25 research outputs found

    A Deterministic Fully Polynomial Time Approximation Scheme For Counting Integer Knapsack Solutions Made Easy

    Get PDF
    Given n elements with nonnegative integer weights w=(w_1,...,w_n), an integer capacity C and positive integer ranges u=(u_1,...,u_n), we consider the counting version of the classic integer knapsack problem: find the number of distinct multisets whose weights add up to at most C. We give a deterministic algorithm that estimates the number of solutions to within relative error epsilon in time polynomial in n, log U and 1/epsilon, where U=max_i u_i. More precisely, our algorithm runs in O((n^3 log^2 U)/epsilon) log (n log U)/epsilon) time. This is an improvement of n^2 and 1/epsilon (up to log terms) over the best known deterministic algorithm by Gopalan et al. [FOCS, (2011), pp. 817-826]. Our algorithm is relatively simple, and its analysis is rather elementary. Our results are achieved by means of a careful formulation of the problem as a dynamic program, using the notion of binding constraints

    Approximation schemes for non-separable non-linear Boolean programming problems under nested knapsack constraints

    Get PDF
    We consider a fairly general model of “take-or-leave”decision-making. Given a number of items of a particular weight, the decision-maker either takes (accepts) an item or leaves (rejects) it. We design fully polynomial-time approximation schemes (FPTASs) for optimization of a non-separable non-linear function which depends on which items are taken and which are left. The weights of the taken items are subject to nested constraints. There is a noticeable lack of approximation results on integer programming problems with non-separable functions. Most of the known positive results address special forms of quadratic functions, and in order to obtain the corresponding approximation algorithms and schemes considerable technical difficulties have to be overcome. We demonstrate how for the problem under consideration and its modifications FPTASs can be designed by using (i) the geometric rounding techniques, and (ii) methods of K -approximation sets and functions. While the latter approach leads to a faster scheme, the running times of the of both algorithms compare favorably with known analogues for less general problems

    A Computationally Efficient FPTAS for Convex Stochastic Dynamic Programs

    Get PDF
    We propose a computationally efficient fully polynomial-time approximation scheme (FPTAS) to compute an approximation with arbitrary precision of the value function of convex stochastic dynamic programs, using the technique of K-approximation sets and functions introduced by Halman et al. [Math. Oper. Res., 34, (2009), pp. 674-685]. This paper deals with the convex case only, and it has the following contributions. First, we improve on the worst-case running time given by Halman et al. Second, we design and implement an FPTAS with excellent computational performance and show that it is faster than an exact algorithm even for small problem instances and small approximation factors, becoming orders of magnitude faster as the problem size increases. Third, we show that with careful algorithm design, the errors introduced by floating point computations can be bounded, so that we can provide a guarantee on the approximation factor over an exact infinite-precision solution. We provide an extensive computational evaluation based on randomly generated problem instances coming from applications in supply chain management and finance. The running time of the FPTAS is both theoretically and experimentally linear in the size of the uncertainty set

    Fully Polynomial Time Approximation Schemes for Stochastic Dynamic Programs

    Get PDF
    We present a framework for obtaining fully polynomial time approximation schemes (FPTASs) for stochastic univariate dynamic programs with either convex or monotone single-period cost functions. This framework is developed through the establishment of two sets of computational rules, namely, the calculus of K-approximation functions and the calculus of K-approximation sets. Using our framework, we provide the first FPTASs for several NP-hard problems in various fields of research such as knapsack models, logistics, operations management, economics, and mathematical finance. Extensions of our framework via the use of the newly established computational rules are also discussed

    Approximating the Nonlinear Newsvendor and Single-Item Stochastic Lot-Sizing Problems When Data Is Given by an Oracle

    Get PDF
    The single-item stochastic lot-sizing problem is to find an inventory replenishment policy in the presence of discrete stochastic demands under periodic review and finite time horizon. A closely related problem is the single-period newsvendor model. It is well known that the newsvendor problem admits a closed formula for the optimal order quantity whenever the revenue and salvage values are linear increasing functions and the procurement (ordering) cost is fixed plus linear. The optimal policy for the single-item lot-sizing model is also well known under similar assumptions. In this paper we show that the classical (single-period) newsvendor model with fixed plus linear ordering cost cannot be approximated to any degree of accuracy when either the demand distribution or the cost functions are given by an oracle. We provide a fully polynomial time approximation scheme for the nonlinear single-item stochastic lot-sizing problem, when demand distribution is given by an oracle, procurement costs are provided as nondecreasing oracles, holding/backlogging/disposal costs are linear, and lead time is positive. Similar results exist for the nonlinear newsvendor problem. These approximation schemes are designed by extending the technique of K-approximation sets and functions.National Science Foundation (U.S.) (Contract CMMI-0758069)United States. Office of Naval Research (Grant N000141110056

    Simple Stochastic Games, Parity Games, Mean Payoff Games and Discounted Payoff Games Are All Lp-type Problems

    Get PDF
    We show that a Simple Stochastic Game (SSG) can be formulated as an LP-type problem. Using this formulation, and the known algorithm of Sharir and Welzl [SW] for LP-type problems, we obtain the first strongly subexponential solution for SSGs (a strongly subexponential algorithm has only been known for binary SSGs [L]). Using known reductions between various games, we achieve the first strongly subexponential solutions for Discounted and Mean Payoff Games. We also give alternative simple proofs for the best known upper bounds for Parity Games and binary SSGs. To the best of our knowledge, the LP-type framework has been used so far only in order to yield linear or close to linear time algorithms for various problems in computational geometry and location theory. Our approach demonstrates the applicability of the LP-type framework in other fields, and for achieving subexponential algorithms
    corecore