180 research outputs found

    Influence of pH, temperature and glucose on biodegradation of 4-aminophenol by a novel bacterial strain, Pseudomonas sp. ST-4

    Get PDF
    Aromatic compounds such as 4-aminophenol are toxic to the environment and thus should be eliminated effectively. Biodegradation of aromatic compounds is an efficient and environment friendly technique as addition of selected microbes does not add any kind of pollutants and actively remove even the most recalcitrant pollutants. We investigated the effectiveness of Pseudomonas sp. strain ST- 4 in the biodegradation of 4-aminophenol under variable pH, temperature and glucose regimes and sorted out optimum conditions for maximum biodegradation of 4-aminophenol. Maximum biodegradation of 4-aminophenol by Pseudomonas sp. strain ST- 4 was observed at pH 8, temperature 30°C and glucose concentration of 15 mM at 72 h, respectively

    Exogenous application of plant growth regulators increased the total flavonoid content in Taraxacum officinale Wigg

    Get PDF
    The effects of plant growth regulators (PGRs) were studied on growth, total flavonoid, gibberellins (GA) and salicylic acid (SA) contents of Taraxacum officinale (dandelion), a widely used medicinal plant in Korea. All the four PGRs used; gibberellic acid (GA3), kinetin (Kn), salicylic acid (SA) and ethephon (2- chloroethylphosphonic acid) were applied at the rates of 0.5 and 1.0 mM. GA3 markedly enhanced fresh shoot weight, while 0.5 mM of kinetin application significantly enhanced dry root mass as compared tocontrol. SA enhanced both shoot and root attributes, while ethephon decreased plant growth. Endogenous bioactive GA1 and GA4 content and SA content enhanced with the application of GA3, SA and kinetin, but declined with ethephon. The flavonoid content of dandelion significantly increased with SA treatment, but was not altered with the application of other PGRs. The current study demonstrated the favorable effect of GA3, kinetin and SA on growth, bioactive GAs, SA and flavonoid contents of dandelion. These investigations offered interesting information as PGRs were never tested for plant growth and development of dandelion. It also reports the presence of both early C-13 hydroxylation and non C-13 hydroxylation pathways of GA biosynthesis in dandelion for the first time

    The HIV1 Protein Vpr Acts to Enhance Constitutive DCAF1-Dependent UNG2 Turnover

    Get PDF
    The HIV1 protein Vpr assembles with and acts through an ubiquitin ligase complex that includes DDB1 and cullin 4 (CRL4) to cause G2 cell cycle arrest and to promote degradation of both uracil DNA glycosylase 2 (UNG2) and single-strand selective mono-functional uracil DNA glycosylase 1 (SMUG1). DCAF1, an adaptor protein, is required for Vpr-mediated G2 arrest through the ubiquitin ligase complex. In work described here, we used UNG2 as a model substrate to study how Vpr acts through the ubiquitin ligase complex. We examined whether DCAF1 is essential for Vpr-mediated degradation of UNG2 and SMUG1. We further investigated whether Vpr is required for recruiting substrates to the ubiquitin ligase or acts to enhance its function and whether this parallels Vpr-mediated G2 arrest.We found that DCAF1 plays an important role in Vpr-independent UNG2 and SMUG1 depletion. UNG2 assembled with the ubiquitin ligase complex in the absence of Vpr, but Vpr enhanced this interaction. Further, Vpr-mediated enhancement of UNG2 degradation correlated with low Vpr expression levels. Vpr concentrations exceeding a threshold blocked UNG2 depletion and enhanced its accumulation in the cell nucleus. A similar dose-dependent trend was seen for Vpr-mediated cell cycle arrest.This work identifies UNG2 and SMUG1 as novel targets for CRL4(DCAF1)-mediated degradation. It further shows that Vpr enhances rather than enables the interaction between UNG2 and the ubiquitin ligase. Vpr augments CRL4(DCAF1)-mediated UNG2 degradation at low concentrations but antagonizes it at high concentrations, allowing nuclear accumulation of UNG2. Further, the protein that is targeted to cause G2 arrest behaves much like UNG2. Our findings provide the basis for determining whether the CRL4(DCAF1) complex is alone responsible for cell cycle-dependent UNG2 turnover and will also aid in establishing conditions necessary for the identification of additional targets of Vpr-enhanced degradation

    Proximate and nutrient analysis of selected vegetable species: A case study of Karak region, Pakistan

    Get PDF
    Karak, an arid region, have limited water and land resources to cultivate various crops specially vegetables. However, a few seasonal vegetable are available to the local communities in meager quantities. The ash, carbohydrate, protein, moisture, fat, fiber contents, energy values and nutrient composition of eight vegetables’ Abelmoschus esculentus, Spinacia oleraceae, Praecitrullus fistulosus, Luffa acutangula, Allium sativum, Amaranthus viridus, Chenopodium album and Momordica charantia were determined. Among these, A. sativum, S. oleraceae and C. album have the highest micro and macronutrients

    Assessment of allelopathic potential of selected medicinal plants of Pakistan

    Get PDF
    Inula falconeri, Inula koelzii, Lactuca dissecta and Anthemis nobilis were collected from Himalaya and Hindukush ranges of Pakistan and their allelopathic effect was studied through Sandwich and Homogenated Sandwich methods. The study also aimed at analyzing whether method andconcentration can affect the overall results. The results showed that method has no significant value; however, concentration of leaf leachates has highly significant value for exploring the inhibition or stimulation pattern of the plant species

    Influence of prohexadione-calcium, trinexapac-ethyl and hexaconazole on lodging characteristic and gibberellin biosynthesis of rice (Oryza sativa L.)

    Get PDF
    We investigated the influence of prohexadione-calcium (Pro-Ca), trinexapac-ethyl (TNE) and hexaconazole (HX) on lodging and gibberellin (GA) biosynthesis pathway of rice cultivar, Hwayeongbyeo. It was observed that these novel synthetic growth retardants suppressed lodging of rice under field conditions through blocking GA biosynthesis pathway. These growth retarding chemicals were applied at basic (20 uM) and elevated (40 uM) rates either 10 days before heading (10 DBH) or 5 days before heading (5 DBH). We found that Pro-Ca, TNE and their combined application (Pro-Ca + TNE) were most effective in decreasing rice length and lodging index, when applied at 10 DBH. Similarly, the endogenous bioactive GA1 contents of rice significantly declined with application of Pro-Ca, TNE and Pro-Ca + TNE, while they were less effected by basic and elevated rates of HX as compared to the control. The growth retardants were more effective in decreasing rice lodging and blocking GA biosynthesis when applied in elevated rates. The levels of the endogenous gibberellins in rice shoots were measured by GC/MS-SIM using 2H2-labeled gibberellins as internal standards. Effect of these synthetic chemicals on growth and GA inhibition were stronger initially but eroded rapidly under field conditions. It was thus concluded that Pro-Ca and TNE were most effective in reducing plant length and suppressing lodging of rice crop under field conditions, where lodging is a major constraint to higher productivity.Key words: Growth retardants, plant growth, gibberellin biosynthesis, lodging index, rice
    • …
    corecore