4,007 research outputs found

    Two-Dimensional Spectroscopy of Extended Molecular Systems: Applications to Energy Transport and Relaxation in an α-Helix

    Get PDF
    A simulation study of the coupled dynamics of amide I and amide II vibrations in an α-helix dissolved in water shows that two-dimensional (2D) infrared spectroscopy may be used to disentangle the energy transport along the helix through each of these modes from the energy relaxation between them. Time scales for both types of processes are obtained. Using polarization-dependent 2D spectroscopy is an important ingredient in the method we propose. The method may also be applied to other two-band systems, both in the infrared (collective vibrations) and the visible (excitons) parts of the spectrum.

    Applications of aerospace technology to petroleum extraction and reservoir engineering

    Get PDF
    Through contacts with the petroleum industry, the petroleum service industry, universities and government agencies, important petroleum extraction problems were identified. For each problem, areas of aerospace technology that might aid in its solution were also identified, where possible. Some of the problems were selected for further consideration. Work on these problems led to the formulation of specific concepts as candidate for development. Each concept is addressed to the solution of specific extraction problems and makes use of specific areas of aerospace technology

    Orbital liquid in three dimensional Mott insulator: LaTiO3LaTiO_3

    Full text link
    We present a theory of spin and orbital states in Mott insulator LaTiO3LaTiO_3. The spin-orbital superexchange interaction between d1(t2g)d^1(t_{2g}) ions in cubic crystal suffers from a pathological degeneracy of orbital states at classical level. Quantum effects remove this degeneracy and result in the formation of the coherent ground state, in which the orbital moment of t2gt_{2g} level is fully quenched. We find a finite gap for orbital excitations. Such a disordered state of local degrees of freedom on unfrustrated, simple cubic lattice is highly unusual. Orbital liquid state naturally explains observed anomalies of LaTiO3LaTiO_3.Comment: 5 pages, 3 figure

    Generalized "Quasi-classical" Ground State for an Interacting Two Level System

    Full text link
    We treat a system (a molecule or a solid) in which electrons are coupled linearly to any number and type of harmonic oscillators and which is further subject to external forces of arbitrary symmetry. With the treatment restricted to the lowest pair of electronic states, approximate "vibronic" (vibration-electronic) ground state wave functions are constructed having the form of simple, closed expressions. The basis of the method is to regard electronic density operators as classical variables. It extends an earlier "guessed solution", devised for the dynamical Jahn-Teller effect in cubic symmetry, to situations having lower (e.g., dihedral) symmetry or without any symmetry at all. While the proposed solution is expected to be quite close to the exact one, its formal simplicity allows straightforward calculations of several interesting quantities, like energies and vibronic reduction (or Ham) factors. We calculate for dihedral symmetry two different qq-factors ("qzq_z" and "qxq_x") and a pp-factor. In simplified situations we obtain p=qz+qx1p=q_z +q_x -1. The formalism enables quantitative estimates to be made for the dynamical narrowing of hyperfine lines in the observed ESR spectrum of the dihedral cyclobutane radical cation.Comment: 28 pages, 4 figure

    Neutral Higgs bosons in the MNMSSM with explicit CP violation

    Full text link
    Within the framework of the minimal non-minimal supersymmetric standard model (MNMSSM) with tadpole terms, CP violation effects in the Higgs sector are investigated at the one-loop level, where the radiative corrections from the loops of the quark and squarks of the third generation are taken into account. Assuming that the squark masses are not degenerate, the radiative corrections due to the stop and sbottom quarks give rise to CP phases, which trigger the CP violation explicitly in the Higgs sector of the MNMSSM. The masses, the branching ratios for dominant decay channels, and the total decay widths of the five neutral Higgs bosons in the MNMSSM are calculated in the presence of the explicit CP violation. The dependence of these quantities on the CP phases is quite recognizable, for given parameter values.Comment: 25 pages, 8 figure

    The Baryon asymmetry in the Standard Model with a low cut-off

    Get PDF
    We study the generation of the baryon asymmetry in a variant of the standard model, where the Higgs field is stabilized by a dimension-six interaction. Analyzing the one-loop potential, we find a strong first order electroweak phase transition for Higgs masses up to at least 170 GeV. Dimension-six operators induce also new sources of CP violation. We compute the baryon asymmetry in the WKB approximation. Novel source terms in the transport equations enhance the generated baryon asymmetry. For a wide range of parameters the model predicts a baryon asymmetry close to the observed value.Comment: 22 pages, latex, 6 figure

    The mucosal adjuvant cholera toxin B instructs non-mucosal dendritic cells to promote IgA production via retinoic acid and TGF-β

    Get PDF
    It is currently unknown how mucosal adjuvants cause induction of secretory immunoglobulin A (IgA), and how T cell-dependent (TD) or -independent (TI) pathways might be involved. Mucosal dendritic cells (DCs) are the primary antigen presenting cells driving TI IgA synthesis, by producing a proliferation-inducing ligand (APRIL), B cell activating factor (BAFF), Retinoic Acid (RA), TGF-beta or nitric oxide (NO). We hypothesized that the mucosal adjuvant Cholera Toxin subunit B (CTB) could imprint non-mucosal DCs to induce IgA synthesis, and studied the mechanism of its induction. In vitro, CTB-treated bone marrow derived DCs primed for IgA production by B cells without the help of T cells, yet required co-signaling by different Toll-like receptor (TLR) ligands acting via the MyD88 pathway. CTB-DC induced IgA production was blocked in vitro or in vivo when RA receptor antagonist, TGF-beta signaling inhibitor or neutralizing anti-TGF-beta was added, demonstrating the involvement of RA and TGF-beta in promoting IgA responses. There was no major involvement for BAFF, APRIL or NO. This study highlights that synergism between CTB and MyD88-dependent TLR signals selectively imprints a TI IgA-inducing capacity in non-mucosal DCs, explaining how CTB acts as an IgA promoting adjuvant
    corecore