48 research outputs found

    The X-Ray Properties of the Optically Brightest Mini-BAL Quasars from the Sloan Digital Sky Survey

    Get PDF
    We have compiled a sample of 14 of the optically brightest radio-quiet quasars (mim_{i}~\le~17.5 and zz~\ge~1.9) in the Sloan Digital Sky Survey Data Release 5 quasar catalog that have C IV mini-BALs present in their spectra. X-ray data for 12 of the objects were obtained via a Chandra snapshot survey using ACIS-S, while data for the other two quasars were obtained from archival XMM-Newton observations. Joint X-ray spectral analysis shows the mini-BAL quasars have a similar average power-law photon index (Γ1.9\Gamma\approx1.9) and level of intrinsic absorption (NH8×1021 cm2N_H \lesssim 8\times 10^{21} \ {\rm cm}^{-2}) as non-BMB (neither BAL nor mini-BAL) quasars. Mini-BAL quasars are more similar to non-BMB quasars than to BAL quasars in their distribution of relative X-ray brightness (assessed with Δαox\Delta\alpha_{\rm ox}). Relative colors indicate mild dust reddening in the optical spectra of mini-BAL quasars. Significant correlations between Δαox\Delta\alpha_{\rm ox} and UV absorption properties are confirmed for a sample of 56 sources combining mini-BAL and BAL quasars with high signal-to-noise ratio rest-frame UV spectra, which generally supports models in which X-ray absorption is important in enabling driving of the UV absorption-line wind. We also propose alternative parametrizations of the UV absorption properties of mini-BAL and BAL quasars, which may better describe the broad absorption troughs in some respects.Comment: ApJ accepted; 21 pages, 11 figures, and 9 table

    Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature

    Get PDF
    The worldwide prevalence of chronic hepatitis C virus (HCV) infection is estimated to be approaching 200 million people We designed a mechanistically unbiased approach based on chemical genetics to identify chemical starting points for interfering with HCV replication. Our differentiating strategy centred on the identification of compounds functionally distinct from those acting on the traditional targets of antiviral research in this field, the NS3 protease and the NS5B RNA-dependent RNA polymerase 10 . BMS-858 formed the basis of an extensive series of chemical refinements that focused on improving antiviral potency, broadening inhibitory activity to encompass the HCV 1a genotype, and optimizing for oral bioavailability and sustained pharmacokinetic properties. After defining symmetry as an important contributor to antiviral activity 10 , a discovery that preceded the disclosure of structural information (see below), we subsequently identified BMS-79005

    Role of the Functional Toll-Like Receptor-9 Promoter Polymorphism (-1237T/C) in Increased Risk of End-Stage Renal Disease:A Case-Control Study

    Get PDF
    Inflammation induced by infectious and noninfectious triggers in the kidney may lead to end stage renal disease (ESRD). Toll-like receptor 9 (TLR-9) a receptor for CpG DNA is involved in activation of immune cells in renal disease and may contribute to chronic inflammatory disease progression through an interleukin-6 (IL-6) dependent pathway. Previous studies indicate that -1237T/C confers regulatory effects on TLR-9 transcription. To date the effect of TLR-9 polymorphisms on ESRD remains unknown. We performed a case-control study and genotyped 630 ESRD patients and 415 controls for -1237T/C, -1486T/C and 1635G/A by real-time PCR assays and assessed plasma concentration of IL-6 by ELISA. Haplotype association analysis was performed using the Haploview package. A luciferase reporter assay and real-time PCR were used to test the function of the -1237T/C promoter polymorphism. A significant association between -1237T/C in TLR-9 and ESRD was identified. The TCA, TTA and CCA haplotype of TLR-9 were associated with ESRD. ESRD patients carrying -1237TC had a higher mean plasma IL-6 level when compared with -1237TT. The TLR-9 transcriptional activity of the variant -1237CC allele is higher than the -1237TT allele. The results indicate that in a Han Chinese population the presence of the C allele of -1237T/C in the TLR-9 gene increases susceptibility towards development of ESRD. In vitro studies demonstrate that -1237T/C may be involved in the development of ESRD through transcriptional modulation of TLR-9

    The Sloan Digital Sky Survey quasar catalog: tenth data release

    Get PDF
    We present the Data Release 10 Quasar (DR10Q) catalog from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III. The catalog includes all BOSS objects that were targeted as quasar candidates during the first 2.5 years of the survey and that are confirmed as quasars via visual inspection of the spectra, have luminosities M-i[z = 2] 2.15 (117 668) is similar to 5 times greater than the number of z > 2.15 quasars known prior to BOSS. Redshifts and FWHMs are provided for the strongest emission lines (C IV, C III, Mg II). The catalog identifies 16 461 broad absorption line quasars and gives their characteristics. For each object, the catalog presents five-band (u, g, r, i, z) CCD-based photometry with typical accuracy of 0.03 mag and information on the optical morphology and selection method. The catalog also contains X-ray, ultraviolet, near-infrared, and radio emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra cover the wavelength region 3600-10 500 angstrom at a spectral resolution in the range 1300 < R < 2500; the spectra can be retrieved from the SDSS Catalog Archive Server. We also provide a supplemental list of an additional 2376 quasars that have been identified among the galaxy targets of the SDSS-III/BOSS

    The Lick AGN Monitoring Project 2016 : dynamical modeling of velocity-resolved Hβ lags in luminous Seyfert galaxies

    Get PDF
    K.H. acknowledges support from STFC grant ST/R000824/1.We have modeled the velocity-resolved reverberation response of the Hβ broad emission line in nine Seyfert 1 galaxies from the Lick Active Galactic Nucleus (AGN) Monitoring Project 2016 sample, drawing inferences on the geometry and structure of the low-ionization broad-line region (BLR) and the mass of the central supermassive black hole. Overall, we find that the Hβ BLR is generally a thick disk viewed at low to moderate inclination angles. We combine our sample with prior studies and investigate line-profile shape dependence, such as log10(FWHM/σ), on BLR structure and kinematics and search for any BLR luminosity-dependent trends. We find marginal evidence for an anticorrelation between the profile shape of the broad Hβ emission line and the Eddington ratio, when using the rms spectrum. However, we do not find any luminosity-dependent trends, and conclude that AGNs have diverse BLR structure and kinematics, consistent with the hypothesis of transient AGN/BLR conditions rather than systematic trends.Publisher PDFPeer reviewe

    The Lick AGN Monitoring Project 2016: Dynamical Modeling of Velocity-Resolved H\b{eta} Lags in Luminous Seyfert Galaxies

    Full text link
    We have modeled the velocity-resolved reverberation response of the H\b{eta} broad emission line in nine Seyfert 1 galaxies from the Lick Active Galactic Nucleus (AGN) Monitioring Project 2016 sample, drawing inferences on the geometry and structure of the low-ionization broad-line region (BLR) and the mass of the central supermassive black hole. Overall, we find that the H\b{eta} BLR is generally a thick disk viewed at low to moderate inclination angles. We combine our sample with prior studies and investigate line-profile shape dependence, such as log10(FWHM/{\sigma}), on BLR structure and kinematics and search for any BLR luminosity-dependent trends. We find marginal evidence for an anticorrelation between the profile shape of the broad H\b{eta} emission line and the Eddington ratio, when using the root-mean-square spectrum. However, we do not find any luminosity-dependent trends, and conclude that AGNs have diverse BLR structure and kinematics, consistent with the hypothesis of transient AGN/BLR conditions rather than systematic trends

    The Lick AGN Monitoring Project 2016 : velocity-resolved Hβ lags in luminous Seyfert galaxies

    Get PDF
    Funding: K.H. acknowledges support from STFC grant ST/R000824/1.We carried out spectroscopic monitoring of 21 low-redshift Seyfert 1 galaxies using the Kast double spectrograph on the 3 m Shane telescope at Lick Observatory from April 2016 to May 2017. Targetingactive galactic nuclei (AGN) with luminosities of λLλ(5100 Å) ≈ 1044 erg s−1 and predicted Hβ lags of∼ 20–30 days or black hole masses of 107–108.5 M⊙, our campaign probes luminosity-dependent trends in broad-line region (BLR) structure and dynamics as well as to improve calibrations for single-epoch estimates of quasar black hole masses. Here we present the first results from the campaign, including Hβ emission-line light curves, integrated Hβ lag times (8–30 days) measured against V -band continuum light curves, velocity-resolved reverberation lags, line widths of the broad Hβ components, and virial black hole mass estimates (107.1–108.1 M⊙). Our results add significantly to the number of existing velocity-resolved lag measurements and reveal a diversity of BLR gas kinematics at moderately high AGN luminosities. AGN continuum luminosity appears not to be correlated with the type of kinematics that its BLR gas may exhibit. Follow-up direct modeling of this dataset will elucidate the detailed kinematics and provide robust dynamical black hole masses for several objects in this sample.Publisher PDFPeer reviewe

    ABINIT: Overview and focus on selected capabilities

    Get PDF
    Paper published as part of the special topic on Electronic Structure SoftwareABINIT is probably the first electronic-structure package to have been released under an open-source license about 20 years ago. It implements density functional theory, density-functional perturbation theory (DFPT), many-body perturbation theory (GW approximation and Bethe–Salpeter equation), and more specific or advanced formalisms, such as dynamical mean-field theory (DMFT) and the “temperaturedependent effective potential” approach for anharmonic effects. Relying on planewaves for the representation of wavefunctions, density, and other space-dependent quantities, with pseudopotentials or projector-augmented waves (PAWs), it is well suited for the study of periodic materials, although nanostructures and molecules can be treated with the supercell technique. The present article starts with a brief description of the project, a summary of the theories upon which ABINIT relies, and a list of the associated capabilities. It then focuses on selected capabilities that might not be present in the majority of electronic structure packages either among planewave codes or, in general, treatment of strongly correlated materials using DMFT; materials under finite electric fields; properties at nuclei (electric field gradient, Mössbauer shifts, and orbital magnetization); positron annihilation; Raman intensities and electro-optic effect; and DFPT calculations of response to strain perturbation (elastic constants and piezoelectricity), spatial dispersion (flexoelectricity), electronic mobility, temperature dependence of the gap, and spin-magnetic-field perturbation. The ABINIT DFPT implementation is very general, including systems with van der Waals interaction or with noncollinear magnetism. Community projects are also described: generation of pseudopotential and PAW datasets, high-throughput calculations (databases of phonon band structure, second-harmonic generation, and GW computations of bandgaps), and the library LIBPAW. ABINIT has strong links with many other software projects that are briefly mentioned.This work (A.H.R.) was supported by the DMREF-NSF Grant No. 1434897, National Science Foundation OAC-1740111, and U.S. Department of Energy DE-SC0016176 and DE-SC0019491 projects. N.A.P. and M.J.V. gratefully acknowledge funding from the Belgian Fonds National de la Recherche Scientifique (FNRS) under Grant No. PDR T.1077.15-1/7. M.J.V. also acknowledges a sabbatical “OUT” grant at ICN2 Barcelona as well as ULiège and the Communauté Française de Belgique (Grant No. ARC AIMED G.A. 15/19-09). X.G. and M.J.V. acknowledge funding from the FNRS under Grant No. T.0103.19-ALPS. X.G. and G.-M. R. acknowledge support from the Communauté française de Belgique through the SURFASCOPE Project (No. ARC 19/24-057). X.G. acknowledges the hospitality of the CEA DAM-DIF during the year 2017. G.H. acknowledges support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Contract No. DE-AC02-05-CH11231 (Materials Project Program No. KC23MP). The Belgian authors acknowledge computational resources from supercomputing facilities of the University of Liège, the Consortium des Equipements de Calcul Intensif (Grant No. FRS-FNRS G.A. 2.5020.11), and Zenobe/CENAERO funded by the Walloon Region under Grant No. G.A. 1117545. M.C. and O.G. acknowledge support from the Fonds de Recherche du Québec Nature et Technologie (FRQ-NT), Canada, and the Natural Sciences and Engineering Research Council of Canada (NSERC) under Grant No. RGPIN-2016-06666. The implementation of the libpaw library (M.T., T.R., and D.C.) was supported by the ANR NEWCASTLE project (Grant No. ANR-2010-COSI-005-01) of the French National Research Agency. M.R. and M.S. acknowledge funding from Ministerio de Economia, Industria y Competitividad (MINECO-Spain) (Grants Nos. MAT2016-77100-C2-2-P and SEV-2015-0496) and Generalitat de Catalunya (Grant No. 2017 SGR1506). This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation program (Grant Agreement No. 724529). P.G. acknowledges support from FNRS Belgium through PDR (Grant No. HiT4FiT), ULiège and the Communauté française de Belgique through the ARC project AIMED, the EU and FNRS through M.ERA.NET project SIOX, and the European Funds for Regional Developments (FEDER) and the Walloon Region in the framework of the operational program “Wallonie-2020.EU” through the project Multifunctional thin films/LoCoTED. The Flatiron Institute is a division of the Simons Foundation. A large part of the data presented in this paper is available directly from the Abinit Web page www.abinit.org. Any other data not appearing in this web page can be provided by the corresponding author upon reasonable request.Peer reviewe

    Swarm robotics: a review from the swarm engineering perspective

    Full text link

    THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors.

    Get PDF
    The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate
    corecore