286 research outputs found

    Elucidation of the role of the complex in hydride transfer reaction between methylene blue and 1-benzyl-1,4-dihydronictinamide by effect of γ-cyclodextrin

    Get PDF
    The kinetics of the hydride transfer reaction between Methylene Blue (MB+) and&#12288;1-benzyl-1,4-dihydronicotinamide (BNAH) were studied in 10 % ethanol-90 % water mixed solvents containing &#946;- and &#947;-cyclodextrins (&#946;-CD and &#947;-CD). The pseudo-first order rate constant shows kinetic saturation at high initial concentration of BNAH. This indicates the formation of a complex between MB+ and BNAH. The reaction was suppressed by addition of &#946;-CD, but enhanced by addition of &#947;-CD. MB+ and BNAH were separately accommodated within the &#946;-CD cavity and the cavity walls may protect the activity site of the reactants. On the other hand, in the MB+-BNAH-&#947;-CD system, the inclusion of the complex between MB+ and BNAH with &#947;-CD occurred. This effect of &#947;-CD can distinguish between the productive and non-productive nature of the complex.</p

    The insulin-like growth factor I receptor regulates glucose transport by astrocytes

    Get PDF
    Previous findings indicate that reducing brain insulin-like growth factor I receptor (IGF-IR) activity promotes ample neuroprotection. We now examined a possible action of IGF-IR on brain glucose transport to explain its wide protective activity, as energy availability is crucial for healthy tissue function. Using 18FGlucose PET we found that shRNA interference of IGF-IR in mouse somatosensory cortex significantly increased glucose uptake upon sensory stimulation. In vivo microscopy using astrocyte specific staining showed that after IGF-IR shRNA injection in somatosensory cortex, astrocytes displayed greater increases in glucose uptake as compared to astrocytes in the scramble-injected side. Further, mice with the IGF-IR knock down in astrocytes showed increased glucose uptake in somatosensory cortex upon sensory stimulation. Analysis of underlying mechanisms indicated that IGF-IR interacts with glucose transporter 1 (GLUT1), the main facilitative glucose transporter in astrocytes, through a mechanism involving interactions with the scaffolding protein GIPC and the multicargo transporter LRP1 to retain GLUT1 inside the cell. These findings identify IGF-IR as a key modulator of brain glucose metabolism through its inhibitory action on astrocytic GLUT1 activity. GLIA 201

    Proinflammatory Phenotype and Increased Caveolin-1 in Alveolar Macrophages with Silenced CFTR mRNA

    Get PDF
    The inflammatory milieu in the respiratory tract in cystic fibrosis (CF) has been linked to the defective expression of the cystic transmembrane regulator (CFTR) in epithelial cells. Alveolar macrophages (AM), important contibutors to inflammatory responses in the lung, also express CFTR. The present study analyzes the phenotype of human AM with silenced CFTR. Expression of CFTR mRNA and the immature form of the CFTR protein decreased 100-fold and 5.2-fold, respectively, in AM transfected with a CFTR specific siRNA (CFTR-siRNA) compared to controls. Reduction of CFTR expression in AM resulted in increased secretion of IL-8, increased phosphorylation of NF-κB, a positive regulator of IL-8 expression, and decreased expression of IκB-α, the inhibitory protein of NF-κB activation. AM with silenced CFTR expression also showed increased apoptosis. We hypothesized that caveolin-1 (Cav1), a membrane protein that is co-localized with CFTR in lipid rafts and that is related to inflammation and apoptosis in macrophages, may be affected by decreased CFTR expression. Messenger RNA and protein levels of Cav1 were increased in AM with silenced CFTR. Expression and transcriptional activity of sterol regulatory element binding protein (SREBP), a negative transcriptional regulator of Cav1, was decreased in AM with silenced CFTR, but total and free cholesterol mass did not change. These findings indicate that silencing of CFTR in human AM results in an inflammatory phenotype and apoptosis, which is associated to SREBP-mediated regulation of Cav1

    M19 Modulates Skeletal Muscle Differentiation and Insulin Secretion in Pancreatic β-Cells through Modulation of Respiratory Chain Activity

    Get PDF
    Mitochondrial dysfunction due to nuclear or mitochondrial DNA alterations contributes to multiple diseases such as metabolic myopathies, neurodegenerative disorders, diabetes and cancer. Nevertheless, to date, only half of the estimated 1,500 mitochondrial proteins has been identified, and the function of most of these proteins remains to be determined. Here, we characterize the function of M19, a novel mitochondrial nucleoid protein, in muscle and pancreatic β-cells. We have identified a 13-long amino acid sequence located at the N-terminus of M19 that targets the protein to mitochondria. Furthermore, using RNA interference and over-expression strategies, we demonstrate that M19 modulates mitochondrial oxygen consumption and ATP production, and could therefore regulate the respiratory chain activity. In an effort to determine whether M19 could play a role in the regulation of various cell activities, we show that this nucleoid protein, probably through its modulation of mitochondrial ATP production, acts on late muscle differentiation in myogenic C2C12 cells, and plays a permissive role on insulin secretion under basal glucose conditions in INS-1 pancreatic β-cells. Our results are therefore establishing a functional link between a mitochondrial nucleoid protein and the modulation of respiratory chain activities leading to the regulation of major cellular processes such as myogenesis and insulin secretion

    Analyses of the yeast Rad51 recombinase A265V mutant reveal different in vivo roles of Swi2-like factors

    Get PDF
    The Saccharomyces cerevisiae Swi2-like factors Rad54 and Rdh54 play multifaceted roles in homologous recombination via their DNA translocase activity. Aside from promoting Rad51-mediated DNA strand invasion of a partner chromatid, Rad54 and Rdh54 can remove Rad51 from duplex DNA for intracellular recycling. Although the in vitro properties of the two proteins are similar, differences between the phenotypes of the null allele mutants suggest that they play different roles in vivo. Through the isolation of a novel RAD51 allele encoding a protein with reduced affinity for DNA, we provide evidence that Rad54 and Rdh54 have different in vivo interactions with Rad51. The mutant Rad51 forms a complex on duplex DNA that is more susceptible to dissociation by Rdh54. This Rad51 variant distinguishes the in vivo functions of Rad54 and Rdh54, leading to the conclusion that two translocases remove Rad51 from different substrates in vivo. Additionally, we show that a third Swi2-like factor, Uls1, contributes toward Rad51 clearance from chromatin in the absence of Rad54 and Rdh54, and define a hierarchy of action of the Swi2-like translocases for chromosome damage repair

    Insulin Promotes Glycogen Storage and Cell Proliferation in Primary Human Astrocytes

    Get PDF
    In the human brain, there are at least as many astrocytes as neurons. Astrocytes are known to modulate neuronal function in several ways. Thus, they may also contribute to cerebral insulin actions. Therefore, we examined whether primary human astrocytes are insulin-responsive and whether their metabolic functions are affected by the hormone.Commercially available Normal Human Astrocytes were grown in the recommended medium. Major players in the insulin signaling pathway were detected by real-time RT-PCR and Western blotting. Phosphorylation events were detected by phospho-specific antibodies. Glucose uptake and glycogen synthesis were assessed using radio-labeled glucose. Glycogen content was assessed by histochemistry. Lactate levels were measured enzymatically. Cell proliferation was assessed by WST-1 assay.We detected expression of key proteins for insulin signaling, such as insulin receptor β-subunit, insulin receptor substrat-1, Akt/protein kinase B and glycogen synthase kinase 3, in human astrocytes. Akt was phosphorylated and PI-3 kinase activity increased following insulin stimulation in a dose-dependent manner. Neither increased glucose uptake nor lactate secretion after insulin stimulation could be evidenced in this cell type. However, we found increased insulin-dependent glucose incorporation into glycogen. Furthermore, cell numbers increased dose-dependently upon insulin treatment.This study demonstrated that human astrocytes are insulin-responsive at the molecular level. We identified glycogen synthesis and cell proliferation as biological responses of insulin signaling in these brain cells. Hence, this cell type may contribute to the effects of insulin in the human brain

    Common genetic variability in ESR1 and EGF in relation to endometrial cancer risk and survival

    Get PDF
    We investigated common genetic variation in the entire ESR1 and EGF genes in relation to endometrial cancer risk, myometrial invasion and endometrial cancer survival. We genotyped a dense set of single-nucleotide polymorphisms (SNPs) in both genes and selected haplotype tagging SNPs (tagSNPs). The tagSNPs were genotyped in 713 Swedish endometrial cancer cases and 1567 population controls and the results incorporated into logistic regression and Cox proportional hazards models. We found five adjacent tagSNPs covering a region of 15 kb at the 5′ end of ESR1 that decreased the endometrial cancer risk. The ESR1 variants did not, however, seem to affect myometrial invasion or endometrial cancer survival. For the EGF gene, no association emerged between common genetic variants and endometrial cancer risk or myometrial invasion, but we found a five-tagSNP region that covered 51 kb at the 5′ end of the gene where all five tagSNPs seemed to decrease the risk of dying from endometrial cancer. One of the five tagSNPs in this region was in strong linkage disequilibrium (LD) with the untranslated A61G (rs4444903) EGF variant, earlier shown to be associated with risk for other forms of cancer

    Involvement of PPAR-γ in the neuroprotective and anti-inflammatory effects of angiotensin type 1 receptor inhibition: effects of the receptor antagonist telmisartan and receptor deletion in a mouse MPTP model of Parkinson's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several recent studies have shown that angiotensin type 1 receptor (AT1) antagonists such as candesartan inhibit the microglial inflammatory response and dopaminergic cell loss in animal models of Parkinson's disease. However, the mechanisms involved in the neuroprotective and anti-inflammatory effects of AT1 blockers in the brain have not been clarified. A number of studies have reported that AT1 blockers activate peroxisome proliferator-activated receptor gamma (PPAR γ). PPAR-γ activation inhibits inflammation, and may be responsible for neuroprotective effects, independently of AT1 blocking actions.</p> <p>Methods</p> <p>We have investigated whether oral treatment with telmisartan (the most potent PPAR-γ activator among AT1 blockers) provides neuroprotection against dopaminergic cell death and neuroinflammation, and the possible role of PPAR-γ activation in any such neuroprotection. We used a mouse model of parkinsonism induced by the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and co-administration of the PPAR-γ antagonist GW9662 to study the role of PPAR-γ activation. In addition, we used AT1a-null mice lesioned with MPTP to study whether deletion of AT1 in the absence of any pharmacological effect of AT1 blockers provides neuroprotection, and investigated whether PPAR-γ activation may also be involved in any such effect of AT1 deletion by co-administration of the PPAR-γ antagonist GW9662.</p> <p>Results</p> <p>We observed that telmisartan protects mouse dopaminergic neurons and inhibits the microglial response induced by administration of MPTP. The protective effects of telmisartan on dopaminergic cell death and microglial activation were inhibited by co-administration of GW9662. Dopaminergic cell death and microglial activation were significantly lower in AT1a-null mice treated with MPTP than in mice not subjected to AT1a deletion. Interestingly, the protective effects of AT1 deletion were also inhibited by co-administration of GW9662.</p> <p>Conclusion</p> <p>The results suggest that telmisartan provides effective neuroprotection against dopaminergic cell death and that the neuroprotective effect is mediated by PPAR-γ activation. However, the results in AT1-deficient mice show that blockage of AT1, unrelated to the pharmacological properties of AT1 blockers, also protects against dopaminergic cell death and neuroinflammation. Furthermore, the results show that PPAR-γ activation is involved in the anti-inflammatory and neuroprotective effects of AT1 deletion.</p
    corecore