76 research outputs found

    A Comparison of Inverse-Wishart Prior Specifications for Covariance Matrices in Multilevel Autoregressive Models

    Get PDF
    Multilevel autoregressive models are especially suited for modeling between-person differences in within-person processes. Fitting these models with Bayesian techniques requires the specification of prior distributions for all parameters. Often it is desirable to specify prior distributions that have negligible effects on the resulting parameter estimates. However, the conjugate prior distribution for covariance matrices—the Inverse-Wishart distribution—tends to be informative when variances are close to zero. This is problematic for multilevel autoregressive models, because autoregressive parameters are usually small for each individual, so that the variance of these parameters will be small. We performed a simulation study to compare the performance of three Inverse-Wishart prior specifications suggested in the literature, when one or more variances for the random effects in the multilevel autoregressive model are small. Our results show that the prior specification that uses plug-in ML estimates of the variances performs best. We advise to always include a sensitivity analysis for the prior specification for covariance matrices of random parameters, especially in autoregressive models, and to include a data-based prior specification in this analysis. We illustrate such an analysis by means of an empirical application on repeated measures data on worrying and positive affect

    Modeling Affect Dynamics:State of the Art and Future Challenges

    Get PDF
    The current article aims to provide an up-to-date synopsis of available techniques to study affect dynamics using intensive longitudinal data (ILD). We do so by introducing the following eight dichotomies that help elucidate what kind of data one has, what process aspects are of interest, and what research questions are being considered: (1) single- versus multiple-person data; (2) univariate versus multivariate models; (3) stationary versus nonstationary models; (4) linear versus nonlinear models; (5) discrete time versus continuous time models; (6) discrete versus continuous variables; (7) time versus frequency domain; and (8) modeling the process versus computing descriptives. In addition, we discuss what we believe to be the most urging future challenges regarding the modeling of affect dynamics

    Time to Intervene: A Continuous-Time Approach to Network Analysis and Centrality

    Get PDF
    Network analysis of ESM data has become popular in clinical psychology. In this approach, discrete-time (DT) vector autoregressive (VAR) models define the network structure with centrality measures used to identify intervention targets. However, VAR models suffer from time-interval dependency. Continuous Time (CT) models have been suggested as an alternative but require a conceptual shift, implying that DT-VAR parameters reflect total rather than direct effects. In this paper we propose and illustrate a CT network approach using CT-VAR models. We define a new network representation and develop centrality measures which inform intervention targeting. This methodology is illustrated with an ESM dataset

    Benchmark Parameters for CMB Polarization Experiments

    Full text link
    The recently detected polarization of the cosmic microwave background (CMB) holds the potential for revealing the physics of inflation and gravitationally mapping the large-scale structure of the universe, if so called B-mode signals below 10^{-7}, or tenths of a uK, can be reliably detected. We provide a language for describing systematic effects which distort the observed CMB temperature and polarization fields and so contaminate the B-modes. We identify 7 types of effects, described by 11 distortion fields, and show their association with known instrumental systematics such as common mode and differential gain fluctuations, line cross-coupling, pointing errors, and differential polarized beam effects. Because of aliasing from the small-scale structure in the CMB, even uncorrelated fluctuations in these effects can affect the large-scale B modes relevant to gravitational waves. Many of these problems are greatly reduced by having an instrumental beam that resolves the primary anisotropies (FWHM << 10'). To reach the ultimate goal of an inflationary energy scale of 3 \times 10^{15} GeV, polarization distortion fluctuations must be controlled at the 10^{-2}-10^{-3} level and temperature leakage to the 10^{-4}-10^{-3} level depending on effect. For example pointing errors must be controlled to 1.5'' rms for arcminute scale beams or a percent of the Gaussian beam width for larger beams; low spatial frequency differential gain fluctuations or line cross-coupling must be eliminated at the level of 10^{-4} rms.Comment: 11 pages, 5 figures, submitted to PR

    From Data to Causes I: Building A General Cross-Lagged Panel Model (GCLM)

    Get PDF
    This is the first paper in a series of two that synthesizes, compares, and extends methods for causal inference with longitudinal panel data in a structural equation modeling (SEM) framework. Starting with a cross-lagged approach, this paper builds a general cross-lagged panel model (GCLM) with parameters to account for stable factors while increasing the range of dynamic processes that can be modeled. We illustrate the GCLM by examining the relationship between national income and subjective well-being (SWB), showing how to examine hypotheses about short-run (via Granger-Sims tests) versus long-run effects (via impulse responses). When controlling for stable factors, we find no short-run or long-run effects among these variables, showing national SWB to be relatively stable, whereas income is less so. Our second paper addresses the differences between the GCLM and other methods. Online Supplementary Materials offer an Excel file automating GCLM input for Mplus (with an example also for Lavaan in R) and analyses using additional data sets and all program input/output. We also offer an introductory GCLM presentation at https://youtu.be/tHnnaRNPbXs. We conclude with a discussion of issues surrounding causal inference
    • …
    corecore