11 research outputs found

    Step-by-step investigation of degradation mechanisms induced by CMAS attack on YSZ materials for TBC applications

    Get PDF
    Over the past decades, Thermal Barrier Coatings (TBCs) have become essential parts in gas turbine engines. In working conditions, TBCs are subject to many kinds of degradation (erosion, foreign object damage (F.O.D), oxidation, etc.) which deteriorate integrity and mechanical properties of thewhole system.Moreover, with the aim to increase the turbine inlet temperature, a new type of damage has been highlighted: corrosion by molten Calcium–Magnesium–Alumino Silicates, better known as CMAS. In this paper, interactions between yttriastabilized zirconia (YSZ) materials synthesized via sol–gel process and synthetic CMAS powder were investigated via a step-by-step methodology. The approach was conducted starting from the more severe conditions of interactions and then gradually gets closer to the interactions taking place in service. It was proved that CMAS can induce faster densification of the ceramic leading to a loss of strain tolerance of the protective coating. Besides, a dissolution/re-precipitationmechanismcan also take place between YSZ andCMAS leading to the transformation of the initial tetragonal yttria-stabilized zirconia into globular particles of monoclinic zirconia. CMAS were also found to infiltrate the entire thickness of both EBPVD and sol–gel YSZ coatings at 1250 °C for 1 h. Nevertheless, the original non-oriented microstructure provided by sol–gel route leads to a different way of interaction due to the high reactivity of sol–gel precursors and materials. The behaviors of EBPVD and sol–gel coatings under CMAS exposure are discussed in this paper

    Cyclic Oxidation Behavior of TBC Systems with a Pt-Rich γ-Ni+γ′-Ni3Al Bond-Coating Made by SPS

    Get PDF
    To obtain long-lasting thermal barrier coating (TBC) systems, two types of Pt-rich γ-Ni+γ′-Ni3Al bond-coatings (BC) were fabricated by spark plasma sintering (SPS). The former had the highest possible Pt content (Ni-30Pt-25Al in at.%) while the latter had the highest possible Al level (Ni-28Al-17Pt in at.%). Hf was added as a reactive element. TBCs were fabricated on different superalloys (AM1, René N5 and MCNG) with the aforementioned BCs and with zirconia stabilized with yttria top coats made by SPS or electron beam physical vapor deposition (EBPVD). The cyclic oxidation resistance of these systems was studied at 1,100 °C in air. Most TBCs with a Pt-rich γ–γ′ BC showed better thermal cycling resistance when compared to the reference TBCs (β-(Ni,Pt)Al diffusion BC and EBPVD ceramic top coat), with lifetimes up to 1,745 cycles instead of 700 for the reference, and despite the fabrication defects observed within the SPS BCs. Cu was tested as an addition in the BCs and proved to have a slight negative effect on the system lifetime. Moreover, the fourth generation MCNG substrate led to the best cyclic oxidation behavior

    Observation and modeling of α-NiPtAl and Kirkendall void formations during interdiffusion of a Pt coating with a γ-(Ni-13Al) alloy at high temperature

    Get PDF
    During the last 15 years, Pt-rich γ–γ′ bond-coatings have been studied extensively for their corrosion and oxidation resistance, and as a lower cost alternative to β-(Ni,Pt)Al bond-coatings in thermal barrier coating systems. To optimize their fabrication and durability, it is essential to investigate their interdiffusion with Ni-based superalloys. This study reports on experimental results and modeling of the interdiffusion of the model Pt/γ-(Ni-13Al) alloy system. Pt coatings were deposited either by electroplating or by spark plasma sintering using a Pt foil. Heat treatments at 1100 °C for 15min to 10 hwere performed either in a high-temperature X-ray diffraction device under primary vacuum or in a furnace under argon secondary vacuum. The α-NiPtAl phase with L10 crystal structure formed very rapidly, implying fast uphill Al diffusion toward the surface. For Pt electroplating, α-phase transformed to γ′-(Ni,Pt)3Al after only 45 min–1 h at 1100 °C. The resulting two-phased γ–γ′ microstructure remained up to 10 h. When using a Pt foil coating, the continuous layer of α-NiPtAl phase disappeared after 10 h and the γ′-(Ni,Pt)3Al or γ-(Ni,Pt,Al) phase appeared, resulting in two different diffusion paths in the Ni–Pt–Al phase diagram. Voids also formed at the interdiffusion zone/substrate interface for both systems after 1 h or more. Composition analyses confirmed that voids were located at the Pt diffusion front corresponding to the Al-depleted zone. Experiments performed with the samples coated with a Pt foil confirmed that voids are due to a Kirkendall effect and not to the Pt deposition process. Numerical simulations including the cross-term diffusion coefficients in the diffusion flux equations reproduced the experimental concentration profiles for the γ-phased systems

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Étude du comportement en oxydation de nouveaux revêtements en aluminiure de nickel dopé au zirconium. Application aux barrières thermiques

    No full text
    Aeronautical turbine blades are used in an extreme environment. Indeed, they are located at the combustion chamber exit and are then exposed to hot oxidising gases. They are made of a nickel based superalloy protected either with an alumina-forming coating, or with a thermal barrier system. In this system, the superalloy is protected thanks to an alumina-forming bondcoat and a yttria partially stabilised zirconia insulating layer. When exposed to the combustion gases, a protective alumina layer grows on top of the nickel aluminides. The industrial system involves a platinum modified NiAl that improves the adhesion of the thermally grown oxide. But the processing costs are to be reduced. The reactive elements (including Zr) are known to improve the alumina adhesion on the nickel aluminides, but the mechanisms involved in Zr-doped coating are still to be investigated. This study has been mainly focused on the NiAl and NiAl(Zr) coatings. We noticed that the zirconium is mobile in the whole system, it delays the coating ageing and avoid the presence of cavities at the metal/thermally (1100°C) grown oxide interface. We performed experiments to understand the role of zirconium on the cyclic oxidation resistance and they revealed that this doping element mainly modifies the first stages of oxidation by favouring the formation of alpha alumina. This influence of Zr on the short-time oxidation doubles the lifetime of the systems exposed to cyclic oxidation at 1100°C. Some experiments using NiAl(Zr) as a bondcoat in the thermal barrier system are also reported.Les aubes de turbine aéronautique fonctionnent dans des conditions extrêmes, car exposées en sortie de chambre de combustion à des gaz oxydants à très haute température. Elles sont constituées d'un superalliage à base de nickel, protégé soit par un revêtement simple aluminoformeur, soit par un système barrière thermique, le superalliage étant alors revêtu d'une couche de liaison aluminoformeuse et d'une couche isolante en zircone yttriée. En service, une couche d'alumine protectrice se développe en surface des aluminiures de nickel. L'utilisation actuelle d'un NiAl modifié au platine améliore l'adhérence de l'oxyde développé thermiquement sur le métal, mais son élaboration est coûteuse. Les éléments réactifs (dont Zr) sont connus pour améliorer l'adhérence de l'alumine sur les aluminiures de nickel, mais leurs mécanismes d'action dans le cas de revêtements restent à déterminer. Cette étude a été principalement menée sur des revêtements simples NiAl et NiAl(Zr). Nous avons constaté que le zirconium est très mobile dans l'ensemble du système, qu'il retarde le vieillissement du revêtement à 1100°C et évite la présence de cavités à l'interface métal / oxyde. Les travaux entrepris pour comprendre le rôle du zirconium sur la résistance en cyclage thermique ont révélé que ce dopant agit principalement aux premiers stades d'oxydation, en anticipant la formation d'alumine stable alpha. Cette influence du zirconium sur les temps courts d'oxydation permet de doubler la durée de vie du système en oxydation cyclique à 1100°C. Des éléments de comparaison de systèmes barrière thermique complets, comprenant une couche de liaison dopée ou non au zirconium, sont également proposés

    Etude du comportement en oxydation de nouveaux revêtements en aluminiure de nickel dopé au zirconiums (Application aux barrières thermique)

    No full text
    Les aubes de turbine aéronautique fonctionnent dans des conditions extrêmes, car exposées en sortie de chambre de combustion à des gaz oxydants à très haute température. Elles sont constituées d un superalliage à base de nickel, protégé soit par un revêtement simple aluminoformeur, soit par un système barrière thermique, le superalliage étant alors revêtu d une couche de liaison aluminoformeuse et d une couche isolante en zircone yttriée. En service, une couche d alumine protectrice se développe en surface des aluminiures de nickel. L utilisation actuelle d un NiAl modifié au platine améliore l adhérence de l'oxyde développé thermiquement sur le métal, mais son élaboration est coûteuse. Les éléments réactifs (dont Zr) sont connus pour améliorer l adhérence de l alumine sur les aluminiures de nickel, mais leurs mécanismes d action dans le cas de revêtements restent à déterminer. Cette étude a été principalement menée sur des revêtements simples NiAl et NiAl(Zr). Nous avons constaté que le zirconium est très mobile dans l ensemble du système, qu'il retarde le vieillissement du revêtement à 1100C et évite la présence de cavités à l interface métal / oxyde. Les travaux entrepris pour comprendre le rôle du zirconium sur la résistance en cyclage thermique ont révélé que ce dopant agit principalement aux premiers stades d oxydation, en anticipant la formation d alumine stable alpha. Cette influence du zirconium sur les temps courts d oxydation permet de doubler la durée de vie du système en oxydation cyclique à 1100C. Des éléments de comparaison de systèmes barrière thermique complets, comprenant une couche de liaison dopée ou non au zirconium, sont également proposés.PARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Consequences of a Room-Temperature Plastic Deformation During Processing on Creep Durability of a Ni-Based SX Superalloy

    No full text
    International audienceNi-based single crystalline superalloys are used for high-pressure parts of aero-engines due to their superior mechanical properties and very good oxidation resistance at high temperature. However, shocks or unexpected mismatch in thermal contraction between molds and castings can occur during casting process and subsequent heat treatments, inducing plastic deformation of the alloy at low temperature. To mimic such events, a tensile plastic deformation is applied at room temperature on solutioned AM1 specimens and followed by standard aging heat treatments. Faster growth of the γ′ precipitates inside plastically deformed bands is obtained after full heat treatment with no lattice rotation or recrystallization. It has however been evidenced that the applied deformation has a detrimental impact on the creep properties, especially at high temperature (above 950 °C). It partly results from a highly localized failure process along former slip bands in which recrystallization is observed. The evolution of the microstructure during creep tests of prior deformed and nondeformed specimens has been thoroughly investigated to better identify under which conditions recrystallization occurs inside the bands during a creep test and by which mechanism

    Psychiatric symptoms and mortality in older adults with major psychiatric disorders: results from a multicenter study

    No full text
    International audienc

    The ASOS Surgical Risk Calculator: development and validation of a tool for identifying African surgical patients at risk of severe postoperative complications

    No full text
    Background: The African Surgical Outcomes Study (ASOS) showed that surgical patients in Africa have a mortality twice the global average. Existing risk assessment tools are not valid for use in this population because the pattern of risk for poor outcomes differs from high-income countries. The objective of this study was to derive and validate a simple, preoperative risk stratification tool to identify African surgical patients at risk for in-hospital postoperative mortality and severe complications. Methods: ASOS was a 7-day prospective cohort study of adult patients undergoing surgery in Africa. The ASOS Surgical Risk Calculator was constructed with a multivariable logistic regression model for the outcome of in-hospital mortality and severe postoperative complications. The following preoperative risk factors were entered into the model; age, sex, smoking status, ASA physical status, preoperative chronic comorbid conditions, indication for surgery, urgency, severity, and type of surgery. Results: The model was derived from 8799 patients from 168 African hospitals. The composite outcome of severe postoperative complications and death occurred in 423/8799 (4.8%) patients. The ASOS Surgical Risk Calculator includes the following risk factors: age, ASA physical status, indication for surgery, urgency, severity, and type of surgery. The model showed good discrimination with an area under the receiver operating characteristic curve of 0.805 and good calibration with c-statistic corrected for optimism of 0.784. Conclusions: This simple preoperative risk calculator could be used to identify high-risk surgical patients in African hospitals and facilitate increased postoperative surveillance. © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.Medical Research Council of South Africa gran
    corecore