulic and sediment 

transport characteristics of catastrophic flooding, to date 2-D and 3-D modelling applications 

in the flow hazards literature are rare (e.g. Worni et al., 2012), with the majority of studies 

focusing on glacial outburst floods (jökulhlaups) (e.g. Carrivick 2006, 2007; Alto and 

Aaltonen, 2008; Bohorquez and Darby, 2008), or mudflows (e.g. Stolz and Huggel, 2008; 

Boniello et al., 2010). This paucity of 2-D and 3-D model applications to GLOF simulation 

most likely stems from the coupling of high computational cost and the lack of DEMs at 

sufficiently fine resolution in alpine areas to make their use tractable.  

 

4. Contemporary modelling challenges 

 

4.1 Dam-breaching 

 

4.1.1. Modelling breach initiation 

 

From a modelling perspective, a high degree of uncertainty surrounds the breach formation 

stage. This is largely attributable to the lack of incorporation of detailed simulations of 

erosion and breach flow in existing breach models (Wahl, 1998, 2004). During breach 

formation, rates and patterns of erosion and outflow vary considerably. Recent reviews 

(Wahl, 1998; Mohamed, 2002; Morris et al., 2008, 2009) highlight the importance of the 

‘breach initiation’ phase, defined as a period of relatively minimal, but increasing discharge, 

during which dam integrity is yet to be compromised (Fig. 6). Through intervention, runaway 

breach expansion may be avoided at this stage. Though currently lacking, this information is 

central to the construction of hazard assessments that aim to quantify flood wave arrival 

times, discharge, and patterns of inundation, all of which are often subject to a significant 

degree of uncertainty due to the necessary assumptions made during model 

parameterisation. For overtopping-type failures, breach initiation is typically manifested as 

the progressive development of an outflow channel by sheet flow over the dam (for non-

cohesive material) or a number of channels on the downstream face of the moraine dam (for 

cohesive material) (Balmforth et al., 2008; Morris et al., 2008). For cohesive material, 

subsequent overtopping promotes the progressive enlargement of one or more of these 

channels through headcutting. The breach initiation phase ceases once runaway incision of 

an outflow channel begins. The length of this period is controlled by a number of factors, 

including the water depth and return period of overtopping waves, as well as the erodibility of 
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dam material (e.g. Broich, 2002; Balmforth et al., 2008, 2009). Empirical regression 

equations capable of providing estimates of time to peak (e.g. MacDonald and Langridge-

Monopolis, 1984) have been derived almost exclusive from case study datasets of man-

made embankment dams, and provide no estimate of breach initiation time. 

 

The delineation of the breach initiation and breach formation phases for failures initiated by 

seepage and piping within a natural dam is extremely challenging (Wahl, 2004). With the 

exception of the work of, for example, Fell et al. (2003) and Wan and Fell (2004), our 

understanding of breach initiation via internal piping and seepage is rather limited, though it 

has been established that breach initiation via subsurface pathways are typically lengthy 

(potentially >24 hours) and less evident to the casual observer than for overtopping-type 

failures. The transition from ‘normal’, clear-water seepage outflow to cloudy seepage with 

minimal variation in discharge indicates a developing pipe, and thus the beginning of breach 

initiation (Wahl, 2004). Catastrophic failure cannot be avoided once the overlying material 

collapses under its own weight and subsequent erosion in the style of an overtopping failure 

occurs (Mohamed et al., 2002). 

 

For moraine dams, the presence of interstitial ice, ice lenses, a massive ice core, or 

permafrost (e.g. Hambrey et al., 2009; Worni et al., 2012), introduce further challenges for 

modellers. Ice cores represent largely impermeable barriers along (or indeed, in the 

presence of structural discontinuities in the form of relict crevasses traces, through) which 

subsurface flows are concentrated and routed, accelerating thermal erosion of the ice and 

removal of overlying sediment (Watanabe et al., 1995; Richardson and Reynolds, 2000b; 

Janský et al., 2009). Following assessment of the extent of stagnant ice within moraine 

dams, achievable almost exclusively through the use of in situ geophysical techniques (e.g. 

Pant and Reynolds, 2000; Richardson and Reynolds, 2000a,b; Reynolds, 2006, 2011), dams 

may be treated as composite structures, much like artificial rock fill or clay-cored 

constructions, for the simulation of overtopping failures. However, there is little published 

evidence of theoretical, physical or computational experimental parameterisation of dam 

breach models and the exploration of the implications for failure dynamics. 

 

Presently, the breach initiation phase is poorly represented or entirely neglected in breach 

models (Morris et al., 2008).  As an example, the ‘time to failure’ boundary condition in 

DAMBRK (Fread, 1984) is defined as the time taken for final breach dimensions to develop 

once downstream face erosion and subsequent breaching of the upstream dam face has 

already been achieved. Thus, any detailed simulation or quantification of initiation time is 

neglected. However, the standalone NWS-BREACH model (nested within DAMBRK), is 
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capable of providing information on elapsed time associated with the transition from erosion 

of the downstream to upstream face, which may, with caution, be taken as indicative of a 

switch from the breach ‘initiation’ to ‘development’ phase. 

 

4.1.2. Breach enlargement 

 

Significant progress has been made in the last decade through the identification of issues 

with dam-break model physicality by international working groups, including the CADAM, 

IMPACT and FLOODsite projects (e.g. Mohamed et al., 2002; Morris et al., 2008, 2009), as 

well as the ongoing work of the Dam Safety Interest Group (CEATI, 2012). Although these 

projects focused predominantly on modelling the failure of artificially-constructed earthen 

embankment dams, the models considered have seen widespread use in the glacial hazards 

literature, and so, with careful interpretation, many findings may be equally applicable to 

moraine dam failure scenarios. Concerning dam-breach formation, a range of issues 

pertaining to, for example, the mechanics of breach enlargement, side slope evolution and 

breach flow hydraulics have been identified. Mohamed et al. (2002) highlighted the inability 

of existing models to accurately simulate the processes of breach widening and 

enlargement. A constant shape, typically rectangular (e.g. Wetmore and Fread, 1984), 

trapezoidal (e.g. Cristofano, 1965; Fread, 1984; Fread, 1988b) or parabolic (e.g. Harris and 

Wagner, 1967), and a linear or user-specified rates of development of increase in breach 

width and depth, are assumed by the majority of existing models (Wahl, 1997). However, 

logic dictates that subaqueous and subaerial rates of erosion are far from identical, whilst 

field evidence and physical scale modelling demonstrates that breach side slopes approach 

near-vertical angles immediately following down-cutting (e.g. Mohamed et al., 2002; Morris 

et al., 2008). A transition towards a more parabolic or trapezoidal geometry occurs later in 

the breach formation stage as mass wasting and discrete block failure of the side slopes 

occurs. The heterogeneous composition and relatively non-cohesive nature of moraine dam 

material would suggest that maintenance of steep side slopes during breach development is 

less likely. However, recent large-scale physical dam-break experiments have demonstrated 

that steep-sided breaches develop for a range of dam compositions, including both non-

cohesive and cohesive materials (e.g. Vaskinn et al., 2004).  

 

Following recognition of the limitation of existing models, a number of advanced, 

commercially- or publicly-available, physically-based numerical breach models have been 

developed. Notable examples include HR-BREACH (Mohamed et al., 2002; Morris et al., 

2008), SIMBA (Temple et al., 2005; Hanson and Hunt, 2007), and BASEMENT (Faeh et al., 

2011). As an example of the improved physicality and dimensionality afforded by the use of 
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such models, in combination with standard treatments of hydraulics, sediment transport and 

soil mechanics, HR-BREACH is capable of iteratively adjusting breach shape through the 

incorporation of an improved methodology for modelling lateral breach expansion through 

the simulation of both continuous erosion and discrete mass failure (Mohamed et al. 2002). 

With the exception of the work of Worni et al. (2012), advanced dam breach models have 

not been applied to the moraine dam failure problem, but have the potential to vastly 

improve our understanding of failure dynamics through improved physical representation of 

complex failure processes and outflow hydrodynamics. 

 

4.1.3.   Permafrost and massive ice 

 

Another key parameter, also often overlooked, is the erodibility of dam material (Hanson and 

Cook, 2004; Hanson and Hunt, 2007; Morris et al., 2008).  Sediment transport equations 

used within the majority of breach models consider the removal of dam material as a 

function of applied shear stress, water velocity, and particle diameter, which are 

unrepresentative of the true variables that dictate erodibility (Morris et al., 2008). Dam 

material texture (including soil cohesivity), compaction moisture content and compaction 

energy exert a profound influence over erodibility, and, along with dam geometry, determine 

headcut migration rates during breach initiation. Indeed, small changes in moisture content 

or compaction have been shown to result in order-of-magnitude changes in erodibility 

(Hanson and Hunt, 2007; Morris et al., 2008). Ideally, in situ investigation of the above 

variables is desirable, however, due to logistical challenges these are often estimated. 

Quantification of erodibility coefficients for materials typically used for the construction of 

embankment dams (soil/clay mixtures) has been attempted (Hanson and Hunt, 2007), 

though such material differs significantly from glacial moraine, which is typically non-

cohesive, poorly consolidated, composed of a heterogeneous mixture of sand, gravel, 

cobbles, and boulders (e.g. Benn and Owen, 2002) (Fig. 4), and may contain discontinuous 

or continuous permafrost and cores of massive, relict ice (e.g. Hanisch et al., 1998; 

Reynolds, 2000; Richardson and Reynolds, 2000a, Reynolds, 2000, Delisle et al., 

2003Hambrey et al.,2009).  

 

The potential presence of a range of permafrost concentrations and structures represents a 

significant modelling challenge. There is no evidence in the literature of experimental or field-

based investigation into the erodibility of glacial moraine dam material, including the 

influence of ice content on breach development, having been undertaken to date. Recent 

research into the degradation of frozen river-bank sediment reveals complex degradational 

patterns between thawed, frozen and massive ice-cored material (Dupeyrat et al., 2011). 
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Dupeyrat et al. (2011) discovered that the resistance of pure ice to thermal erosion by 

flowing water was greater than that of surrounding permafrost with lower ice content. 

Following the ablation of interstitial ice, cohesion and therefore substrate shear strength is 

vastly reduced, facilitating the rapid removal of sediment (Gatto, 1995). Equally, the 

importance of discrete mechanical instead of thermal erosion mechanisms increases with 

the bulk density of permafrost (Lick and McNeil, 2001; Dupeyrat et al., 2011). A critical ice 

content may therefore be identified, above which mechanical failure dominates, and below 

which progressive ablation and sediment removal is the main mode of erosion. At present, 

even the most advanced dam breach models are unable to account for the presence of 

permafrost or massive, ‘pure’ ice in the dam structure, though this may indeed prove to be a 

controlling factor on rates of breach development and should be a priority for future 

experimental and numerical modelling research. 

 

4.2. Hydrodynamic modelling 

 

4.2.1 Multiple flood waves and model coupling 

 

Most retrodictive or predictive GLOF modelling efforts have considered breach enlargement 

and the downstream routing of the escaping floodwaters as a single event. However, a 

number of historical GLOFs have been identified as multiple-phase events (e.g. Vuichard 

and Zimmerman, 1986; Clague et al., 1985; Clague and Evans, 2000; Kershaw et al., 2005). 

Depending on displaced water volume and the degree of flow attenuation as the moraine 

crest is traversed, single or multiple overtopping wave may represent self-contained flood 

events, regardless of whether this eventually leads to breach formation (e.g. Hubbard et al., 

2005; Kershaw et al., 2005). To simulate this phenomenon, the modeller is first required to 

estimate the overtopping flood hydrograph for entry as an upstream boundary condition. 

Since contemporary dam breach or flood routing models are generally incapable of 

performing such calculations, overtopping volume and duration must be calculated 

independently using known (or estimated) input mass, basin and dam parameters applied to 

the empirically-derived equations of, for example, Muller (1995) or Walder et al. (2003). 

Results may then be used to force model applications to determine the flood characteristics 

of the initial escaping floodwaters. Similarly, the temporary armouring or blockage of the 

moraine breach by discrete mass failure of the breach sidewalls or blocks of ice (e.g. Worni 

et al., 2012) may contribute to the intermittency and ‘pulsing’ of the escaping floodwaters, 

such as that documented by Vuichard and Zimmerman (1986) for the 1985 Dig Tsho GLOF. 

Whilst physically based numerical dam-breach models are capable of simulating discrete 
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mass failure and the subsequent removal of this material by the breach flow, numerical 

reconstruction of the intermittency of breach expansion and hydrograph development 

remains challenging in a modelling environment which is typically unable to numerically 

resolve individual clasts and boulders. 

 

A further complication for the preservation of flow hydraulics and sediment transport is the 

nature of model coupling. The NWS DAMBRK and FLDWAV codes comprise both dam 

breach and flow routing algorithms (Fread, 1993). Similarly, HEC-RAS permits the breaching 

of an inline structure, either at the source of the flood (e.g. at the exit of a reservoir or 

storage area), or at a user-defined point along the flow path (USACE, 2010). However, both 

approaches use parametric-type breaching models, which, for reasons discussed above, 

represent rather simplified approximations of the breaching process. More traditionally, 

standalone breach models have been used to produce the initial outflow hydrograph, which 

is then considered as an upstream input to subsequent hydrodynamic modelling efforts. At 

present, such an approach is standard practice, though it has implications for the 

conservation of flow momentum at the dam foundation–valley floor boundary. Here, flow 

accelerates under the combination of the effects of gravity and the pressure of the overlying 

water contained in the reservoir (the ‘pressure head’) (Carrivick, 2010). In a fully-coupled, 

higher order model, short-lived flow acceleration, and a resulting zone of intensely turbulent 

flow at the dam base would be preserved. However, such effects are not considered when 

breaching and flood routing models are decoupled. Consequently, near-dam flow velocities 

calculated using this method are likely to be underestimated.  

 

A related and equally important consideration is the conservation of sediment outflow 

dynamics at the exit of the breach, and use as input to hydrodynamic modelling. Many 

studies have largely failed to acknowledge or account for this, yet from a geomorphological 

perspective, and in combination with outflow discharge and flow hydraulics, the erosion and 

subsequent transport of morainic material from the breach controls the transience of patterns 

of erosion, deposition, and flow rheology (e.g. Kershaw et al., 2005; Worni et al., 2012), 

particularly in near-field locales. An example of a simulated sediment outflow time series for 

a Himalayan GLOF, produced using HR-BREACH, is displayed in Fig. 7. In this particular 

instance, sediment evacuation rates were approximated by calculating the volumetric 

change of the breach between successive 10 second time steps over the full duration of the 

simulation. The significant variability in sediment outflow over extremely short time scales 

(often between individual time steps) is the result of instantaneous, discrete mass failure 

events which represent the main lateral expansion mechanism of the breach. Such 

behaviour would most likely be manifest in a hydrodynamic simulation of downstream flood 
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propagation as a series of short-lived sediment ‘pulses’. The rheological, hydraulic, and 

geomorphological effects of temporally-varying flow sediment concentrations are discussed 

in further detail in section 4.2.3. 

 

4.2.2. Complex flow hydraulics 

 

As with other sudden onset, sediment-laden outburst floods (e.g. Carrivick et al., 2010), 

GLOFs possess highly transient and spatially-varying flow regimes. From a modelling 

perspective, this introduces a range of challenges, including, but not limited to; an often rapid 

increase in discharge, high flow velocities and rapidly expansive patterns of inundation; the 

propagation of a translatory shock wave over initially ‘dry’ terrain; highly turbulent, typically 

overbank flow, the occurrence of flow super-elevation at sharp channel bends (often 

triggering secondary failure of colluvial slopes), and highly transitory flow rheology, which 

exerts a major control over intra- and post-flood channel reworking.  

 

During breach development, escaping floodwaters accelerate under the combination of the 

effects of gravity and the pressure of the overlying water contained in the reservoir (Stansby 

et al., 1998). This acceleration is typically short-lived, as floodwaters descending the distal 

face of the moraine dam encounter comparatively shallow gradients in the proglacial 

environment. Given a wide, largely unconfined proximal zone, flow will expand laterally as 

sheet flow, with depth and velocity gradually decreasing with distance from the flood source 

(Cenderelli and Wohl, 2003; Hogg and Pritchard, 2004). Alternatively, the continuation of 

steep near-field topography will promote the convergence of floodwaters, producing a higher 

velocity initial flood wave. As the flood wave propagates downstream, time-varying flow 

discharges and depths, combining to determine the overall degree of inundation, will be 

dictated by the breach outflow hydrograph and topographic complexity. 

 

One-dimensional hydrodynamic models are unable to simulate many key characteristics of 

GLOFs. Energy losses through the effects of boundary friction and turbulent eddying is 

handled explicitly in 2-D and 3-D flow models, though are accounted for in 1-D models 

through representations of channel conveyance. This is typically undertaken through manual 

calibration of roughness coefficients, such as Manning’s n, in order to produce optimal, or 

‘best-fit’ water surface profiles to palaeo-stage evidence, or at-a-point hydrographs which 

closely mirror available observed data (usually unobtainable) (e.g. Cenderelli and Wohl, 

2001; Bohorquez and Darby, 2008). No studies currently exist which directly compare the 

application of 1-D and 2-D hydraulic models to the GLOF phenomenon. However, analogous 

research has been undertaken for glacial outburst floods, including the work of Alho and 
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Aaltonen (2008) and Bohorquez and Darby (2008). The former found that, for unsteady 

outburst flow simulations across a relatively wide, shallow Icelandic sandur, predicted 

inundation extents were broadly comparable, with the greatest discrepancies occurring when 

flow encountered a sinusoidal gorge (Alho and Aaltonen, 2008). On the face of it, and with 

careful calibration, these findings appear to encourage the use of expeditious, 

computationally undemanding 1-D models, though sandar are often far less topographically 

complex than steep, high relief and tortuous alpine channels. However, Bohorquez and 

Darby (2008) found that a 1-D model compared reasonably to a 2-D approach for a glacial 

outburst flood in a high mountain, alpine setting. Averaged discharge estimates produced 

using 1-D modelling were higher than equivalent data obtained through 2-D modelling (429-

557 m3 s-1 and 358-454 m3 s-1 for 1-D and 2-D models, respectively), attributable to the 

reconstruction of a recirculation zone in the 2-D model, which the 1-D model was unable to 

reproduce due to its inherent unidirectional treatment of flow direction (Bohorquez and 

Darby, 2008). This particular example was undertaken over a relatively short distance (<1 

km), and for an outburst event with a peak discharge an order of magnitude lower than many 

documented GLOFs. The natural question arising from the above therefore becomes: how 

do spatio-temporal fluctuations in GLOF dynamics, including the timing and maximum extent 

of flood inundation, vary with model dimensionality? With the increasing use of advanced 

hydraulic codes, a comprehensive appraisal of 1-D, 2-D and 3-D approaches to GLOF 

prediction is a fundamental research priority, and will be of key interest to hazard 

assessment and disaster mitigation bodies who are considering the use of more advanced 

codes. 

 

As far as possible, and regardless of model dimensionality, particular attention should be 

given to the numerical discretisation of the flow path in a sufficient level of detail (Fig. 8). A 

sufficiently detailed topographic representation of the flow path is central to the production of 

meaningful, robust estimates of flood duration, discharge, velocity, and inundation extent, 

and is a prerequisite for the use of 2-D and 3-D hydrodynamic models. This is of particular 

importance in upper reaches, where, for a range of hydrograph forms, flood dynamics may 

vary significantly. However, results of the intercomparison of coarse (e.g. SRTM) versus fine 

(e.g. LiDAR) topographic data for flood inundation modelling (e.g. Sanders, 2007) have 

revealed that coarse-resolution elevation data possess remarkable value, particularly for 

rapid, ‘first-pass’ assessments. Similarly, Huggel et al. (2008) discovered that coarse SRTM 

and ASTER terrain data, in combination with GIS-based flood routing models, possess 

remarkable value for providing first-order hazard assessments of volcanically triggered 

lahars. 
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The increasing availability of affordable, high-specification desktop computing resources 

means that the reconstruction and adoption of detailed floodplain topography (and higher 

order hydrodynamic models) is becoming increasingly viable (e.g. Alho and Aaltonen, 2008; 

Carrivick et al., 2010). However, the acquisition of fine-resolution topographic datasets is 

often significantly hindered in many remote, inaccessible, high-altitude regions due to 

logistical impracticalities.  Recent advances in the development and provision of free, 

publicly-available and user-friendly photogrammetric methods (e.g. Westoby et al., 2012), 

and the increasing affordability of low-altitude tethered (e.g. Boike and Yoshikawa, 2003; 

Smith et al., 2009; Vericat et al., 2009) and autonomous surveying platforms (e.g. Lejot et 

al., 2007; Niethammer et al., 2012) are steadily making the production of high-resolution 

topographic data products for (geo)morphological analysis and grid-based representation of 

alpine valley floor topography more practical. 

 
4.2.3. Multi-phase flow and the mobile bed problem  
 
In combination with downstream topographic complexity, flow bulking through the erosion 

and entrainment of valley floor and morainic sediment often results in the breach outflow 

hydrograph being largely unrepresentative of downstream flood discharges (e.g. Cenderelli 

and Wohl, 2003; Kershaw et al., 2005). This is especially the case for flows which rapidly 

transform into sediment-laden hyperconcentrated or debris flows. In investigating the failure 

of Neoglacial moraine dams in the Cascade Range, Oregon, O’Connor et al. (2001) 

estimated that GLOFs transformed from clear water to debris flows within 0.5 km of their 

source, with the total volume of water released believed to have comprised >25 percent 

sediment. This is unsurprising, given the vast quantities of unconsolidated glacial and glacio-

fluvial material which comprises proximal, deglaciated terrain.  

 

The entrainment of significant volumes of in-channel and overbank sediment has 

implications for flow mobility. Fundamentally, an increase in flow volume as a result of the 

addition of solid material will in turn increase flow velocity. However, consequent increases 

in flow viscosity and cohesion may act to reduce mobility (Breien et al., 2008). Experimental 

work by Iverson et al. (2001) revealed that flow mobility decreases with the passage and 

entrainment of sediment over initially dry terrain. However, if the flow overrides and 

entrainments sediment from initially wet terrain, flow bulking, a subsequent increase in flow 

speed and momentum, and the development of large positive pore pressures will result 

(Iverson et al., 2011). Research in the Swiss Alps by Haeberli (1983) and Huggel et al. 

(2002) revealed that minimum average slopes of 11° and 2-3° are required for the sustained 

runout of debris flows and clear water flows, respectively, reinforcing the largely demobilising 
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effect of substantial sediment entrainment and transport. Consequently, the presence of 

complex channel topography will result in periodic, transitory fluid dynamics.  

 

From a modelling perspective, simulation of the above is highly challenging. As well as 

neglecting the contribution of transversal velocity to the flow momentum balance, relatively 

simplistic MF or MSF flow routing algorithms and the majority of 1-D hydrodynamic models 

are incapable of simulating non-Newtonian flow rheology. This is a fundamental 

characteristic of sudden onset floods, and has been documented for GLOFs (e.g. Clague 

and Evans, 2000; O’Connor et al., 2001; Breien et al., 2008), landslide-dammed lake 

outburst floods (e.g. Capra and Macias, 2002; Dunning et al., 2006; Xu et al., 2012), 

jökulhlaups (e.g. Carrivick, 2006, 2007), mudflows (including volcanically-triggered lahars) 

incorporating high concentrations of volcaniclastic material (e.g. Manville, 2004; Carrivick et 

al., 2009, 2010), and hyperconcentrated or debris flows caused by a rock or ice avalanche 

(e.g. Hubbard et al., 2007).  

 

Entrained sediment affects flow density, viscosity and turbulence. Short-lived changes in 

hydraulic regime, including the direct influence of sediment on flow hydraulics (e.g. Carrivick, 

2010) and concurrent channel reworking, represent major challenges for numerical 

modelling. Consequently, these effects commonly remain largely overlooked and 

unquantified (Carrivick et al., 2011). Research into flow-sediment interactions in sudden 

onset floods with a dam failure origin has been necessarily confined to laboratory-scale 

investigation (e.g. Chen and Simons, 1979; Capart and Young, 1998; Nsom, 2002; 

Rushmer, 2007; Carrivick, 2010; Laurent et al., 2011), where issues of scaling and the 

confined nature of the flow should be considered (Carrivick et al., 2011). A key finding has 

been the discovery that, in the early stages of the flow event, and without sufficient time to 

reach capacity, floods where suspension is the predominant mode of sediment transport 

exhibit a ‘dynamic equilibrium’ regime. This is manifested geomorphologically as alternating 

zones of erosion and deposition (Carrivick et al., 2010; Procter et al., 2010), whereby initially 

high rates of erosion and sediment entrainment and transport rapidly give way to a 

depositional regime as the transport capacity declines as a function of energy losses through 

boundary friction and geomorphic work (Carrivick et al., 2011). The results of numerical 

modelling presented by Xia et al. (2010) suggest that, at least in the initial stages of outburst 

flood propagation, rates of bed evolution and scour may approach or equal flow depth. 

 

Processes of fluid flow and sediment transport are inherently linked to bed evolution. The 

vast majority of models currently in widespread use are only capable of routing floods over 

an immobile bed (Liao et al., 2007; Xia et al. 2010). The ‘mobile’ bed problem describes the 
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propensity for the channel bed to undergo continuous morphological change over the course 

of an event, including the large-scale mobility of the underlying substrate through tractive or 

rolling motion. Consequently, the physical manifestation of the channel ‘bed’, as classically 

defined, becomes blurred, as a continuum develops comprising fluid, often intensely 

sediment-laden flow, a zone of active bed mobility and bed-flow sediment exchange, and 

underlying immobile substrate. A number of models capable of solving the mobile bed 

problem for dam break floods are reviewed in Xia et al. (2010), and are not described in 

detail here, however, advances in our understanding of the processes that govern this 

behaviour have been largely experimental (e.g. Cao et al., 2004; Simpson and Castelltort, 

2006; Leal et al., 2009; Xia et al. 2010; Zhang and Duan, 2011). Key findings include the 

observation that flows over a mobile bed attenuate faster (Carrivick et al., 2011), and peak 

flow depth was greater and occurs earlier than for those over an immobile bed (Leal et al., 

2009).   

 

GLOF modelling efforts that account for the presence of a mobile bed layer in their numerical 

solutions are rare. Analogous studies include the work of Xia et al. (2010), who document 

the development and application of a 2-D morphodynamic model capable of considering the 

influence of flow sediment concentration and bed evolution on flow propagation, as well as 

the work of Carrivick et al. (2010) who utilised a 2-D fluid dynamics model, Delft-3D, to 

reconstruct time-varying patterns of geomorphic change produced by a crater lake break-out 

lahar in New Zealand. Although the model is unable to simulate changes in flow rheology as 

a result of varying sediment concentration, the capability of Delft-3D to handle prior 

specification of zones of active (i.e. alluvial) and inactive (i.e. bedrock) channel substrate and 

actively update cell-specific sediment quantities renders it highly suitable for the investigation 

of intra- and post-event channel reworking (Carrivick et al., 2010), though has yet to be 

applied to the simulation of GLOFs. The above findings may have significant implications for 

the use of purely hydrodynamic models for GLOF reconstruction and prediction, which fail to 

incorporate solutions of sediment erosion and transport, including spatio-temporal variations 

in flow rheology and hydraulics and mobile bed evolution.  

 

4.2.4. Mesh-free methods for dam-breach simulation 

The various methods presently thus far belong to the ‘mesh-based’ category of 

hydrodynamic models for open channel flow. Over the past decade or so, a range of particle-

based, mesh-free methods for modelling complex fluid flows have been developed. Of these, 

the ‘smoothed-particle hydrodynamics’ (SPH) approach is perhaps the most popular (e.g. 

Bursik et al., 2003; Cleary and Prakash, 2004; Laigle et al., 2007; Pastor et al., 2009; Liu 
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and Liu, 2010; Huang et al., 2012; Kao and Chang, 2012). SPH is a truly mesh-free, 

Lagrangian, particle-based method for solving the classic mechanics of fluid flow; typically 

the Navier-Stokes equations. Flows are discretised into a finite number of elements, or 

particles, possessing predefined geometric and material properties, and inter-particle contact 

laws (Cleary and Prakash, 2004). Particles are not truly physical, but, when grouped, are 

considered as a means of representing the fluid(s) under investigation (Laigle et al., 2007). 

 

Fully 3-D fluid dynamics, including treatments of local flow density and vertical acceleration, 

are simulated through inter-particle interactions, which are determined by spatial weighting 

or smoothing functions (Liu and Liu, 2003, 2010).  When interacting en masse, SPH 

methods have been demonstrated to reproduce complex, often transient phenomena of 

natural fluidal flows, including supercritical, subcritical, and transcritical flow regimes, 

hydraulic jumps, shock wave propagation, wave reflection and multiple wave interactions, 

and splashing and flow fragmentation (Chang et al., 2011; Kao and Chang, 2012), even at 

relatively coarse resolutions (Cleary and Prakash, 2004). In addition, dynamic free-surface 

behaviour (e.g. flow superelevation) is handled with ease and without the requirement for the 

use of surface tracking methods (commonly required by purely mesh-based models). SPH is 

capable of simulating rheologically complex, non-Newtonian flows with ease, including flow 

solidification and fluidisation behaviour, making it ideal for application to natural flows which 

have been shown to demonstrate transient flow rheologies. 

 

The above capabilities render SPH highly suited for the investigation of sudden onset, dam-

break floods. To date, the use of mesh-free methods has been largely confined mainly to 

experimental application against standard benchmarking problems (e.g. Chang et al., 2011), 

although a number of real-world case studies have been investigated. These have included 

the routing of dam break outburst floods over DEMs of varying topographic complexity (e.g. 

Chang et al., 2011) and modelling hypothetical landslide runout (Huang et al., 2011, 2012), 

including dynamic landslide-reservoir interactions (Pastor et al., 2011). The work of Pastor et 

al. (2011) is broadly analogous to the direct interaction of rock or ice avalanches with 

moraine-dammed lake complexes, and represents a holistic, multi-component approach to 

modelling all of the phenomena involved, including mass movement trajectory modelling, the 

interaction of a landslide or avalanche with the lake body and near- and far-field wave 

propagation. The addition of a treatment describing subsequent wave overtopping of a 

natural dam structure would complete the unified simulation of all initial stages of this 

particular trigger mechanism, and is an approach that merits further methodological 

exploration. The application of mesh-free methods to the simulation of GLOFs is a natural 

progression from the use of the depth-averaged 1-D and 2-D methods described above. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

33 
 

Initial concerns over issues of model validation and computational efficiency (e.g. Richards 

et al., 2004) appear to have been overcome in some instances, with a number of SPH codes 

have been shown to perform with favourable computational efficiency and reliability (e.g. 

Chang et al., 2011). However, examples of SPH application to ‘large-scale’ simulations such 

as the routing of dam break outburst floods through lengthy, topographically complex 

catchments, such as those found in high mountain regions, are currently lacking.  

 

4.3. Implications for Glacial Lake Outburst Flood modelling 

 

The strengths and inadequacies of the models described above must be considered by 

workers attempting to reconstruct palaeoGLOFs or simulate future, hypothetical outburst 

events. Ultimately, the choice of modelling approach will be dictated by logistical and 

financial constraints. From a practical perspective, a relatively simple, purely raster- and 

DEM-based approach will be more appealing to workers tasked with the production of first-

order assessment of the hazard posed by GLOFs at the regional scale (e.g. Huggel et al., 

2003; Allen et al., 2009) and particularly in remote regions where high-resolution terrain data 

are currently unavailable. Such models represent a low-cost and computationally-

undemanding method for modelling the downstream propagation of GLOFs, favour the use 

of simple, empirically-derived estimations of Qp and Tp (e.g. Table 3), and are suitable for 

use in combination with coarse-scale terrain data for ‘first-pass’ hazard assessments (e.g. 

Huggel et al, 2003). 

 

Increasing model complexity is traditionally associated with increases in initial start-up costs. 

Although also relatively computationally undemanding, more advanced models typically 

require a corresponding increase in user expertise and data requirements for effective 

parameterisation and implementation. Many input parameters, particularly material 

characteristics of the moraine dam, are only obtainable through labour-intensive and 

logistically challenging field investigation (e.g. Xin et al., 2008; Worni et al., 2012), although 

the well-documented heterogeneous nature of moraine dams (Benn and Owen, 2002; 

Bennett and Glasser, 2009; Hambrey et al., 2009) may hinder a single, definitive 

quantification of their material properties at all. Theoretically, improved representation of the 

varied and complex physical characteristics of breaching and flood propagation through the 

application of, for example, analytical or parametric dam breach models and 1-D depth-

averaged hydrodynamic solvers are likely to improve the accuracy and robustness of spatial 

and temporal predictions of inundation and GLOF dynamics in some instances. However, 

the lack of a consideration of key dynamical aspects of GLOF behaviour, such as turbulent, 
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often super- or transcritical flows, flow superelevation at channel bends, and transitory flow 

rheologies still serves to limit the veracity and precision of these approaches. 

 

Higher-order modelling approaches, including the use of next-generation dam breach 

models and 2-D, 3-D, or mesh-free hydrodynamic models currently represent the most 

advanced, physically-robust approaches to GLOF modelling. Traditionally, the use of such 

models has required a significant degree of user expertise, though accessibility has steadily 

improved in recent years with the increasing use of Graphical User Interfaces (GUI) and GIS 

support to simplify data input, manipulation and visualization. However, this is offset 

somewhat by the high initial start-up costs of many codes, the majority of which are 

distributed as proprietary software packages. In addition, significant computational 

requirements render them largely unsuitable for the investigation of input parameter 

uncertainty and equifinality in model output through the use of Monte Carlo methods, for 

example. For this purpose, simpler models are at a distinct advantage until the affordability 

and use of high-speed parallel computing systems or high-specification desktop computers 

becomes more commonplace, or models become more computationally efficient. 

 

4.4. Challenges posed by contemporary and future climatic change 

 

Rates of glacial recession are predicted to increase in the coming decades on a scale 

without any known historical precedent (IPCC, 2013). Consequently, and in addition to the 

challenges discussed above, we will be increasingly faced with challenges associated with 

modelling GLOF events and glacial and geomorphological conditions to which our range of 

empirical observations may no longer apply. 

One of the major challenges is predicting where future glacial lakes will form. On debris-

covered glaciers, a specific set of glaciological conditions which predispose a glacier to 

develop a network of supraglacial ponds, and ultimately a fully formed moraine-dammed 

glacial lake, have been identified (Reynolds, 2000; Quincey et al., 2007) and form a robust 

basis for identifying those glaciers which are likely to develop glacial lakes in the future. 

Similarly, qualitative strategies have been developed for identifying the location of subglacial 

overdeepenings through analysis of the characteristics of glacier surface topography, which, 

following glacier retreat, may serve as the focal point for meltwater collection and the 

development of a proglacial lake (Frey et al., 2010).  

However, the rate of observed and predicted future increases in air temperature and 

variations in the precipitation regime of many high-mountain regions are such that it remains 
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a challenge to predict the pace of future cryospheric change, and how it relates specifically 

to the development of the GLOF hazard at regional and local scales. Anticipating the celerity 

with which various glaciological processes will operate, and the timescale required for key 

physical and climatological thresholds to be exceeded are hindrances to our prediction of the 

evolution of the GLOF hazard. A prudent approach for assessing the GLOF hazard posed by 

extant or future moraine-dammed lakes should be based on the regular re-analysis of 

glaciological, geomorphological and climatological data, with a view to identifying 

contemporary and future GLOF process chains, and subsequently informing the 

development or parameterisation of empirical and numerical dam-breach and hydrodynamic 

models. 

 

5. Considering uncertainty in the GLOF model chain 

 

An appreciable degree of uncertainty surrounds the establishment of initial boundary 

conditions and input parameters for both reconstructive and predictive dam-breach and 

GLOF modelling. Few studies have undertaken detailed sensitivity analyses into the 

significance of this uncertainty on, for example, the form of the breach hydrograph, and 

subsequent implications for the assessment of the spatio-temporal evolution of the GLOF 

flood wave(s). In many instances, it may be the case that uncertainty associated with model 

parameterisation results in greater variability in model output than differences attributable to 

the use of, for example, 1-D, 2-D or 3-D hydrodynamic solvers. Laboratory-scale 

experiments (Balmforth et al., 2009) indicate that vastly different final breach widths can be 

reproduced from near-identical initial breach geometries and compositions, whilst Awal et al. 

(2010) reported that the magnitude and timing of overtopping waves were dependent on 

dam geometry (specifically proximal face angle), material composition, and additional factors 

including ice- and rock-avalanche dimensions. Similarly, in Capart’s (2013) analytical dam-

breaching solution, peak discharge was discovered to be sensitive to the lake surface area, 

and highly sensitive to the initial angle of the upstream dam face, effectively highlighting the 

importance of quantifying such geometric descriptors of the moraine dam as precisely as 

possible prior to the specification of initial model boundary conditions. 

 

With specific reference to numerical dam-breach modelling, significant uncertainty surrounds 

the establishment of initial conditions (e.g. dam geometry, reservoir bathymetry and 

hypsometry), the parameterisation of material characteristics (e.g. grain size distribution 

data, porosity, density, cohesion, internal angles of friction) and the establishment of suitable 

computational constraints (e.g. model time step and grid discretisation) (Table 4). Whilst the 
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construction of high-resolution DTMs of moraine dam structures (Westoby et al., 2012), their 

attendant lake basins (e.g. Robertson et al., 2012; Yao et al., 2012), and downstream valley 

topography (e.g. Bremer and Sass, 2012) using photogrammetric, laser scanning, or 

bathymetric surveying techniques has facilitated the extraction of metric data pertaining to, 

and subsequent accurate characterisation of moraine and lake geometry and down-valley 

topography, equally robust quantification of the aforementioned material characteristics is 

typically achievable only through labour-intensive and logistically-demanding fieldwork (e.g. 

Hanson and Cook, 2004; Osti et al., 2011; Worni et al., 2012). Furthermore, the 

compositional heterogeneity of moraine dams further complicates the use of a single, ‘all-

encompassing’ material parameter ensemble for applied dam-breach simulation in a range 

of settings. 

 

Variability in hydrodynamic model output may be attributed to model dimensionality (e.g. 

Alho and Aaltonen, 2008; Bohorquez and Darby, 2008), spatial resolution and quality (e.g. 

Sanders, 2007; Huggel et al., 2008), the spacing of successive cross-sections that represent 

downstream topography (e.g. Castellarin et al., 2009), as well as uncertainty surrounding the 

parameterisation of channel and floodplain roughness coefficients (Wohl, 1998; Hall et al., 

2005, Pappenberger et al., 2005), input boundary condition data (e.g. Pappenberger et al., 

2006) and stage-discharge relationships (e.g. Di Baldassarre and Claps, 2011).  For event-

specific flood reconstruction, systematic calibration of roughness and friction coefficients to 

produce ‘best-fit’, or ‘optimal’ model parameters is standard practice (e.g. Kidson et al., 

2006; Cao and Carling, 2002), and may serve to inform their choice for modelling 

hypothetical future events (e.g. Horritt and Bates, 2002). However, the application of these 

calibration techniques for reconstructive and predictive GLOF modelling is highly 

questionable, not least because of the uniqueness of each outburst event and the 

appreciable unlikelihood of more than one GLOF originating from a given moraine-dammed 

lake. Standard calibration techniques, such as the use of palaeo-stage indicators or 

slackwater deposits (e.g. Cenderelli and Wohl, 2003; Kershaw et al., 2005; Bohorquez and 

Darby, 2008) represent one possible approach to flow calibration, but are reach-specific and 

typically reflect only the maximum flood stage and corresponding inundation extent. 

Similarly, delineation of channel- and valley-floor regions subject to GLOF passage 

represents a straightforward method of establishing maximum flood extents. However, a 

widespread lack of pre-GLOF topographic datasets (for GLOF routing), combined with the 

inability of many widely-used hydrodynamics codes to simulate complex and highly transient 

flow rheologies and sediment transport dynamics complicates the use of maximum flood 

extents to accurately constrain palaeoGLOF dynamics. 
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A potential solution to the above is the adoption of probabilistic approaches to GLOF 

reconstruction, which embrace uncertainty in the model chain using stochastic sampling 

techniques and are capable of quantifying the degree of equifinality in model output. Such 

methods have appreciated widespread use in the distributed hydrological modelling literature 

(e.g. Beven and Binley, 1992; Kuczera and Parent; 1998, Lamb et al., 1998; Blazkova and 

Beven, 2004; Franz and Hogue, 2011), and, with limited modification, would appear to be 

equally suited to dam-breach reconstruction (Fig. 9) and GLOF inundation mapping (Fig. 

10). As an example, quantifying the performance of dam-breach models according to their 

ability to reproduce the geometry of moraine breaches caused by palaeoGLOFs represents 

one solution to being able to identify the parameter ranges which may be deemed 

acceptable, or ‘behavioural’. However, significant complications arise with the elucidation of 

a ‘universal’ range of input parameters for application to predictive GLOF modelling efforts 

given the highly site-specific nature of their derivation, and the challenges associated with 

identifying and reconstructing a large enough sample of GLOFs in a specific region from 

which to undertake a representative statistical analysis of the key modelling parameters (and 

their ranges) which exert the dominant influence over breach development and GLOF 

propagation. Specifically, and in the absence of validation of their suitability to reconstructing 

observed breach morphologies of other breached moraine dams, a range of tightly-

constrained material characteristics that may be capable of reproducing observed breach 

morphologies at one site may not be readily applicable to accurately predicting the range of 

breach hydrographs that might arise from the failure of another. Nevertheless, the 

subsequent production of probability-weighted maps of inundation are arguably of more 

value for flood hazard and risk assessment, and the use of uncertainty-based techniques for 

both reconstructive and predictive GLOF modelling merits further consideration.  

 

6. Conclusions 

High-magnitude outburst floods from moraine-impounded glacial lakes represent a highly-

complex, multi-stage catastrophic phenomenon, capable of accomplishing significant 

geomorphologic reworking of channel- and valley-floor floodplain environments and posing a 

very real threat to infrastructure and the safety and livelihoods of communities. This review 

has provided a comprehensive overview of the individual ‘components’ that constitute a 

GLOF event, namely: triggering mechanism(s), moraine dam breaching, and routing of the 

escaping floodwaters, and the modelling approaches typically used to reconstruct or predict 

GLOF dynamics.   
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Progress in understanding of the main factors controlling moraine dam breach dynamics has 

been relatively slow since the emergence of the first numerical models well over two 

decades ago. Empirical models, originally developed for application to the failure of 

artificially-constructed dams and levees, commonly appear in the geosciences literature and 

should not be discounted as useful tools for the production of rapid, first-pass hazard 

assessments. The recent advent of fully physically based advanced numerical dam-breach 

models heralds a significant step forward in our capability to produce robust, physically 

based estimates of breach outflow dynamics, including quantification of sediment evacuation 

rates.  

 

The requirement to model accurately GLOF hydrodynamics at both the source and 

downstream is central to the production of detailed GLOF inundation maps and hazard 

assessment. However, the high computational burden associated with the execution of 

advanced 2-D and 3-D hydrodynamic codes, coupled with the relative dearth of fine-

resolution topographic data required for detailed discretisation of channel and floodplain 

domains are still major hindrances to the widespread adoption of these models for the 

production of detailed hazard assessments of anticipated GLOF events.  

 

In conclusion, we highlight the following as key modelling challenges and potential areas of 

future GLOF research. 

 

• The development of dam breach models capable of actively simulating dynamic wave 

behaviour in a glacial lake, such as those caused by landsliding or avalanching, and 

accounting for the passage of single of multiple overtopping waves in breach initiation 

and development; 

 

• Further experimental and numerical investigation into the interactions between seismic 

activity and the geotechnical performance of moraine dams, specifically its significance 

in initiating  dam settlement or massive structural failure, and the evolution of breach 

initiation via piping and intra-morainal seepage; 

 

• The ability of dam breach models to use complex, real-world geometric data as input, 

such as irregular crest topography and arcuate dam planform, providing a true reflection 

of observed moraine dam geometry; 
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• Quantification of the effects of spatially continuous or discontinuous permafrost in the 

dam structure, including massive bodies of relict glacial ice, on patterns of breach 

erosion, and the development of numerical models capable of accounting for often 

complex, user-defined spatial variations in ice content. 

 

• Improvements in inter-model coupling, including the preservation of breach outflow 

hydrodynamics, the passage of multiple overtopping flood waves or breach-flow 

‘pulses’, and temporal variations in sediment evacuation rates from the enlarging 

breach; 

 

• Quantification of the effects of model dimensionality on reconstructed or predicted flow 

hydraulics and patterns of inundation and geomorphologic reworking of in-channel and 

overbank environments, including implications for the construction of downstream 

hazard assessments; 

 

• Wherever possible, the collection of dam material property and geometric data in situ, in 

order to constrain dam-breach model input parameters as rigorously as possible, and to 

reduce the extent of the uncertainty associated with numerical dam-breach model 

parameterisation; 

 
• The acquisition and use of high-resolution topographic datasets, in order to make the 

effective use of advanced hydrodynamic models viable, including, where possible, the 

attainment of pre- and post-GLOF DEMs to aid quantitative analysis and interpretation 

of net erosion and deposition; 

 
• The adoption of models capable of simulating spatio-temporal patterns of transitory flow 

rheology, including effects of flow hydraulics and capacity to perform geomorphic work, 

and the use of models incorporating solutions of mobile bed evolution and subsequent 

impacts for GLOF propagation. 
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Figure captions 

Fig. 1. Schematic of a hazardous moraine-dammed glacial lake. Potential triggers, 
conditioning factors, and key ‘phases’ in a GLOF event are highlighted. Potential triggers 
include: (A) contact glacier calving; (B) icefall from hanging glaciers; (C) rock/ice/snow 
avalanches; (D) dam settlement and/or piping; (E) ice-cored moraine degradation; (F) rapid 
input of water from supra-, en-, or subglacial (including subaqueous) sources; (G) seismicity 
Conditioning factors for dam failure include (a) large lake volume; (b) low width-to-height 
dam ratio; (c) degradation of buried ice in the moraine structure; (d) limited dam freeboard. 
Key stages of a GLOF include (1) propagation of displacement or seiche waves in the lake, 
and/or piping through the dam; (2) breach initiation and breach formation; (3) propagation of 
resultant flood wave(s) down-valley. Adapted from Richardson and Reynolds (2000a). 
 

Fig. 2. Electrical resistivity profile along a transect across the terminal moraine complex of 
Imja Glacier, Khumbu Himal, Nepal, revealing the presence of buried ice (modified from fig. 
7c, Reynolds, 2006). 

 

Fig. 3. The temporal evolution of supraglacial ponds on Ngozumpa Glacier, Khumbu Himal, 
Nepal; (A) supraglacial pond with calving ice face; (B) coalesced melt ponds and 
subsequent development of a ‘proto’ glacial lake. 

 

Fig. 4. Breached moraine dams in the Khumbu Himal, Nepal: (A) Dig Tsho. An ice 
avalanche, originating from the hanging remnants of Langmoche Glacier, entered the lake. 
Displacement wave(s) subsequently overtopped the terminal moraine (Vuichard and 
Zimmerman, 1987). A sizeable breach (centre, foreground) was formed by the escaping 
floodwaters. Black arrow indicates area shown in C; (B) Chukhung Glacier terminal moraine. 
For scale, maximum breach top width is ~90 m. Little is known about the dam failure 

dynamics of this GLOF, although it is estimated that approximately 5.5 x 10
5

 m
3

 of water was 
impounded before failure, based on reconstructed pre-GLOF dam and lake geometry (M 
Westoby, unpublished data); (C) Panoramic photograph of exposed sediment in the central 
section of a moraine dam breach, Dig Tsho, Nepal. Widespread, post-GLOF deposits are 
present at the base of the exposure. In this example, large boulder- and cobble-sized clasts 
are supported in a poorly-sorted, unconsolidated sand-gravel matrix. Total section is 150 m 
in length and 11 m high at the point of annotation. 
 

Fig. 5. Dynamics of a standing wave or ‘seiche’: (1) input of external mass to the lake 
system (e.g. a large glacier calving event); (2) mobilisation of the entire water column, and; 
(3) subsequent overtopping of dam structure, followed by (4) continuing, but attenuating, 
oscillations of the water body, which may or may not result in further overtopping. Black 
triangle represents the water surface pivot point, around which the standing wave oscillates. 
Note: figure dimensions for illustrative purposes only and not necessarily to scale. 
 

Fig. 6.  Generic dam breach outflow hydrograph. Axis annotation is explained in Table 2. 
Modified from fig. 2.7, Morris (2009). 
 
Fig. 7. Rates of sediment evacuation (Qs) during moraine breaching; in this instance an 
experimental reconstruction of the 1985 Dig Tsho event using HR-BREACH. Sediment 
outflow fluctuates significantly between successive 10 second time-steps, as a result of 
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periodic discrete breach wall failure events, which represent considerable, though short lived 
‘pulses’ of sediment to the developing outflow channel. It is worth noting that peak sediment 
outflow precedes peak discharge (Note: end of sediment time series data corresponds with 
cessation of breach outflow).  

 

Fig. 8. Flood inundation extent at selected time steps for the two-dimensional hydrodynamic 
reconstruction of a palaeoGLOF from Dig Tsho, Nepal Himalaya using a Total Variation 
Diminishing solver (ISIS 2D). Topographic grid discretisations of 4 m, 8 m, 16 m and 32 m 
were used. The 4 m and 8 m results are broadly comparable for all time steps, whereas use 
of 16 m and 32 m grids results in the inundation of sizeable areas of the valley floor 
otherwise unaffected by GLOF passage across the finer grids. Dashed line on inset box 
shows corresponding time step on the breach outflow hydrograph (for reference, this is 
identical to the ‘optimal’ hydrograph shown in Fig. 7). For scale, tick marks on main figure 
spaced at 200 m intervals. 

Fig. 9. Dam breach hydrographs for a reconstruction of the Dig Tsho failure. Solid black line 
corresponds to the ‘optimal’ breach outflow hydrograph, with performance conditioned on the 
ability of the simulation to reproduce observed geometric descriptors of post-GLOF breach 
morphology (including final breach depth and centreline elevation profile or slope). In 
contrast, grey shading represents the hydrograph envelope of all acceptable, or ‘behavioural’ 
failure simulations, reflecting a range of input parameter combinations. 

 

Fig. 10. Communicating uncertainty in reconstructive mapping of the Dig Tsho GLOF. (A) 
inundation probability, calculated as the percentage of ‘behavioural’ simulations which 
inundate a given cell; (B) percentile-specific inundation extent, and; (C) an example of 
inundation extent and flow depth for the 95th percentile model. All data extracted at 02:00 h 
after breach initiation. For scale, tick marks spaced at 200 m intervals. Blue arrow in A 
indicates direction of flow. 

 

Table captions 

 

Table 1. Case study examples of different types of outburst floods from glacial sources 

 

Table 2. Description of phases comprising a generic dam breach outflow hydrograph (see 
Fig. 6) and qualitative description of our ability to model them. Adapted from Morris (2009). 
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Table 3. Selected empirical equations used to estimate peak discharge (Qp) for natural dam 
failures. Examples marked with an asterisk (*) have been derived entirely from moraine-dam 
failure case studies. 

 

Table 4. Sources of uncertainty in the GLOF model chain, the nature of their impact and 
practiced or proposed measures for their quantification or assessment. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Outburst type Example Description References 
    

Glacial Lake                
Outburst Flood             
(GLOF) 

Dig Tsho, 1985                                      
(Nepal Himalaya) 

Failure triggered by overtopping from ice avalanche-triggered displacement 
waves. Reconstructed peak discharges of >2000 m

3
 s

-1
. Five fatalities, 

hydroelectric power station destroyed. 

Vuichard and Zimmerman (1987); 
Cenderelli and Wohl (2001); 
Richardson and Reynolds (2000a) 

  

Sabai Tsho, 1998                         
(Nepal Himalaya) 

Moraine destabilisation and failure believed to have been triggered by 
earthquake. Reconstructed GLOF peak discharge of 10,000 m

3
 s

-1
. 4.4 x10

5
 

m
3
 of sediment deposited within 14 km of breach. 

Osti and Egashira (2009);                        
Osti et al. (2011) 

  

Luggye Tsho, 1994                          
(Bhutan Himalaya). 

Partial drainage of glacial lake, ~48 x 10
6
 m

3
 of water drained into the Pho 

Chhu river, producing a flood wave >2 m high 200 km from the source lake. 
23 fatalities and widespread damage to buildings up to 84 km downstream. 

Watanabe and Rothacer (1996); 
Richardson and Reynolds (2000b) 

  

Queen Bess Lake, 1997                     
(British Columbia) 
 

Moraine dam overtopped by ice avalanche-triggered displacement wave. 8 x 
10

6
 m

3
 water released. Peak discharges >1000 m

3
 s

-1
. Elevated water stage 

noticeable >100 km from source. 

Clague and Evans (2000);                                               
Kershaw et al. (2005) 

    

Glacier outburst 
(Jökulhlaup) 

Grímsvötn lake, 1996                      
(Vatnajökull, Iceland) 

Largest documented Icelandic jökulhlaup. Triggered by subglacial eruption. 
Peak discharges 4 x 10

4
 m

3
 s

-1
, total volume of water released 3.2 km

2
.  

Guðmundsson et al. (1995); 
Russell et al. (1997);  
Bjornsson (2003) 

  

Kverkfjöll,, Holocene                     
(Vatnajökull , Iceland) 

Source of some of the largest Icelandic Holocene jokulhlaups.  Reconstructed 
peak discharges of 0.5 - 10 x 10

4
 m

3
 s

-1
. Fluvial erosion of bedrock and 

geomorphic work comparable to late Pleistocene 'megafloods'. 

Carrivick (2007);                                      
Carrivick et al. (2004a, 2004b) 

    

Glacier-dammed               
lake outburst 

Indus and Yarkand rivers, 
(Karakoram Himalaya) 

Numerous examples of glacier advance and damming of headwater rivers. 
Peak discharges believed to exceed 10

5
 m

3
 s

-1
, causing significant erosion, 

sedimentation and secondary slope failure. 

Hewitt (1982);  
Hewitt and Liu (2010). 

S. Tahoma Glacier, 1967-        
(Mt. Rainier, WA, USA) 

Frequent outbursts recorded since 1967. Damage to infrastructure. Walder and Dreidger (1994, 1995) 

Altai Mountains (~13 ka 
BP) (Souther Siberia) 

Quaternary ice-dammed lake outbursts producing 'megafloods' with 
maximum discharges of 10 - 18 x 10

6
 m

3
 s

-1
. Last outburst believed to have 

occurred ~13 ka BP; peak discharge > 1 x 10
6
 m

3
 s

-1
. 

Rudoy (2002);                                                                        
Carling et al. (2009) 

Table 1. Case study examples of different types of outburst floods from glacial sources 
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Hubbard Glacier, 1986, 
2002, (Alaska, USA.) 

Glacier temporarily blocked entrance to Russell Fjord twice in recent history. 
In 1986, catastrophic failure of ice dam resulted in the release of ~5.4 km

3
 of 

water, with peak discharges of up to 1 x 10
5
 m

3
 s

-1
. 

Mayo (1989);                                                                       
Motyka and Truffer (2007);                 
Ritchie et al. (2008) 
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Time Description Modelling ability 

T0 No breach initiation - 

T1 Start of breach initiation. Seepage over or through dam 

begins. 

Limited 

T1 - T2 Breach initiation phase. Q typically low. May last hours - 

months (Q2) 

Poor 

T2 - T3 Critical transition to breach formation. Erosion reaches 

upstream face of dam, initiating rapid breach growth 

(Q3) 

Limited 

T3 - T5 Breach formation. Rapid vertical erosion dominates 

initially, followed by continued vertical and lateral 

erosion. 

Poor - moderate 

T4 Peak discharge (Qp) Good 

Table 2. Description of phases comprising a generic dam breach outflow hydrograph (see 

Fig. 7) and qualitative description of our ability to model them. Adapted from Morris (2009). 
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Type Reference Type R
2

           

(if known) 
No. case studies Empirical equation 

       Real Simulated   
              

Height of water 
equations 

Kirkpatrick (1977) 
 

Best fit 0.790 13 6 Qp = 1.268(Hw + 0.3)
2.5

 

US Soil Conservation (1981) 
 

Envelope - 13   Qp = 16.6(Hw)
1.85

 

  US Bureau of Reclamation (1982) 
 

Envelope 0.724 21   Qp = 19.1(Hw)
1.85

 

  Singh and Snorrason (1982) 
 

Best fit 0.488   8 Qp = 13.4(Hd)
1.89

 

* Walder and O'Connor (1997) 
 

Best fit 0.620 9   Qp = 0.045(V)
0.66

 

  Pierce et al. (2010) Best fit 0.633 72   Qp = 0.784(H)
2.668

 

    Best fit 0.640 72   Qp = 2.325 ln(H)
6.405

 
       

Storage equations Singh and Snorrason (1984) 
 

Best fit 0.918   8 Qp = 1.776(V)
0.47

 

  Evans (1986) 
 

Best fit 0.836 29   Qp = 0.72(V)
0.53

 

* Walder and O'Connor (1997) Best fit 0.090 9   Qp = 60.3(V)
0.84
  

              

              

Height of water and 
storage equations 

Hagen (1982) 
 

Envelope - 6   Qp = 0.54(V Hw)
0.5

  

MacDonald and L.-Monopolis (1984) 
 

Best fit 0.788 23   Qp = 1.154(V Hw)
0.412

 

  
 

  Envelope 0.156 23   Qp = 3.85(VwHw)
0.411

 

  Costa (1985) 
 

Best fit 0.745 31   Qp = 0.763(V Hw)
0.42

 

* Costa and Schuster (1988) 
 

Best fit 0.780 8   Qp = 0.00013 (PE)
0.60
  

  
 

  Envelope -     Qp = 0.063 (PE)
0.42
  

  Froehlich (1995) 
 

Best fit 0.934 22   Qp = 0.607(V
0.295

 Hw
1.24
) 

* Walder and O'Connor (1997) 
 

Best fit 0.490 9   Qp = 0.19(Hw V)
0.47

 

  Pierce et al. (2010) 
 

Best fit 0.844 87   Qp = 0.0176(V H)
0.606

 

    Best fit 0.850 87   Qp = 0.038(V
0.475

 H
1.09
) 

              

              

Other Thornton et al. (2011) 
 

Best fit 0.909 14   Qp = 0.1202(L)
1.7856

 

  
 

  Best fit 0.871 25   Qp = 0.863(V
0.335

 H
1.833 

Wav

-0.663
) 

  
 

  Best fit 0.991 14   Qp = 0.012(V
0.493

 H
1.205 

L
0.226

) 

 

 

Table 3. Empirical equations used to estimate peak discharge (Qp) for natural dam failures. Examples marked with an asterisk (*) have 

been derived entirely from case studies of moraine-dam failure. 
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 Source of uncertainty in model 
input (*) or output (†) 

Nature of impact or affected output variables Solution or measure(s) of addressing 
     

T
ri

g
g

e
r 

* Source and timing Dimensions and dynamics of overtopping waves (e.g. 
ice- or rock avalanche trigger); may determine whether 
runaway breach development is triggered 

Desk- or field-based glacial hazard assessment of moraine and surrounding 
topography; analysis of multi-temporal datasets required to quantify evolution 
of hazard (e.g. Reynolds Geo-Sciences, 2003; Huggel et al., 2004; Quincey 
et al., 2005). 

    

D
a

m
-b

re
a

c
h

 m
o
d

e
lli

n
g
 

* Moraine dam geometry Dam height, crest width and distal and proximal dam 
face slope influence style and rate of breach 
development 
 

Fine spatial resolution characterisation and quantification of moraine-dam 
geometry (e.g. Westoby et al., 2012). Ideally undertaken in situ 

 

* 
 

Lake bathymetry and stage-
volume relationships 

 

Determines reservoir pressure head and rate of inflow 
to breach 
 

 

Bathymetric surveying (extant lakes); photogrammetric or 'data-ready' 
surveying (e.g. TLS) of drained basins 

 

* 
 

Initial conditions                                                                                   
(e.g. dam freeboard, spillway 
dimensions) 

 

Influences impact of overtopping waves (freeboard); 
accommodation of escaping floodwaters (spillway 
dimensions); may ultimately determine whether 
runaway breach development triggered 

 

In situ observation or analysis of fine resolution aerial or space-borne 
imagery 

 

* 
 

Material characteristics 
 

Rate of breach development 
 

In situ quantification (preferred); literature-guided parameterisation; 
probabilistic sampling of parameter space 

 

* 
 

Presence of buried ice in 
moraine 

 

Rate of breach development; interaction of massive ice 
core with progression of breach development remains 
largely unquantified (e.g. Worni et al., 2012) 

 

Geophysical inspection of intact moraine dam; visual (and geophysical) 
analysis of breached structures. 

    

H
y
d

ro
d
y
n

a
m

ic
 m

o
d

e
lli

n
g
 

† Grid discretisation Decreasing grid resolution results in effective 
'smoothing' of small-scale topographic elements; in the 
first instance determines direction of flow 

Undertake detailed sensitivity analysis to quantify impact on inundation 
extents and wetting-front travel times; attempt to validate results where 
possible (v. challenging) 

 

* 
 

Channel and valley-floor 
roughness coefficient(s) 

 

Influences effectiveness of flow conveyance, influence 
more important at low flows; exerts little control over 
flow dynamics at high flow stage and velocity 
 

 

Literature- and field investigation-guided classification; investigate and 
quantify any functional relationship with topographic grid resolution 

 

† 
 

Complex flow rheology                                                                       
(model physicality) 

 

Will influence flow velocities (and therefore wetting-front 
travel-time) and erosive potential of the flow 
 

 

Use of advanced hydrodynamic solvers capable of simulating sediment 
transport, transient flow rheology and mobile bed evolution 

 

† 
 

Model dimensionality 
 

Simple' codes incapable of simulating lateral transfer of 
flow momentum and mass. Complex flow dynamics 
(flow superelevation, development of flow recirculation 
zones etc) 
 

 

If detailed GLOF hazard assessment required, use of advanced, 2-D solvers 
advocated. Raster-based or 1-D solvers suitable for 'first-pass' hazard 
assessment 

 

† 
 

Model coupling 
 

Model de-coupling results in loss of flow momentum 
and mass transfer. Importance for determining near-
field flow velocities and reworking 
 

 

Use fully-coupled models to simulate breach development and cascading of 
floodwaters (and morainic material) from lake basin to the floodplain. 

Table 4. Sources of uncertainty in the GLOF model chain, the nature of their impact and practiced or proposed measures for their quantification 

or assessment. 




