431 research outputs found
1.3 Gradual Learning Algorithm 5
Phonetic or phonological variation? Learning surface forms for nasalize
The GPS flight recorder for homing pigeons works : design and first results
This paper describes a first version of the GPS flight recorder for homing pigeons. The GPS recorder consists of a hybrid GPS board, a patch antenna 19*19 mm, a 3 V Lithium battery as power supply, a DCDC converter, a logging facility and an additional microprocessor. It has a weight of 33g. Prototypes were tested and worked reliably with a sampling rate of 1/sec and with an operation time of about 3 h. In first tests on homing pigeons 9 flight paths were recorded, showing details like loops flown immediately after the release, complete routes over 30 km including detours, rest periods and speed
Single-atom imaging of fermions in a quantum-gas microscope
Single-atom-resolved detection in optical lattices using quantum-gas
microscopes has enabled a new generation of experiments in the field of quantum
simulation. Fluorescence imaging of individual atoms has so far been achieved
for bosonic species with optical molasses cooling, whereas detection of
fermionic alkaline atoms in optical lattices by this method has proven more
challenging. Here we demonstrate single-site- and single-atom-resolved
fluorescence imaging of fermionic potassium-40 atoms in a quantum-gas
microscope setup using electromagnetically-induced-transparency cooling. We
detected on average 1000 fluorescence photons from a single atom within 1.5s,
while keeping it close to the vibrational ground state of the optical lattice.
Our results will enable the study of strongly correlated fermionic quantum
systems in optical lattices with resolution at the single-atom level, and give
access to observables such as the local entropy distribution and individual
defects in fermionic Mott insulators or anti-ferromagnetically ordered phases.Comment: 7 pages, 5 figures; Nature Physics, published online 13 July 201
Magnetic effects at the interface between nonmagnetic oxides
The electronic reconstruction at the interface between two insulating oxides
can give rise to a highly-conductive interface. In analogy to this remarkable
interface-induced conductivity we show how, additionally, magnetism can be
induced at the interface between the otherwise nonmagnetic insulating
perovskites SrTiO3 and LaAlO3. A large negative magnetoresistance of the
interface is found, together with a logarithmic temperature dependence of the
sheet resistance. At low temperatures, the sheet resistance reveals magnetic
hysteresis. Magnetic ordering is a key issue in solid-state science and its
underlying mechanisms are still the subject of intense research. In particular,
the interplay between localized magnetic moments and the spin of itinerant
conduction electrons in a solid gives rise to intriguing many-body effects such
as Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions, the Kondo effect, and
carrier-induced ferromagnetism in diluted magnetic semiconductors. The
conducting oxide interface now provides a versatile system to induce and
manipulate magnetic moments in otherwise nonmagnetic materials.Comment: Nature Materials, July issu
A role for core planar polarity proteins in cell contact-mediated orientation of planar cell division across the mammalian embryonic skin
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. © The Author(s) 2017. Supplementary information accompanies this paper at doi:10.1038/s41598-017-01971-2.The question of how cell division orientation is determined is fundamentally important for understanding tissue and organ shape in both healthy or disease conditions. Here we provide evidence for cell contact-dependent orientation of planar cell division in the mammalian embryonic skin. We propose a model where the core planar polarity proteins Celsr1 and Frizzled-6 (Fz6) communicate the long axis orientation of interphase basal cells to neighbouring basal mitoses so that they align their horizontal division plane along the same axis. The underlying mechanism requires a direct, cell surface, planar polarised cue, which we posit depends upon variant post-translational forms of Celsr1 protein coupled to Fz6. Our hypothesis has parallels with contact-mediated division orientation in early C. elegans embryos suggesting functional conservation between the adhesion-GPCRs Celsr1 and Latrophilin-1. We propose that linking planar cell division plane with interphase neighbour long axis geometry reinforces axial bias in skin spreading around the mouse embryo body.Peer reviewe
Eosinophils Are Important for Protection, Immunoregulation and Pathology during Infection with Nematode Microfilariae
Eosinophil responses typify both allergic and parasitic helminth disease. In helminthic disease, the role of eosinophils can be both protective in immune responses and destructive in pathological responses. To investigate whether eosinophils are involved in both protection and pathology during filarial nematode infection, we explored the role of eosinophils and their granule proteins, eosinophil peroxidase (EPO) and major basic protein-1 (MBP-1), during infection with Brugia malayi microfilariae. Using eosinophil-deficient mice (PHIL), we further clarify the role of eosinophils in clearance of microfilariae during primary, but not challenge infection in vivo. Deletion of EPO or MBP-1 alone was insufficient to abrogate parasite clearance suggesting that either these molecules are redundant or eosinophils act indirectly in parasite clearance via augmentation of other protective responses. Absence of eosinophils increased mast cell recruitment, but not other cell types, into the broncho-alveolar lavage fluid during challenge infection. In addition absence of eosinophils or EPO alone, augmented parasite-induced IgE responses, as measured by ELISA, demonstrating that eosinophils are involved in regulation of IgE. Whole body plethysmography indicated that nematode-induced changes in airway physiology were reduced in challenge infection in the absence of eosinophils and also during primary infection in the absence of EPO alone. However lack of eosinophils or MBP-1 actually increased goblet cell mucus production. We did not find any major differences in cytokine responses in the absence of eosinophils, EPO or MBP-1. These results reveal that eosinophils actively participate in regulation of IgE and goblet cell mucus production via granule secretion during nematode-induced pathology and highlight their importance both as effector cells, as damage-inducing cells and as supervisory cells that shape both innate and adaptive immunity
Re-imagining the future:repetition decreases hippocampal involvement in future simulation
Imagining or simulating future events has been shown to activate the anterior right hippocampus (RHC) more than remembering past events does. One fundamental difference between simulation and memory is that imagining future scenarios requires a more extensive constructive process than remembering past experiences does. Indeed, studies in which this constructive element is reduced or eliminated by “pre-imagining” events in a prior session do not report differential RHC activity during simulation. In this fMRI study, we examined the effects of repeatedly simulating an event on neural activity. During scanning, participants imagined 60 future events; each event was simulated three times. Activation in the RHC showed a significant linear decrease across repetitions, as did other neural regions typically associated with simulation. Importantly, such decreases in activation could not be explained by non-specific linear time-dependent effects, with no reductions in activity evident for the control task across similar time intervals. Moreover, the anterior RHC exhibited significant functional connectivity with the whole-brain network during the first, but not second and third simulations of future events. There was also evidence of a linear increase in activity across repetitions in right ventral precuneus, right posterior cingulate and left anterior prefrontal cortex, which may reflect source recognition and retrieval of internally generated contextual details. Overall, our findings demonstrate that repeatedly imagining future events has a decremental effect on activation of the hippocampus and many other regions engaged by the initial construction of the simulation, possibly reflecting the decreasing novelty of simulations across repetitions, and therefore is an important consideration in the design of future studies examining simulation
Short hairpin RNA-mediated knockdown of protein expression in Entamoeba histolytica
<p>Abstract</p> <p>Background</p> <p><it>Entamoeba histolytica </it>is an intestinal protozoan parasite of humans. The genome has been sequenced, but the study of individual gene products has been hampered by the lack of the ability to generate gene knockouts. We chose to test the use of RNA interference to knock down gene expression in <it>Entamoeba histolytica</it>.</p> <p>Results</p> <p>An episomal vector-based system, using the <it>E. histolytica </it>U6 promoter to drive expression of 29-basepair short hairpin RNAs, was developed to target protein-encoding genes in <it>E. histolytica</it>. The short hairpin RNAs successfully knocked down protein levels of all three unrelated genes tested with this system: Igl, the intermediate subunit of the galactose- and N-acetyl-D-galactosamine-inhibitable lectin; the transcription factor URE3-BP; and the membrane binding protein EhC2A. Igl levels were reduced by 72%, URE3-BP by 89%, and EhC2A by 97%.</p> <p>Conclusion</p> <p>Use of the U6 promoter to drive expression of 29-basepair short hairpin RNAs is effective at knocking down protein expression for unrelated genes in <it>Entamoeba histolytica</it>, providing a useful tool for the study of this parasite.</p
Measurement of the running of the QED coupling in small-angle Bhabha scattering at LEP
Using the OPAL detector at LEP, the running of the effective QED coupling
alpha(t) is measured for space-like momentum transfer from the angular
distribution of small-angle Bhabha scattering. In an almost ideal QED
framework, with very favourable experimental conditions, we obtain:
Delta alpha(-6.07GeV^2) - Delta alpha(-1.81GeV^2) = (440 pm 58 pm 43 pm 30) X
10^-5, where the first error is statistical, the second is the experimental
systematic and the third is the theoretical uncertainty. This agrees with
current evaluations of alpha(t).The null hypothesis that alpha remains constant
within the above interval of -t is excluded with a significance above 5sigma.
Similarly, our results are inconsistent at the level of 3sigma with the
hypothesis that only leptonic loops contribute to the running. This is
currently the most significant direct measurment where the running alpha(t) is
probed differentially within the measured t range.Comment: 43 pages, 12 figures, Submitted to Euro. Phys. J.
Modified f(R) gravity from scalar-tensor theory and inhomogeneous EoS dark energy
The reconstruction of f(R)-gravity is showed by using an auxiliary scalar
field in the context of cosmological evolution, this development provide a way
of reconstruct the form of the function f (R) for a given evolution of the
Hubble parameter. In analogy, f(R)-gravity may be expressed by a perfect fluid
with an inhomogeneous equation of state that depends on the Hubble parameter
and its derivatives. This mathematical equivalence that may confuse about the
origin of the mechanism that produces the current acceleration, and possibly
the whole evolution of the Hubble parameter, is shown here.Comment: 8 page
- …