40 research outputs found
Neutrino Event Rates from Gamma Ray Bursts
We recalculate the diffuse flux of high energy neutrinos produced by Gamma
Ray Bursts (GRB) in the relativistic fireball model. Although we confirm that
the average single burst produces only ~10^{-2} high energy neutrino events in
a detector with 1 km^2 effective area, i.e. about 10 events per year, we show
that the observed rate is dominated by burst-to-burst fluctuations which are
very large. We find event rates that are expected to be larger by one order of
magnitude, likely more, which are dominated by a few very bright bursts. This
greatly simplifies their detection.Comment: 14 pages, Latex2.09, uses aastex4.0 and epsf.sty, 3 postscript files.
Minor revisions. To be published in ApJ Letter
Neutrinos From Individual Gamma-Ray Bursts in the BATSE Catalog
We calculate the neutrino emission from individual gamma-ray bursts observed
by the BATSE detector on the Compton Gamma-Ray Observatory. Neutrinos are
produced by photoproduction of pions when protons interact with photons in the
region where the kinetic energy of the relativistic fireball is dissipated
allowing the acceleration of electrons and protons. We also consider models
where neutrinos are predominantly produced on the radiation surrounding the
newly formed black hole. From the observed redshift and photon flux of each
individual burst, we compute the neutrino flux in a variety of models based on
the assumption that equal kinetic energy is dissipated into electrons and
protons. Where not measured, the redshift is estimated by other methods. Unlike
previous calculations of the universal diffuse neutrino flux produced by all
gamma-ray bursts, the individual fluxes (compiled at
http://www.arcetri.astro.it/~dafne/grb/) can be directly compared with
coincident observations by the AMANDA telescope at the South Pole. Because of
its large statistics, our predictions are likely to be representative for
future observations with larger neutrino telescopes.Comment: 49 pages, 7 figures. Accepted for publication in Astroparticle
Physic
High Energy Neutrinos from Gamma Ray Bursts: Event Rates in Neutrino Telescopes
Following Waxman and Bahcall we calculate the event rate, energy and zenith
angle dependence of neutrinos produced in the fireball model of gamma ray
bursts (GRB). We emphasize the primary importance of i) burst-to-burst
fluctuations and ii) absorption of the neutrinos in the Earth. From the
astronomical point of view, we draw attention to the sensitivity of neutrino
measurements to the boost Lorentz factor of the fireball , which is
central to the fireball model, and only indirectly determined by follow-up
observations. Fluctuations result in single bursts emitting multiple neutrinos,
making it possible to determine the flavor composition of a beam observed after
a baseline of thousands of Megaparsecs.Comment: 19 pages, Latex2.09, uses epsfig.sty, 7 postscript figures. Version
to be published in Phys. Rev.
IceCube-Plus: An Ultra-High Energy Neutrino Telescope
While the first kilometer-scale neutrino telescope, IceCube, is under
construction, alternative plans exist to build even larger detectors that will,
however, b e limited by a much higher neutrino energy threshold of 10 PeV or
higher rather than 10 to 100 GeV. These future projects detect radio and
acoustic pulses as w ell as air showers initiated by ultra-high energy
neutrinos. As an alternative, we here propose an expansion of IceCube, using
the same strings, placed on a gri d with a spacing of order 500 m. Unlike other
proposals, the expanded detector uses methods that are understood and
calibrated on atmospheric neutrinos. Atmosp heric neutrinos represent the only
background at the energies under consideratio n and is totally negligible.
Also, the cost of such a detector is understood. We conclude that supplementing
the 81 IceCube strings with a modest number of addi tional strings spaced at
large distances can almost double the effective volume of the detector.
Doubling the number of strings on a 800 m grid can deliver a d etector that
this a factor of 5 larger for horizontal muons at modest cost.Comment: Version to be published in JCA
The Particle Physics Reach of High-Energy Neutrino Astronomy
We discuss the prospects for high-energy neutrino astronomy to study particle
physics in the energy regime comparable to and beyond that obtainable at the
current and planned colliders. We describe the various signatures of
high-energy cosmic neutrinos expected in both neutrino telescopes and air
shower experiments and discuss these measurements within the context of
theoretical models with a quantum gravity or string scale near a TeV,
supersymmetry and scenarios with interactions induced by electroweak
instantons. We attempt to access the particle physics reach of these
experiments.Comment: Mini-review article for New Journal of Physics, "Focus on Neutrinos"
issue. 27 pages, 11 figure
Neutrinos Associated With Cosmic Rays of Top-Down Origin
Top-down models of cosmic rays produce more neutrinos than photons and more
photons than protons. In these models, we reevaluate the fluxes of neutrinos
associated with the highest energy cosmic rays in light of mounting evidence
that they are protons and not gamma rays. While proton dominance at EeV
energies can possibly be achieved by efficient absorption of the dominant
high-energy photon flux on universal and galactic photon and magnetic
background fields, we show that the associated neutrino flux is inevitably
increased to a level where it should be within reach of operating experiments
such as AMANDA II, RICE and AGASA. In future neutrino telescopes, tens to a
hundred, rather than a few neutrinos per kilometer squared per year, may be
detected above 1 PeV.Comment: 16 pages, 4 figure
Measuring the Spectra of High Energy Neutrinos with a Kilometer-Scale Neutrino Telescope
We investigate the potential of a future kilometer-scale neutrino telescope
such as the proposed IceCube detector in the South Pole, to measure and
disentangle the yet unknown components of the cosmic neutrino flux, the prompt
atmospheric neutrinos coming from the decay of charmed particles and the
extra-galactic neutrinos, in the 10 TeV to 1 EeV energy range.
Assuming a power law type spectra,
, we quantify the discriminating
power of the IceCube detector and discuss how well we can determine magnitude
() as well as slope () of these two components of the high
energy neutrino spectrum, taking into account the background coming from the
conventional atmospheric neutrinos.Comment: 21 pages, 7 figure
Low energy antideuterons: shedding light on dark matter
Low energy antideuterons suffer a very low secondary and tertiary
astrophysical background, while they can be abundantly synthesized in dark
matter pair annihilations, therefore providing a privileged indirect dark
matter detection technique. The recent publication of the first upper limit on
the low energy antideuteron flux by the BESS collaboration, a new evaluation of
the standard astrophysical background, and remarkable progresses in the
development of a dedicated experiment, GAPS, motivate a new and accurate
analysis of the antideuteron flux expected in particle dark matter models. To
this extent, we consider here supersymmetric, universal extra-dimensions (UED)
Kaluza-Klein and warped extra-dimensional dark matter models, and assess both
the prospects for antideuteron detection as well as the various related sources
of uncertainties. The GAPS experiment, even in a preliminary balloon-borne
setup, will explore many supersymmetric configurations, and, eventually, in its
final space-borne configuration, will be sensitive to primary antideuterons
over the whole cosmologically allowed UED parameter space, providing a search
technique which is highly complementary with other direct and indirect dark
matter detection experiments.Comment: 26 pages, 7 figures; version to appear in JCA
Measuring diffuse neutrino fluxes with IceCube
In this paper the sensitivity of a future kilometer-sized neutrino detector
to detect and measure the diffuse flux of high energy neutrinos is evaluated.
Event rates in established detection channels, such as muon events from charged
current muon neutrino interactions or cascade events from electron neutrino and
tau neutrino interactions, are calculated using a detailed Monte Carlo
simulation. Neutrino fluxes as expected from prompt charm decay in the
atmosphere or from astrophysical sources such as Active Galactic Nuclei are
modeled assuming power laws. The ability to measure the normalization and slope
of these spectra is then analyzed.
It is found that the cascade channel generally has a high sensitivity for the
detection and characterization of the diffuse flux, when compared to what is
expected for the upgoing- and downgoing-muon channels. A flux at the level of
the Waxman-Bahcall upper bound should be detectable in all channels separately
while a combination of the information of the different channels will allow
detection of a flux more than one order of magnitude lower. Neutrinos from the
prompt decay of charmed mesons in the atmosphere should be detectable in future
measurements for all but the lowest predictions.Comment: 12 pages, 3 figure