

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2014 Society for Industrial and Applied Mathematics
Vol. 28, No. 4, pp. 1725–1796

FULLY POLYNOMIAL TIME APPROXIMATION SCHEMES
FOR STOCHASTIC DYNAMIC PROGRAMS∗

NIR HALMAN† , DIEGO KLABJAN‡ , CHUNG-LUN LI§ , JAMES ORLIN¶, AND DAVID

SIMCHI-LEVI¶

Abstract. We present a framework for obtaining fully polynomial time approximation schemes
(FPTASs) for stochastic univariate dynamic programs with either convex or monotone single-period
cost functions. This framework is developed through the establishment of two sets of computational
rules, namely, the calculus of K-approximation functions and the calculus of K-approximation sets.
Using our framework, we provide the first FPTASs for several NP-hard problems in various fields of
research such as knapsack models, logistics, operations management, economics, and mathematical
finance. Extensions of our framework via the use of the newly established computational rules are
also discussed.

Key words. fully polynomial time approximation schemes, stochastic dynamic programming,
K-approximation

AMS subject classifications. 68Q25, 68W25, 90B05, 90B06, 90C15, 90C39, 90C40, 90C56,
90C59

DOI. 10.1137/130925153

1. Introduction.

Dynamic programming. Dynamic programming (DP) is an algorithmic tech-
nique used for solving sequential, or multistage, decision problems and is a fundamen-
tal tool in combinatorial optimization (see, e.g., [39], [3, sect. 2.5], and [75, Chap. 8]).
A stochastic discrete time finite horizon dynamic program (DP, to be distinguished
from dynamic programming by context) aims to find an optimal policy over a finite
time horizon that minimizes the expected cost. In each time period, the state of
the system is observed before an action is taken. Based on exogenous stochastic in-
formation, the state, and the action, the system transitions into a new state at the
beginning of the next time period, while a single-period cost is incurred at the same
time.

We can formally model this by means of the optimality equation (or Bellman
equation). Let zt(It) be the cost-to-go function (or value function). The value zt(It)
is simply the cost of an optimal policy from time period t to the end of the time

∗Received by the editors June 17, 2013; accepted for publication (in revised form) June 23, 2014;
published electronically October 14, 2014. The first author’s research was supported in part by the
European Community’s Seventh Framework Programme FP7/2007-2013 (grant agreement 247757),
the Recanati Fund of the School of Business Administration, the Hebrew University of Jerusalem,
and NSF contract CMMI-0758069. The first, second, and fifth authors’ research was supported in
part by NSF contracts DMI-0085683 and DMI-0245352 and by NASA interplanetary supply chain
management and logistics architecture. The third author’s research was supported in part by the
Research Grants Council of Hong Kong under grant PolyU5228/08E. The fourth and fifth authors’
research was supported in part by NSF contract CMMI-0758069. The fourth author’s research was
also supported in part by ONR grant N00014-98-1-0317. An extended abstract of this paper appeared
in the Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, 2008.

http://www.siam.org/journals/sidma/28-4/92515.html
†Hebrew University, Jerusalem, Israel (halman@huji.ac.il). The research was conducted while the

author was a postdoctorate associate at MIT.
‡Northwestern University, Evanston, IL 60208 (d-klabjan@northwestern.edu).
§The Hong Kong Polytechnic University, Hong Kong, China (chung-lun.li@polyu.edu.hk).
¶Massachusetts Institute of Technology, Cambridge, MA 02139 (jorlin@mit.edu, dslevi@mit.edu).

1725

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/sidma/28-4/92515.html
mailto:halman@huji.ac.il
mailto:d-klabjan@northwestern.edu
mailto:chung-lun.li@polyu.edu.hk
mailto:jorlin@mit.edu
mailto:dslevi@mit.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1726 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

horizon, given that at the beginning of time period t the state is It. The optimality
equation reads

(1.1) zt(It) = min
xt∈At(It)

EDt

{
gt(It, xt, Dt) + zt+1(ft(It, xt, Dt))

}
.

Here, xt is the action, At(It) is the action set, and Dt is a vector of random variables
corresponding to the stochastic exogenous information flow. The random variables are
assumed to be independent, but they are not necessarily identically distributed. The
system dynamics are represented by a transition function ft, and the cost incurred
in period t is gt. In our context, It and xt are one-dimensional, while Dt is a fixed-
dimensional vector.

Monotone/convex DP. We study three special cases of such DPs. In the first
case, for every t, the cost function gt is nonincreasing in It and monotone in xt, while
the transition function ft is nondecreasing in It and monotone in xt. We call this the
nonincreasing case. The second case, in which the conditions are analogous to the
nonincreasing case, is called the nondecreasing case. We refer to these first two cases
as the monotone case. In the third case, the transition function ft is linear in It and
xt, while the cost function gt has a convex structure (we give a formal definition in
section 3), and we call this the convex case.

Fully polynomial time approximation schemes. When facing NP-hard prob-
lems, DPs will encounter difficulty in generating optimal solutions efficiently. One
good resolution to this issue would be to employ fully polynomial time approximation
schemes (FPTASs), which can efficiently generate solutions that are arbitrarily close
to the optima. For any given tolerance ε, an FPTAS generates a solution with a rel-
ative error guaranteed to be no more than ε, while the running time of the algorithm
is polynomial in 1/ε and in the size of the problem. The essence of FPTASs is to
apply a discrete approximation to the cost function so that the DP can be executed
in polynomial time. It would be critical to design an algorithm and an approximation
for the DP in such a way that small errors at one stage do not turn into large errors
at subsequent stages.

Literature review. The earliest work conducted on FPTASs can be traced back
to the mid 1970s, starting with the classic work of Ibarra and Kim [41], Horowitz and
Sahni [40], and Sahni [66] on scheduling and knapsack problems. Since then, the
most common techniques for constructing FPTASs have been dominance (i.e., omit-
ting states or actions of the DP which are dominated, or approximately dominated, by
other states or actions) and scaling/rounding the data (see, e.g., [39] and [3, sect. 2.5]).
Although many FPTASs can be easily constructed once the key ideas from Ibarra and
Kim [41] and Sahni [66] are understood, other FPTASs would require great care in
algorithm design and analysis. In fact, the existence of FPTASs for some optimiza-
tion problems are nontrivial. In particular, to the best of our knowledge, no FPTAS
has been reported for stochastic optimization problems prior to 2006. (See the re-
cent works of [33] and [68], where the latter deals with stochastic linear and integer
programming rather than stochastic DP.)

Woeginger [79] made a key observation that many FPTASs were designed by
modifying DPs, and he designed a framework for deriving FPTASs for determinis-
tic DPs satisfying certain regularity conditions. His framework encompassed results
from a dozen optimization problems, including the knapsack problem, for which the
first FPTAS was developed in the seminal work of Ibarra and Kim [41]. However,

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1727

Woeginger [79] did not address some deterministic problems that were known to have
FPTASs, including treelike variants of the knapsack problem, problems involving con-
vex or monotone functions, and stochastic optimization problems.

We note that many #P-complete problems exhibit fully polynomial randomized
approximation schemes (FPRASs), for example, counting Hamiltonian cycles in dense
graphs [18], counting knapsack solutions [17], counting Eulerian orientations of a
directed graph [57], counting perfect matchings in a bipartite graph [43], or computing
the permanent [44]. To the best of our knowledge, deterministic FPTASs for #P-hard
problems known up to 2008 and published in the literature can only be found in the
recent works of [77], [4], [5], and [28], which were developed by applying methods from
statistical physics. Our FPTAS, which uses different methods, would provide another
unique example of a (deterministic) FPTAS for #P-hard problems.

Our results. In this paper we adopt Woeginger’s goal of transforming DPs into
FPTASs. We develop a novel methodology that is both general and easy to use for
deriving FPTASs for stochastic DPs. An important ingredient in this methodology
is the development of a set of conditions such that if a DP satisfies it, then the
DP admits an FPTAS. Our framework extends that of Woeginger in several key
aspects. In particular, it applies to stochastic optimization problems, and it permits
functions defined over a large interval of integers. Nevertheless, it is not yet a proper
generalization of Woeginger’s framework, and several problems with FPTASs that fit
into Woeginger’s framework do not fit into ours. Figure 1 depicts the interrelations
between Woeginger’s framework and ours. The figure is not drawn to scale; in fact,
about 80% of the problems presented in [79] fall into our framework.

Deterministic

Stochastic
������������������������

��
��

W

��
��

O

Fig. 1. NP-hard optimization problems and the frameworks of Woeginger (W) and of ours (O).

We show that our newly developed set of the conditions is satisfied by several basic
problems in inventory control, economics, theoretical computer science, and finance.
Moreover, all the FPTASs for stochastic optimization problems are new. (Recall that
previous to 2006 there were no FPTASs for stochastic optimization problems.) We
show that in many aspects this set of conditions is also necessary by giving inapprox-
iability results whenever some parts of the sufficient conditions are not satisfied.

Our approach. In a previous work, we have studied a single-item stochastic
dynamic inventory control problem [33]. In that work, we introduced the notions
of K-approximation sets and K-approximation functions and tailored them to the
specific functions involved in a certain formulation of the inventory control problem.
Using this novel technique (which is different from dominance and/or scaling), we
provided an ad hoc FPTAS for the inventory control problem.

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1728 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

Our current work also makes use of the notions of K-approximation sets and
functions but aims at developing a general framework for FPTAS construction. To
achieve this, we provide two sets of general computational rules for manipulating
K-approximation functions and K-approximation sets, which we call calculus of
K-approximation functions and calculus of K-approximation sets, respectively. While
the calculus of K-approximation functions bounds the approximation ratio of the re-
sulting functions (see the last column of Table 1), the calculus of K-approximation
sets consists of a set of permissible operations on functions such that the resulting
functions can be approximated without performing any additional queries to the orig-
inal functions.

Assuming ϕ̃i and Wi are Ki-approximation function and Ki-approximation set,
respectively, of a given function ϕi, i = 1, 2, and α, β are nonnegative real numbers,
Table 1 summarizes which operations on which functions would admit an approxima-
tion set without further querying the functions involved. For instance, min{ϕ̃1, ϕ̃2}
serves as a max{K1,K2}-approximation function of min{ϕ1, ϕ2}, whileW1∪W2 serves
as a max{K1,K2}-approximation set for min{ϕ1, ϕ2}, whenever ϕ1, ϕ2 are monotone
functions. The calculus serves as a simple (and often automated) tool for analyzing
the error propagations for monotone, unimodal, and convex functions. While some of
the rules in the calculus are straightforward, others (e.g., Propositions 5.3, 7.1, and
7.2) are far more subtle (including some of the rules restricted to convex functions)
and demand more thorough analysis.

Table 1

The calculus of K-approximation sets and functions.

Operation Apx. ratio
(nickname) ϕi unimodal ϕi monotone ϕi convex Apx. set (Prop. 5.1)

ϕ(ψ) Prop. 6.1 (3) Prop. 6.1 (3) Prop. 6.1 (3) ψ−1(W1) K1

(composition)
α+ βϕ1 Prop. 6.1 (4) Prop. 6.1 (4) Prop. 6.1 (4) W1 K1

(linearity)
max{ϕ1, ϕ2} Prop. 6.1 (5) Prop. 6.1 (5) Prop. 6.1 (5) W1 ∪W2 max{K1, K2}
(maximization)
min{ϕ1, ϕ2} - Prop. 6.2 (2) - W1 ∪W2 max{K1, K2}
(minimization)
ϕ1 + ϕ2 - Prop. 6.2 (1) Prop. 6.3 W1 ∪W2 max{K1, K2}
(summation)

Comparison to [33]. We now highlight the main difference in contributions
between our previous work [33], where we introduced the concepts ofK-approximation
sets and functions, and the current paper. In [33] the main assumption is that the
single-period cost functions are integer-valued convex functions over a contiguous
interval of integers. Using this assumption and the notions of K-approximation sets
and functions, we designed an FPTAS to a specific inventory control problem. The
focus of the current work is on a more general setting of general monotone functions
(which are not necessarily integer-valued convex). Indeed, eight of the applications
presented in Table 2 satisfy the monotone assumption.

Our contribution. The contribution of this paper is sevenfold. First, we model
the DP as a nicely structured function and carefully develop a theory (calculus) for
the error propagation of functions. This theory is very convenient to work with and,
therefore, is fruitful for further research. Second, in addition to developing the calcu-
lus, we develop a sufficient set of conditions that guarantee the existence of an FPTAS.

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1729

Table 2

Applications of the new framework.

Problem Previous results New results Case

1 Stochastic ordered
adaptive knapsack
problem

NP-hardness; polynomial-time
algorithm which gives a solution
whose value is at least the opti-
mal value and violates the
knapsack constraint by no more
than ε× 100% [15]

FPTAS M

2 Nonlinear
knapsack problem

NP-hardness; FPTASs for
various special cases
[51, 38, 65, 10, 45]

FPTAS for the general
model with monotone
objective and monotone
packing constraint

M

3 Dynamic capacity
expansion

NP-hardness; pseudopolynomial
time algorithm for the special
case with cost function
πt,i(xt,i) = xt,iπiγt−1 [67]

FPTAS M

4 Time-cost
trade-off machine
scheduling

NP-hardness; FPTAS for the
case with a maximization
objective and a linear tradeoff
function [13]

FPTAS for the minimi-
zation model with a
general monotone
tradeoff function

M

5 Single-item
stochastic
inventory control

#P-hardness; FPTAS [33] Problem fits into our
framework; approximat-
ed limit policy

C

6 Single-item
stochastic batch
dispatch

Heuristics without provably
bounded error for the special
case of time-independent costs
[61]

FPTAS; #P-hardness
proof

M

7 Single-resource
revenue
management

Pseudopolynomial time
algorithm [73]

FPTAS; #P-hardness
proof

M

8 Lifetime
consumption of
risky capital

DP formulation for the model
with discounted utility function
and stationary growth rate
distribution [64]

FPTAS for the general
model with
time-varying utility
function and growth
rate distribution;
#P-hardness proof

M

9 Stochastic growth
model

DP formulation for a model
under different assumptions [1]

FPTAS; #P-hardness
proof

M

10 Cash management
problem

Pseudopolynomial time
algorithm [16]; heuristic that
converges to the optimum [60]

FPTAS; #P-hardness
proof; approximated
limit policy

C

Third, we illustrate the generality and applicability of our framework by providing
FPTASs to 10 different optimization problems as summarized in Table 2. (No FPTAS
has been reported in the literature for any of these problems except for problem 5.)
Fourth, we give new hardness results to five different optimization problems as sum-
marized in Table 2. Fifth, we meticulously study the limits of our framework and
show that it cannot be relaxed to deal with general nonindependent random variables
(Corollary 10.2) and that the condition dealing with convex DP essentially cannot be
relaxed (Theorem 9.2). Sixth, we show how to construct approximations to monotone
functions that cannot be accessed directly and are instead accessed by nonmonotone
functions that approximate them (section 4.2). This is a key ingredient in the devel-
opment of our FPTAS for monotone DP and may be of independent interest. Seventh,

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1730 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

we use the notion of discrete convexity (formally defined in the next section), together
with some additional technical conditions to prove that function zt in (1.1) is convex
(Proposition 9.1). This is a key ingredient in the development of our FPTAS for
convex DP and may also be of independent interest.

Applications. Our newly developed framework has numerous applications. To
demonstrate the applicability of our framework, we present 10 examples of such appli-
cations. A summary of the previous results and the new results of these 10 problems
is presented in Table 2. Formal definitions and detailed explanations of how these
problems fit into our framework are available in Appendix A. Problems 1–3 are vari-
ants of the classical 0/1 knapsack problem, problems 4–7 are related to logistics and
operations management, and problems 8–10 are in the areas of economics and math-
ematical finance. Some of these problems are deterministic, and some are stochastic.
Note that no FPTAS has been reported in the literature for any of these problems
except problem 5.

1. Stochastic ordered adaptive knapsack problem [15]. A number of items are to be
considered sequentially for placing into a knapsack. Each item i has a deterministic
profit πi and a stochastic volume vi in which the distribution is known in advance.
The actual volume of an item is unknown until we instantiate the item by attempting
to place it into the knapsack, and we have to decide whether to select the item
for packing. The packing process will be terminated once the knapsack capacity
is exceeded. The objective is to maximize the expected total profit of the packed
items.

2. Nonlinear knapsack problem [38, 45]. This problem is similar to the classical
integer knapsack problem, in which a quantity of each given item is selected and
packed into the knapsack. However, instead of having fixed volumes and profits per
unit, a general nondecreasing volume function and a general nondecreasing profit
function are given; that is, placing x units of item i into the knapsack will result in a
profit of πi(x) and take up a volume of vi(x). The objective is to maximize the total
profit without exceeding the knapsack’s capacity.

3. Dynamic capacity expansion [67]. This problem is best viewed as a multi-period
minimization integer knapsack problem. Given a sequence of demands c1, . . . , cT and
a set of items {1, . . . , n} of various volumes vi and time-dependent cost functions πt,i
(i = 1, . . . , n; t = 1, . . . , T), we would like to determine a combination of quantities
of each of these items to be placed in a knapsack in each time period. The objective
is to satisfy the accumulated demand at minimum cost.

4. Time-cost trade-off machine scheduling [13]. There is a single machine and
a given set of jobs. The processing time of a job is a nonincreasing function of the
amount of monetary resources allocated to it. Each job is given a due date, and a
late penalty will be incurred if the job completes after its due date. The objective
is to determine the job processing times and to schedule the jobs on the machine in
such a way that the sum of the total late penalty and the total resource consumption
is minimized.

5. Single-item stochastic inventory control [33]. This is a stochastic version of
the classical single-item dynamic lot sizing problem. The planning horizon consists
of a finite number of time periods. In each time period, the decision maker has to
determine the procurement quantity of the item. Demand is stochastic and time-
dependent. Any leftover at the end of a time period will be carried forward to the
next period and incur an inventory holding cost. All shortages are backordered.

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1731

The procurement cost function, holding cost function, and backlogging cost function
are convex, and the objective is to minimize the expected total cost.

6. Single-item stochastic batch dispatch [61]. Consider running a dispatch station
over a finite time horizon, where a vehicle with a finite capacity is available to dispatch
goods in batches. In each time period, goods arrive randomly based on a time-
dependent distribution known in advance. The decision in each time period is whether
we should send off the vehicle and, if yes, how many units of the goods should be
carried by the vehicle. Dispatching the vehicle will incur a fixed cost as well as a
per-unit cost of the dispatched goods, while the goods left at the dispatch station will
incur a per-unit holding cost.

7. Single-resource revenue management [73, Chap. 2]. There is a single resource
with a given limited capacity C (e.g., an airplane with seat capacity C for a specific
flight). There are T customer classes, in which class t has a revenue contribution
of rt per arrival. All customers in class t arrive in time period t, and the number
of such customers is distributed randomly based on a random variable Dt with a
known distribution. We assume no cancellations or no-shows, no overbookings, and
independent customer arrivals. The problem is to find acceptance policies to maximize
the expected total revenue.

8. Lifetime consumption of risky capital [64]. Consider an individual manag-
ing her capital over a finite time horizon. In each time period, she can consume
some of her capital, and the subsequent utility is derived from her consumption
based on an underlying utility function. The remaining capital yields a stochastic
return. In addition, she receives an income at the end of the period. The problem is
to determine an optimal consumption strategy which maximizes her expected total
utility.

9. Stochastic growth model [1, Chap. 5]. This is a variant of “lifetime consumption
of risky capital.” In each time period, a household decides how much of its capital it
should consume, and utility is derived from its consumption. The rest of the capital
can be used to produce output via a production process. There is a deterministic de-
preciation of the remaining capital, but fluctuations in capital are created by random
shocks to the production process. The objective is to maximize the expected total
utility throughout the time horizon.

10. Cash management problem [16, pp. 154–155]. A person needs to manage the
cash flow of a mutual fund. At the beginning of each time period, the cash balance
can be changed by either selling or buying stocks. At the end of each time period,
the net value of deposits/withdrawals is observed, and consequently the cash balance
of the mutual fund is determined. If the balance is negative, the fund will borrow
money from the bank. If the balance is positive, a cost will be incurred, as the fund’s
money could have been invested elsewhere. The problem is to determine a policy that
minimizes the total cost.

Organization of the paper. In section 2, notation is defined, and an overview
of discrete convex functions is presented. Section 3 describes our framework and
states the sufficient conditions needed for the framework. In section 4, we explain how
K-approximation sets and functions can be built succinctly and efficiently. The devel-
opment of calculus of K-approximation functions and calculus of K-approximation
sets is presented in sections 5 and 6, respectively. In section 7, a theory linking
K-approximation sets and functions to DP is introduced. Based on this theory,
our main results for monotone DPs and convex DPs (i.e., the FPTAS together with
its analysis) are discussed in sections 8 and 9, respectively. Several variants of our

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1732 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

framework dealing with maximization problems, random vectors, correlated stochas-
tic events, implicit descriptions of stochastic events, profit maximization, nonexact
evaluation of the cost functions, etc., and an analysis of the structure of an op-
timal policy for convex DPs are provided in section 10. Concluding remarks are
made in section 11. A detailed description of the applications of our model is avail-
able in Appendix A. Proofs of the propositions in sections 4, 5, 6, and 10 are pro-
vided in Appendix B. All proofs of computational intractability are presented in
Appendix C.

2. Preliminaries.

2.1. General notation. Let R,Z,N,Q denote the set of real numbers, integers,
positive integers, and rational numbers, respectively. Let D ⊂ R be a finite set
of real numbers. Let Dmin and Dmax denote the minimal and maximal elements
in D, respectively. For x < Dmax, let next(x,D) = min{y ∈ D | y > x}. For
x > Dmin, let prev(y,D) = max{y ∈ D | y < x}. For any pair of integers A ≤ B,
let [A, . . . , B] = {A,A + 1, . . . , B} denote the set of integers between A and B. We
call [A, . . . , B] a contiguous interval. Let X be a set, and let Y (x) be a set for every
x ∈ X . We denote by X ⊗ Y the set

⋃
x∈X({x} × Y (x)); see Figure 2.

�
X

�Y

1

2

3

4

1 2 3 4

�� ��
�

��
�

Fig. 2. X ⊗ Y for X = {1, 2, 3}, Y (1) = {2, 3}, Y (2) = {2, 3, 4}, and Y (3) = {1, 2, 3}.

For any x ∈ R, let x+ = max{0, x} and x− = max{0,−x}. For any X ⊆ R, let
X+ denote the set of nonnegative numbers in X , i.e., X+ = {x ∈ X | x ≥ 0}. For
example, R+ denotes the set of all nonnegative real numbers. For any x ∈ R, let
	x
 denote the smallest integer no less than x, and let �x� denote the largest integer
no greater than x. For every Boolean expression X , let δX be 1 if X is true and 0
otherwise. The base two logarithm of z is denoted by log z.

Consider any real-valued function ϕ : D→R. Let argminϕ = argmin{ϕ(x) | x ∈
D} (argmaxϕ = argmax{ϕ(x) | x ∈ D}) be any x ∈ D, where ϕ(x) is minimized
(maximized). Note that if function ϕ has multiple minimizers (maximizers), we may
arbitrarily select any minimizer (maximizer) of ϕ as argminϕ(x) (argmaxϕ(x)). Let
ϕmax = maxx∈D |ϕ(x)|. If ϕ �≡ 0, then let ϕmin = min{|ϕ(x)| | x ∈ D and ϕ(x) �= 0}.
We denote by tϕ the time needed to evaluate ϕ on a single point in its domain.
Function ϕ is said to be unimodal over D if there exists x∗ ∈ D such that ϕ is
nonincreasing over D ∩ {x | x ≤ x∗} and nondecreasing over D ∩ {x | x ≥ x∗}. Note
that monotone functions and convex functions are special cases of unimodal functions.
Note also that in our context the “mode” of a unimodal function is a minimum point
of the function.

Consider any multiparameter real-valued function ϕ(x1, . . . , xk). For 1 ≤ i ≤ k,
we say that ϕ is monotone in xi (or equivalently “ϕ(x1, . . . , xi−1, ·, xi+1, . . . , xk) is

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1733

monotone”) if either ϕ is nondecreasing in xi for any fixed values of x1, . . . , xi−1, xi+1,
. . . , xk, or ϕ is nonincreasing in xi for any fixed values of x1, . . . , xi−1, xi+1, . . . , xk.

2.2. Notation for convex DPs. For any subsetE ⊆ D, we define the piecewise-
linear extension of ϕ induced by E as the continuous function over the domain
{x ∈ D | Emin ≤ x ≤ Emax} obtained by making ϕ linear between successive values of
E. We define the convex extension of ϕ induced by E as the continuous function over
the domain {x ∈ D | Emin ≤ x ≤ Emax} obtained by making ϕ equal to the lower
envelop of the convex hull of {(x, ϕ(x)) | x ∈ E}. Note that the convex extension
of ϕ induced by E is a piecewise-linear function and is the greatest convex function
that does not lie above ϕ over the points in E. For any subset D′ ⊆ D, a function
ϕ : D→R is said to be convex over D′ if its piecewise-linear extension induced by D′

is convex.
We now turn to a discussion of convex functions over two-dimensional discrete

domains. We consider the following important example.
Example 2.1. Let ϕ : R2→R be defined as ϕ(x, y) = (x − 2y)2. Clearly, ϕ is

convex over R2. Define ψ1, ψ2 : R→R such that

ψ1(x) = min
y∈R

ϕ(x, y)

and

(2.1) ψ2(x) = min
y∈Z

ϕ(x, y).

Note that ψ1 ≡ 0. Hence, it is convex over R. On the other hand, because ψ2 is 0 for
even x’s and is 1 for odd x’s, it is not convex over R.

This example shows that if we want ψ2 to be convex over R, we will need to
impose a stronger condition on ϕ than just requiring ϕ to be convex on R2. To
achieve this, we first explain the meaning of integrally convex sets introduced by
Murota [59]. Let X be a contiguous interval, and let Y (x) be a nonempty contiguous
interval for every x ∈ X . The set X ⊗ Y =

⋃
x∈X({x} × Y (x)) ⊂ Z2 is said to be

integrally convex if there exists a convex (but not necessarily bounded) polyhedron
CXY such that X ⊗ Y = CXY ∩ Z2 and that the slopes of CXY ’s edges are in the set
{−∞,−1, 0, 1,∞}; see Figure 3, which is adopted from [59].

�

�

�

�

�

�

��
����

Integrally convex

�

� �

�����

Not integrally convex

�

�

�

�

�
����
���

Not integrally convex

Fig. 3. Concept of integrally convex sets.

As will be seen in the proof of Proposition 9.1, a sufficient condition for ψ2 in
(2.1) to be convex is that ϕ is defined over an integrally convex set and that it can
be expressed as ϕ(x, y) = ϕ1(x) + ϕ2(y) + ω(τ(x, y)), where ϕ1, ϕ2, ω are univariate
convex functions and τ(x, y) = ax+ by + c for some a, c ∈ Z and b ∈ {−1, 0, 1}. This
is a key observation for developing our convex DP model.

We remark that in discrete optimization, discrete analogues of convexity, or “dis-
crete convexity” for short, have been considered. Miller investigated a class of discrete
functions, called “discrete convex functions,” of which local optimality implies global
optimality [58]. Favati and Tardella considered a certain special way of extending func-
tions defined over the integer lattice to piecewise-linear functions defined over the real

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1734 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

space, and they introduced the concept of “integrally convex functions” [23]. Murota
introduced the concepts of “L-convexity” and “M-convexity,” in which L stands for
“lattice” and M stands for “matroid” [59]. L- and M-convex functions possess several
desirable properties as discrete convex functions, including extendability to ordinary
(continuous) convex functions, duality theorems, and conjugacy between L- and M-
convex functions, etc. An alternative sufficient condition for ψ2 in (2.1) to be convex
is that function ϕ is “integrally convex” as defined in [23]. Because all the convex
problems we solve satisfy the above mentioned sufficient condition, the alternative
sufficient condition that ϕ should be integrally convex will not be discussed in this
paper.

3. Model statement. In this section, a basic model of decision making under
stochastic uncertainty over a finite number of time periods is reviewed. We consider
the following formulation for a finite horizon stochastic DP, as defined in Bertsekas
[7]. The model has two principal features: (i) an underlying discrete time dynamic
system, and (ii) a cost function that is additive over time. The system dynamics are
of the form

(3.1) It+1 = ft(It, xt, Dt), t = 1, . . . , T,

where t is the discrete time index, It is the state of the system, xt is the action or
decision to be selected in time period t, Dt is a discrete random variable, and T is
the number of time periods. The cost function, denoted by gt(It, xt, Dt), is additive
in the sense that the cost incurred in time period t is accumulated over time. Let I1
be the initial state of the system. Given a realization dt of Dt, for t = 1, . . . , T , the
total cost is

gT+1(IT+1) +
T∑

t=1

gt(It, xt, dt),

where gT+1(IT+1) is the terminal cost incurred at the end of the process. The problem
is to determine

(3.2) z∗(I1) = min
x1,...,xT

E

{
gT+1(IT+1) +

T∑
t=1

gt(It, xt, Dt)

}
,

where the expectation is taken with respect to the joint distribution of the random
variables involved. The optimization is over the actions x1, . . . , xT . Here, xt is selected
with the knowledge of the current state It but before the realization of Dt takes
place.

The state It is an element of a given state space St, the action xt is constrained to
take values in a given action space At(It), and the discrete random variable Dt takes
values in a given set Dt. The state space and the action space are one-dimensional.
Note that the domain of functions gt and ft is (St⊗At)×Dt. The following theorem
states the well-known DP recursion for this model.

Theorem 3.1 (the DP recursion [6]). For every initial state I1, the optimal cost
z∗(I1) of the DP is equal to z1(I1), where the function z1 is given by the last step of
the following recursion, which proceeds backward from period T to period 1:

(3.3) zT+1(IT+1) = gT+1(IT+1),

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1735

(3.4) zt(It) = min
xt∈At(It)

EDt {gt(It, xt, Dt) + zt+1(ft(It, xt, Dt))} , t = 1, . . . , T,

where the expectation is taken with respect to the probability distribution of Dt.
Note that the DP recursion given in Theorem 3.1 yields an exact solution for

z1(I1) but may require a pseudopolynomial running time. For example, if At(It) ≡ A
and St ≡ S for every t and It, then this DP has a running time of O(T |A||S|), but
|A| and |S| may be exponential in the (binary) input size.

We assume that the random variables are given explicitly in the following way.
For each Dt, we are given nt, the number of different values it admits with positive
probability, and its support Dt := {dt,1, . . . , dt,nt}, where dt,i < dt,j for i < j. We are
also given positive integers qt,1, . . . , qt,nt such that

Prob(Dt = dt,i) =
qt,i∑nt

j=1 qt,j
.

For every t = 1, . . . , T and i = 1, . . . , nt, we denote pt,i = Prob(Dt = dt,i). Then, we
have

(3.5)

EDt {gt(It, xt, Dt) + zt+1(ft(It, xt, Dt))}=
nt∑
j=1

pt,j

[
gt(It, xt, dt,j)+zt+1(ft(It, xt, dt,j))

]
.

In our analysis, the following notation will be used:

n∗ = maxt nt = maximum number of different values that
Dt can take over the entire time horizon;

D∗ =
∑T

t=1 |dt,nt | = maximum possible total value that the
random variables can take over the entire
time horizon;

US = maxt=1,...,T+1 |St| = maximal size of the state space;
UA = maxt=1,...,T maxIt∈St |At(It)| = maximal size of the action space.

Let gmax
t = maxI∈St, x∈At(I), d∈Dt

gt(I, x, d) be the maximal cost value in time period
t for t = 1, . . . , T . Let gmax

T+1 = maxI∈ST+1 gT+1(I). Let

gmin
t = min

I∈St, x∈At(I), d∈Dt

{gt(I, x, d) | gt(I, x, d) > 0}, t = 1, . . . , T,

be the minimal positive cost value in time period t. Let gmin
T+1 = minI∈ST+1{gT+1(I) |

gT+1(I) > 0}. (Note: For t = 1, . . . , T + 1, if gt ≡ 0, then gmin
t = +∞.) Let

Ug =
maxt=1,...,T+1 g

max
t

mint=1,...,T+1 g
min
t

.

In order to derive an FPTAS for our DP, the following conditions are needed.
Condition 1. ST+1,St,At(It) ⊂ Z for It ∈ St and t = 1, . . . , T . For any set X

among these sets, logmaxx∈X(|x| + 1) is bounded polynomially by the (binary) input
size, and the kth largest element in X can be identified in constant time for any 1 ≤
k ≤ |X |. For every t = 1, . . . , T , the number of different values the random variable
Dt admits with positive probability is a given integer nt, and its probability distribution

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1736 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

function is given as nt ordered pairs (dt,i, pti), where pt,i = Prob(Dt = dt,i) ∈ Q for
i = 1, . . . , nt. Moreover, Dt ⊂ Q for t = 1, . . . , T .

Condition 2. For every t = 1, . . . , T +1, functions ft, gt are either given explic-
itly (i.e., as explicit formulae) or are accessed via oracle calls. Moreover, the values
of gt are nonnegative rational numbers that are polynomially bounded by the (binary)
size of the input.1

Condition 3. At least one of the following properties holds:
(i) (Nondecreasing DP) Function gT+1 is nondecreasing. For t = 1, . . . , T ,

function ft is nondecreasing in its first variable and monotone in its sec-
ond variable, and gt is monotone in its second variable. Moreover, for each
t = 1, . . . , T , either zt is nondecreasing, or gt is nondecreasing in its first
variable and At(I) ⊆ At(I

′) for all I, I ′ ∈ St with I ≥ I ′.
(ii) (Nonincreasing DP) Function gT+1 is nonincreasing. For t = 1, . . . , T , func-

tion ft is nondecreasing in its first variable and monotone in its second
variable, and gt is monotone in its second variable. Moreover, for each
t = 1, . . . , T , either zt is nonincreasing, or gt is nonincreasing in its first
variable and At(I) ⊆ At(I

′) for all I, I ′ ∈ St with I ≤ I ′.
(iii) (Convex DP) The terminal state space ST+1 is a contiguous interval. For

t = 1, . . . , T , the state space St and the action space At(I), ∀I ∈ St, are
both contiguous intervals, and Dt ⊂ Z. Function gT+1 is a convex function
over ST+1. For t = 1, . . . , T , the set St ⊗ At is integrally convex, func-
tion gt can be expressed as gt(I, x, d) = gIt (I, d) + gxt (x, d) + ut(ft(I, x, d)),
and function ft can be expressed as ft(I, x, d) = a(d)I + b(d)x + c(d), where
gIt (·, d), gxt (·, d), ut(·) are univariate nonnegative convex functions, a(d) ∈ Z,
b(d) ∈ {−1, 0, 1}, and c(d) ∈ Z.

The input data of the problem consists of the number of time periods T , the initial
state I1, and the explicit description of the random variables as described in Con-
dition 1. We call DP formulation (3.3)–(3.4) monotone whenever it satisfies either
Condition 3(i) or Condition 3(ii) and convex whenever it satisfies Condition 3(iii).

Condition 1 requires the kth largest element in each of the state and action
spaces to be obtainable in constant time. However, the monotone DP model and
the convex DP model remain valid if this requirement is relaxed by allowing the
kth largest element in each of the state and action spaces to be obtainable in time
polylogarithmic in the size of the space. Note that whenever the state and action
spaces are contiguous intervals, one can find the kth largest element in constant
time. This is indeed the situation in the convex case and in most applications of the
monotone case. Condition 1 also requires that Dt ⊂ Q. However, the monotone DP
model and the convex DP model remain valid if Dt ⊂ Q�, where � is a positive integer
constant (see section 10.2 for details). Note that Condition 1 implies that logUS
and logUA are polynomially bounded by the input size, and Condition 2 implies that
logUg is polynomially bounded by the input size.

At first glance, one may think that Condition 3, with its three cases, is quite
cumbersome. It is due to our effort to formulate it in a general way. As shown in
the 10 examples described in section 1 (with the details provided in Appendix A),
each of the three cases has applications. Condition 3(iii) is somewhat restrictive.
Unfortunately, as shown in Theorem 9.2, the condition “b ∈ {−1, 0, 1}” and the

1After the paper was accepted for publication, the authors noted that the requirement that the
values of gt are polynomially bounded by the input size can be omitted if one includes Ug in the
input size.

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1737

condition that “St ⊗ At is an integrally convex set” are both needed to ensure that
the convex DP model admits an FPTAS. (We note in passing that the condition
“St ⊗ At is an integrally convex set” implies that both St and At are contiguous
intervals.)

We aim to provide an FPTAS for generating an approximated value of z1(I1).
Note that even in the very restrictive case where the number of states in the system is
a constant, computing the optimal solution by the DP recursion in Theorem 3.1 can
take up to

∑T
t=1 maxI |At(I)| evaluations of gt. When the action spaces are “large,”

this number can be exponential in the input size. Woeginger designed a framework
for deriving an FPTAS for deterministic DPs [79]. Among various assumptions, he
requires the cardinality of the action space to be bounded by a polynomial over
the binary input size (Condition C.4(ii) in [79]). Our work does not require this
assumption. Hence, our framework, when applied to deterministic DPs, is not a
special case of Woeginger’s framework. The main result of this paper, proved in
sections 4–9, is stated in the following theorem.

Theorem 3.2. Every stochastic minimization DP satisfying Conditions 1–3 ad-
mits an FPTAS.

Our result also applies to maximization problems, where the DP recursion (3.4)
has a “max” function instead of a “min” function. In order to achieve this, Condition 3
for maximization problems is reformulated as follows.

Condition 4. At least one of the following properties holds:
(i) (Nondecreasing DP) Function gT+1 is nondecreasing. For t = 1, . . . , T ,

function ft is nondecreasing in its first variable and monotone in its sec-
ond variable, and gt is monotone in its second variable. Moreover, for each
t = 1, . . . , T , either zt is nondecreasing, or gt is nondecreasing in its first
variable and At(I) ⊆ At(I

′) for all I, I ′ ∈ St with I ≤ I ′.
(ii) (Nonincreasing DP) Function gT+1 is nonincreasing. For t = 1, . . . , T , func-

tion ft is nondecreasing in its first variable and monotone in its second
variable, and gt is monotone in its second variable. Moreover, for each
t = 1, . . . , T , either zt is nonincreasing or gt is nonincreasing in its first
variable and At(I) ⊆ At(I

′) for all I, I ′ ∈ St with I ≥ I ′.
(iii) (Concave DP) The terminal state space ST+1 is a contiguous interval. For

t = 1, . . . , T , the state space St and the action space At(I), ∀I ∈ St, are
both contiguous intervals, and Dt ⊂ Z. Function gT+1 is a concave function
over ST+1. For t = 1, . . . , T , the set St ⊗ At is integrally convex, func-
tion gt can be expressed as gt(I, x, d) = gIt (I, d) + gxt (x, d) + ut(ft(I, x, d)),
and function ft can be expressed as ft(I, x, d) = a(d)I + b(d)x + c(d), where
gIt (·, d), gxt (·, d), ut(·) are univariate nonnegative concave functions, a(d) ∈ Z,
b(d) ∈ {−1, 0, 1}, and c(d) ∈ Z.

Theorem 3.3. Every stochastic maximization DP satisfying Conditions 1, 2,
and 4 admits an FPTAS.

In the analysis presented in sections 4–9, we focus on minimization problems. A
discussion of the validity of Theorem 3.3 is provided in section 10.1. Details of the 10
problems mentioned in the introduction and specifically how each problem is cast as
either monotone or convex DP are provided in Appendix A.

4. K-approximation sets and functions. Suppose ϕ : D→R+ is an arbitrary
implicit function over a finite domain D, and ϕ is accessed via an oracle in tϕ time
units. We want to preprocess a representation for it such that any further evaluation
of ϕ(·) will be done by this representation instead of querying ϕ(·) directly. Of course,

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1738 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

by querying all values ϕ(x) in x ∈ D and storing them in a sorted array of the form
{(x, ϕ(x)) | x ∈ D}, we can obtain in O(|D|tϕ) time a representation of size O(|D|)
which can return the value ϕ(x) for any x in O(log |D|) time. However, whenever
either |D| or tϕ is large, we would like to have a representation that takes less space
or fewer queries to construct. We say that a representation is succinct if its size is
polylogarithmic in |D| and ϕmax

ϕmin and that a representation is efficient if it can be

built in time polylogarithmic in both of these terms. (Note: Recall that ϕmin =
min

{|ϕ(x)| ∣∣ x ∈ D and ϕ(x) �= 0
}
. Hence, if ϕ �≡ 0, then ϕmin > 0, and the ratio

ϕmax

ϕmin is well-defined. If ϕ ≡ 0, then ϕmin is undefined, and we will refer to ϕmax

ϕmin as 1.)
Of course, not all functions admit efficient succinct representations. In fact, even

polynomial functions do not admit efficient succinct representations in general. How-
ever, as shown below, if the given function ϕ is a unimodal function (e.g., monotone
functions and convex/concave functions), then we can build a step function ϕ̂ (see
Definitions 4.4 and 4.2 below) to approximate it, and this step function admits an
efficient succinct representation.

Definition 4.1. Let K ≥ 1 and r, r̃ ≥ 0. We say that r̃ is a K-approximation
value of r (or more briefly, a K-approximation of r) if r ≤ r̃ ≤ Kr. Let ϕ, ϕ̃ : D→R+

be real-valued functions over a finite set D. We say that ϕ is succinct if it admits a
representation in space polylogarithmic in |D| + ϕmax

ϕmin . Function ϕ̃ : D→R+ is said

to be a K-approximation function of ϕ (or more briefly, a K-approximation of ϕ)
if ϕ(x) ≤ ϕ̃(x) ≤ Kϕ(x) for all x ∈ D (i.e., if ϕ̃(x) is a K-approximation value of
ϕ(x) for all x ∈ D). Function ϕ̃ is called a succinct K-approximation of ϕ if it is
a succinct function and is a K-approximation of ϕ. Such a function ϕ̃ is said to be
efficient if it can be constructed in time polylogarithmic in |D| + ϕmax

ϕmin .
Remark 1. If ϕ is a well-structured function, e.g., a monotone function, a

K-approximation of it is not necessarily so. In this section we show how to con-
struct K-approximation functions that do maintain the structure of the function they
approximate.

In order to get succinct approximations, we consider only succinct subsets of the
domain. (Of course, this can be done only by sacrificing accuracy.)

Definition 4.2. Let K ≥ 1, and let ϕ : D→R+ be a real-valued function over a
finite domain of real numbers. We say that W ⊆ D is a K-approximation set of ϕ if
the following three conditions are satisfied:

1. Dmin, Dmax ∈W .
2. (Boundedness) For every x ∈ W \ {Dmax}, either next(x,D) ∈ W or

max{ϕ(x), ϕ(next(x,W))} ≤ Kmin{ϕ(x), ϕ(next(x,W))}.
3. (Locality) max{ϕ(prev(x,W)), ϕ(next(x,W))} ≤ Kϕ(x) for every x ∈ D\W .

Remark 2. The notion of K-approximation sets was introduced in [33]. The orig-
inal definition of K-approximation set in [32, 33] (called the weak K-approximation
set in [32]) required that argminϕ ∈ W and that W satisfies the first two conditions
of Definition 4.2. In our new definition, we do not require W to include argminϕ.
As indicated in Proposition 4.3, this new definition is a generalization of the original
definition, and it provides us with stronger properties. For example, in section 6 we
have Proposition 6.3 and property 5 of Proposition 6.1, which do not hold under the
original definition of K-approximation set.

It is easy to check that for any unimodal function ϕ, if argminϕ ∈ W , then the
first two conditions of Definition 4.2 automatically imply the third condition. Hence,
we have the following proposition.

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1739

Proposition 4.3. Let K ≥ 1, and let ϕ : D→R+ be a unimodal function over
a finite domain of real numbers. Let W be a subset of D that satisfies the first two
conditions of Definition 4.2. If argminϕ ∈ W , then W is a K-approximation set
of ϕ.

Note that if ϕ is a monotone function, then by Proposition 4.3, any subset W
of D that satisfies the first two conditions of Definition 4.2 is a K-approximation set
of ϕ.

4.1. Direct access to ϕ. In this section we show that every unimodal (e.g.,
convex or monotone) function ϕ : D→R with a given argmin admits a succinct ap-
proximation that preserves the convex/monotone/unimodal structure of ϕ. Suppose
W is a subset of D that contains Dmin, Dmax. Having access to ϕ, we can construct
the following approximation of ϕ.

Definition 4.4. Let ϕ : D→R+ be a real-valued function over a finite domain
of real numbers. Let W ⊆ D be a set that contains Dmin, Dmax. The approximation
of ϕ induced by W is

ϕ̂(x) =

{
ϕ(x) if x ∈ W ;
max{ϕ(prev(x,W)), ϕ(next(x,W))} otherwise.

In the next proposition we show that K-approximation sets are useful for getting
K-approximation functions. The proof of this proposition is provided in Appendix B.
We give more properties of K-approximation sets in section 6.

Proposition 4.5 (approximation of a unimodal function with direct access).
Let ϕ : D→R+ be a unimodal function over a finite domain of real numbers. For any
K ≥ 1, any K-approximation set W of ϕ, and any minimizer x∗W = argmin{ϕ(x) |
x ∈ W}, the following properties hold (where ϕ̂ is the approximation of ϕ induced
by W):

1. ϕ̂ is a K-approximation of ϕ. In addition, if ϕ is stored in a sorted ar-
ray {(x, ϕ(x)) | x ∈ W}, then for any x ∈ D, ϕ̂(x) can be determined in
O(log |W |) time.

2. Let W− = {prev(x,D) | x ∈ W \ {Dmin}} and W+ = {next(x,D) | x ∈
W \ {Dmax}}. Then, W is a K-approximation set of ϕ̂, and W ∪ W− ∪
W+ is a 1-approximation set of ϕ̂. If ϕ is nondecreasing, then W ∪ W+

is a 1-approximation set of ϕ̂. If ϕ is nonincreasing, then W ∪ W− is a
1-approximation set of ϕ̂.

3. ϕ̂ is a unimodal function minimized at x∗W . If ϕ is monotone, then so is ϕ̂. If
ϕ is convex over D, then the convex extension of ϕ̂ induced by W is a convex
K-approximation of ϕ which is minimized at x∗W .

We say that a K-approximation set of ϕ : D → R is succinct if its size is polylog-
arithmic in |D| + ϕmax

ϕmin . Clearly, if there exists a succinct 1-approximation set of ϕ,
then ϕ is succinct. When no succinct 1-approximation set of ϕ is available, the focus
would be to find succinct K-approximations of ϕ, for some small K > 1, through
constructing succinct K-approximation sets for ϕ. In Algorithm 1 below, ApxSet is a
procedure for constructing a K-approximation set for any given constant K > 1 and
unimodal function ϕ which is minimized at a given x∗.

The next proposition in this section, when coupled with Proposition 4.5, tells
us that for any given convex or monotone function ϕ, or any unimodal function ϕ
with a given minimizer, we can efficiently build a succinct K-approximation function
that preserves the same structure as ϕ. The proof of this proposition is provided in
Appendix B.

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1740 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

Algorithm 1. Constructing a K-approximation set for a unimodal ϕ :
D → R which is minimized at x∗.
1: Function ApxSet(ϕ,D, x∗,K)
2: x← Dmax

3: W ← {Dmin, Dmax}
4: while x > Dmin do
5: if x > x∗ then x← min

{
prev(x,D),min{y ∈ D | y ≥ x∗ and Kϕ(y) ≥ ϕ(x)}}

6: else x← min
{
prev(x,D),min{y ∈ D | Kϕ(x) ≥ ϕ(y)}}

7: W ←W ∪ {x}
8: end while
9: Return W

Proposition 4.6. Let ϕ : D→R+ be a unimodal function over a finite domain
of real numbers. Let x∗ be a minimizer of function ϕ. Let tϕ be an upper bound on
the time needed to evaluate ϕ(x) for any x ∈ D. Then, for every given parameters
ϕ, D, x∗, and K > 1, function ApxSet computes a K-approximation set of ϕ in
O(tϕ(1 + logK

ϕmax

ϕmin) log |D|) time. This K-approximation set contains x∗ and has a

cardinality of O(1 + logK
ϕmax

ϕmin).

4.2. Approximated (indirect) access to ϕ. Sometimes, as happens when
we deal with monotone DP, “direct” access to the function ϕ which we want to
approximate is impossible, and only an access to function ϕ̄ that L-approximates ϕ is
available (L > 1). If ϕ̄ itself is monotone, then we can build for it a K-approximation
set W and, as we shall see in the next section, the approximation of ϕ̄ induced by
W is a monotone KL-approximation of ϕ. Suppose now that ϕ is nondecreasing but
ϕ̄ is not necessarily such. This begs the question: Is it still possible to efficiently
build a succinct nondecreasing approximation function for ϕ? The answer is in the
affirmative, though some extra work is involved. First, in Algorithm 2 below, we
construct a subset W̄ of the domain D of ϕ. We then define ϕ̃ to be the maximal
nondecreasing function that is bounded from above by ϕ̄ over W̄ . Proposition 4.7
below, which serves as a key proposition in the proof of the FPTAS for the monotone
DP case, tells us that W̄ is a K-approximation set of ϕ̃ and that ϕ̃ is a nondecreasing
KL-approximation of ϕ. The proof of this proposition is given in Appendix B.

Algorithm 2. Constructing a subset of D for a function ϕ̄ that approx-

imates a nondecreasing function ϕ.

1: Function IndirectApxSet(ϕ̄,D,K)
2: x← Dmax and W̄ ← {Dmin, Dmax}
3: while x > Dmin and Kϕ̄(Dmin) < ϕ̄(x) do
4: x← x′ | x′ < x and Kϕ̄(x′) < ϕ̄(x) and Kϕ̄(next(x′, D)) ≥ ϕ̄(x)
5: W̄ ← W̄ ∪ {x, next(x,D)}
6: end while
7: Return W̄

Proposition 4.7 (succinct approximation of a nondecreasing function via an
L-approximation general oracle). Let ϕ : D→R+ be a nondecreasing function over a
finite domain of real numbers. Let ϕ̄ be an (unnecessarily nondecreasing) L-approxi-
mation function of ϕ (L > 1). Let W̄ be the output of function IndirectApxSet for
given parameters ϕ̄, D, and K > 1. Let ϕ̃ be the maximal nondecreasing function

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1741

that is bounded from above by ϕ̄ over W̄ . Let tϕ̄ be an upper bound on the time
needed to evaluate ϕ̄(x) for any x ∈ D. Then, W̄ is a K-approximation set of ϕ̃,
ϕ̃ is a nondecreasing KL-approximation step function of ϕ, function IndirectApxSet
computes W̄ in O(tϕ(1 + logK

ϕmax

ϕmin) log |D|) time, and |W̄ | = O(1 + logK
ϕmax

ϕmin).
We conclude this section with the following example, which demonstrates the

outcome of Algorithm 2 on the specific instance of ϕ and ϕ̄ given in Table 3. This
example also shows the resulted function ϕ̃ and illustrates that the approximation
ratio of ϕ̃ may equal the worst-case bound guaranteed by Proposition 4.7.

Table 3

An example of a 4-approximation of ϕ built via a nonmonotone 2-approximation ϕ̄ of ϕ.

Objects \ i 0 1 2 3 4 5 6 7 8 9 10
ϕ(i) 0 1 1 2 2 2 2 2 4 4 5
ϕ̄(i) 0 2 1 4 3 3 4 3 6 5 8

W̄ * * * * * * *
ϕ̃ 0 3 3 3 3 3 4 8 8 8 8

Example 4.8. Let L = K = 2 and D = [0, 10]. Let ϕ and ϕ̄ be as given in
Table 3. The black dots in Figure 4 are the values of ϕ, and the small circles are
the values of ϕ̄. Note that ϕ̄ is a nonmonotone 2-approximation of the nondecreasing
function ϕ. The modification of ϕ̄ to a maximal nondecreasing function bounded from
above by ϕ̄ (i.e., the solid step function with small circle endpoints in Figure 4) is a
nondecreasing 2-approximation of ϕ, but since it is computed in linear time, it is too
costly to compute. The big circles are the values of ϕ̄(x) for those x ∈ W̄ , where set
W̄ is constructed by Algorithm 2. (See also the proof of Proposition 4.7 for details.)
Function ϕ̃ is the dashed step function with big circle endpoints in Figure 4. It is a
nondecreasing 4-approximation of ϕ.

� i

�

� = ϕ

� = ϕ̄

	= ϕ̄(x), x ∈ W̄

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10
� � � � � � � �

� � �

�
� �

� � � � �

� �

�

	
	 	

	 	 	

	

Fig. 4. Constructing W̄ and ϕ̃ in Example 4.8.

5. Calculus of K-approximation functions. In this section, a set of compu-
tational rules for manipulating K-approximation functions is developed. The follow-
ing proposition, referred as calculus of K-approximation functions, follows directly
from the definition of K-approximation functions, and its proof is therefore omitted.

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1742 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

(Properties 2, 3, and 4 in the proposition are adopted from [33].)
Proposition 5.1 (calculus of K-approximation functions). For i = 1, 2, let

Ki ≥ 1, let ϕi : D→R+ be an arbitrary function over any finite domain D, and let
ϕ̃i : D→R+ be a Ki-approximation of ϕi. Let ψ1 : D′→D be an arbitrary function
over any finite domain D′. Let α, β ∈ R+. The following properties hold:

1. ϕ1 is a 1-approximation of itself.
2. (Linearity of approximation) α+ βϕ̃1 is a K1-approximation of α+ βϕ1.
3. (Summation of approximation) ϕ̃1 + ϕ̃2 is a max{K1,K2}-approximation of
ϕ1 + ϕ2.

4. (Composition of approximation) ϕ̃1(ψ1) is a K1-approximation of ϕ1(ψ1).
5. (Maximization of approximation) max{ϕ̃1, ϕ̃2} is amax{K1,K2}-approximation

of max{ϕ1, ϕ2}.
6. (Minimization of approximation) min{ϕ̃1, ϕ̃2} is amax{K1,K2}-approximation

of min{ϕ1, ϕ2}.
7. (Approximation of approximation) If ϕ2 = ϕ̃1, then ϕ̃2 is a K1K2-approximation

of ϕ1.
Table 4 summarizes the places where the calculus of K-approximation functions

is used.

Table 4

Places where the calculus of K-approximation functions is used.

Rule Prop. 5.2 Prop. 5.3 Prop. 6.4 Prop. 7.1 Prop. 7.2 Thm. 9.3 Sect. 10.1
Linearity � � �
Summation �
Composition � �
Maximization �
Minimization �
Approximation �

The following two propositions will be useful in section 7 when K-approximation
sets and functions are linked with DP. Proofs of these propositions are available in
Appendix B.

Proposition 5.2 (minimization of summation of composition). Let n ∈ N,
let Ki ≥ 1 for i = 1, . . . , n, let D be any finite domain, and let C(x) be any finite
domain for every x ∈ D. Let ϕi : D→R+, let ϕ̃i be a Ki-approximation of ϕi, and
let ψi : D ⊗ C→D for i = 1, . . . , n. Let ϕ, ϕ̃ : D → R+ such that

ϕ(x) = min
y∈C(x)

{
n∑

i=1

ϕi(ψi(x, y))

}
and ϕ̃(x) = min

y∈C(x)

{
n∑

i=1

ϕ̃i(ψi(x, y))

}
.

Then, ϕ̃ is a max{K1, . . . ,Kn}-approximation of ϕ.
Since the cardinality of C(x) may be “big,” applying Proposition 5.2 and calcu-

lating the minimum over all the elements of C(x) may take time exponential in the
input size. For this reason, we would like to “approximate” C(x) succinctly in such a
way that performing the minimization of

∑n
i=1 ϕ̃i(ψi(x, y)) under this approximated

set, instead of under the entire C(x), will result in an efficient K-approximation of
ϕ for some “reasonable” K. This would be possible whenever the functions to be
approximated are monotone.

Proposition 5.3. For i = 1, . . . , n, let Ki, Li ≥ 1, let ϕi : D → R+ be a function
with a finite domain D ⊂ R, let ϕ̃i : D → R be an Li-approximation of ϕi, and let

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1743

ψi : D⊗C → D be a function such that for any fixed x ∈ D, ϕ̃i(ψi(x, ·)) is monotone
over a finite linearly ordered domain C(x). Let m be an integer such that 1 ≤ m ≤ n.
For any i = 1, . . . ,m and any x ∈ D, let Wi(x) ⊆ C(x) be a Ki-approximation set of
ϕ̃i(ψi(x, ·)). Let ϕ, ϕ̃ : D → R+ such that

ϕ(x) = min
y∈C(x)

{
n∑

i=1

ϕi(ψi(x, y))

}
and ϕ̃(x) = min

y∈⋃
m
i=1 Wi(x)

{
n∑

i=1

ϕ̃i(ψi(x, y))

}
.

Suppose for every x ∈ D, the function ϕ̃i(ψi(x, ·)) is monotone in one direction
(e.g., nondecreasing) for i = 1, . . . ,m and is monotone in the other direction
(e.g., nonincreasing) for i = m + 1, . . . , n. Then, ϕ̃ is a max{K1L1, . . . ,KmLm,
Lm+1, . . . , Ln}-approximation of ϕ.

Remark 3. Note that while Proposition 5.3 provides an upper bound to the
approximation ratio of ϕ̃, function ϕ̃ is not necessarily monotone. However, scanning
ϕ̃ (i.e., reading its values) in a linear way (e.g., sequentially from Dmin to Dmax)
and using the monotonicity of the original function ϕ, one can build a monotone
K-approximation function for ϕ. This approach will be adopted in section 8.

6. Calculus of K-approximation sets. In this section, a set of computational
rules based on the notion of K-approximation sets and functions is developed. Unlike
the calculus ofK-approximation functions, which focuses on the range of the functions,
the calculus of K-approximation sets focuses on the domain of the functions. Detailed
proofs of the following propositions are available in Appendix B.

Proposition 6.1 (calculus of K-approximation sets of unimodal functions). Let
K1,K2 ≥ 1. Let ϕ1 : D→R+ and ϕ2 : D→R+ be unimodal functions with a finite
domain D of real numbers. Let Wi be a Ki-approximation set of ϕi for i = 1, 2.
Let ψ : D′→D be a monotone function with a finite domain D′ of real numbers.
Denote ψ−1(Wi) =

{
max{x | ψ(x) ≤ y}, min{x | ψ(x) ≥ y} ∣∣ y ∈ Wi

}
if ψ is

nondecreasing and ψ−1(Wi) =
{
max{x | ψ(x) ≥ y}, min{x | ψ(x) ≤ y} ∣∣ y ∈ Wi

}
if

ψ is nonincreasing. Let α, β ∈ R+. The following properties hold:
1. D is a 1-approximation set of ϕ1.
2. (Monotonicity of approximation sets) Every superset W ′ of W1, where W

′ ⊆
D, is a K1-approximation set of ϕ1.

3. (Composition of approximation sets) ψ−1(W1) is a K1-approximation set of
ϕ1(ψ).

4. (Linearity of approximation sets) W1 is a K1-approximation set of α+ βϕ1.
5. (Maximization of approximation sets)W1∪W2 is a max{K1,K2}-approximation

set of max{ϕ1, ϕ2}.
If the functions involved are monotone in addition to being unimodal, then three

more rules hold.
Proposition 6.2 (calculus of K-approximation sets of monotone functions). Let

K1,K2 ≥ 1. Let ϕ1 : D→R+ and ϕ2 : D→R+ be monotone functions of the same
direction (i.e., either both are nondecreasing or both are nonincreasing) with a finite
domain D of real numbers. Let Wi be a Ki-approximation set of ϕi for i = 1, 2. The
following properties hold:

1. (Summation of approximation sets)W1∪W2 is a max{K1,K2}-approximation
set of ϕ1 + ϕ2.

2. (Minimization of approximation sets)W1∪W2 is amax{K1,K2}-approximation
set of min{ϕ1, ϕ2}.

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1744 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

3. (Approximation of approximation sets) If ϕ1 is a K2-approximation of the
restriction of ϕ2 over W1, then ϕ̂1 (i.e., the approximation of ϕ1 induced by
W1) is a K1K2-approximation of ϕ2.

If the functions involved are convex in addition to being unimodal, then one more
rule holds.

Proposition 6.3 (calculus of K-approximation sets of convex functions). Let
K1,K2 ≥ 1. Let ϕ1 : D→Z+ and ϕ2 : D→Z+ be convex over a finite domain D of
real numbers. Let Wi be a Ki-approximation set of ϕi for i = 1, 2. Then,

(Summation of approximation sets) W1 ∪W2 is a max{K1,K2}-approximation
set of ϕ1 + ϕ2.

Note that the calculus of K-approximation sets of unimodal functions includes
neither summation of approximation sets nor minimization of approximation sets
since unimodal functions are not closed under either summation or minimization.
Moreover, the calculus of K-approximation sets of convex functions does not include
minimization of approximation sets since the minimum of two convex functions is
not necessarily convex or even unimodal. Table 5 summarizes the places where the
calculus of K-approximation sets is used.

Table 5

Places where the calculus of K-approximation sets is used.

Rule Prop. 6.1 Prop. 6.2 Prop. 6.3 Prop. 7.1 Thm. 8.2 Thm. 9.3
Monotonicity � � �
Composition � �
Linearity � �
Approximation �

The last proposition in this section is as follows.
Proposition 6.4. Let K ′, L′ ≥ 1, and let ϕ be a convex function. Let ϕ̃ be a

convex L′-approximation function of ϕ. Let W be a K ′-approximation set of ϕ̃ and
ˆ̃ϕ be the approximation of ϕ̃ induced by W . Then, the convex extension of ˆ̃ϕ induced
by W is a convex K ′L′-approximation of ϕ.

Note that this proposition is valid because (i) by property 3 of Proposition 4.5,
ˆ̃ϕ is a convex K ′-approximation of ϕ̃; and (ii) by approximation of approximation
(Proposition 5.1), ˆ̃ϕ is a K ′L′-approximation of ϕ.

7. From K-approximation sets and functions to DP. In this section, two
propositions linking the notions of K-approximation sets and functions with DP are
presented. The first proposition deals with monotone DPs and is applied when zt+1

is guaranteed to be a monotone function. Note that in (7.1) below, the function
EDt{g̃t(It, ·, Dt)} + EDt{z̃t+1(ft(It, ·, Dt))} is not necessarily convex, and therefore
we cannot use binary search to determine its minimum point. In order to find an
efficient approximation, the minimization in (7.1) is over a set W−1(It), which is of
size polylogarithmic in the size of the action space At(It).

Proposition 7.1. Suppose the DP formulation (3.3)–(3.4) is monotone (so ei-
ther Condition 3(i) or Condition 3(ii) is satisfied). Let K ′, L′, L′′, t, and It be fixed
values, where K ′, L′ ≥ 1, 1 ≤ L′′ ≤ K ′L′, It ∈ St, and t ∈ [1, . . . , T]. Let gt be
as stated in Conditions 3(i) and 3(ii). Let z̃t+1 be a monotone L′-approximation of
zt+1 and W be a K ′-approximation set of z̃t+1. Let W−1(It) =

⋃nt

i=1 f
−1
t,i (It,W),

where f−1
t,i (It,W) =

{
max{xt | ft(It, xt, dt,i) ≤ w}, min{xt | ft(It, xt, dt,i) ≥ w} ∣∣

w ∈ W}
if ft is nondecreasing in its second variable, and f−1

t,i (It,W) =
{
max{xt |

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1745

ft(It, xt, dt,i) ≥ w}, min{xt | ft(It, xt, dt,i) ≤ w} ∣∣ w ∈ W}
if ft is nonincreasing in

its second variable. Let g̃t(It, ·, Dt) be a monotone L′′-approximation of gt(It, ·, Dt). Let

(7.1) z̄t(It) = min
xt∈W−1(It)

EDt

{
g̃t(It, xt, Dt) + z̃t+1(ft(It, xt, Dt))

}
.

Then, z̄t(It) is a K ′L′-approximation value of zt(It), and it can be determined in
O(nt(tg̃t + tft + tz̃t+1)|W−1(It)|) time if the elements of W−1(It) are given.

Proof. Since ft is monotone in its second variable and z̃t+1 is monotone, the
function EDt z̃t+1(ft(It, ·, Dt)) is monotone. Also, since g̃t is monotone in its second
variable, the function EDt g̃t(It, ·, Dt) is monotone. We consider two different cases.

Case 1. EDt g̃t(It, ·, Dt) and EDt z̃t+1(ft(It, ·, Dt)) are monotone in the same
direction. We consider the situation where these two functions are nondecreas-
ing. (The analysis for the nonincreasing case follows a similar argument.) Under
this situation, the minimum of the expression EDt{g̃t(It, ·, Dt) + z̃t+1(ft(It, ·, Dt))}
is attained when xt is the smallest element in At(It) (which is also an element of
W−1(It)). By composition of approximation (Proposition 5.1), z̃t+1(ft(It, ·, Dt)) is
an L′-approximation of zt+1(ft(It, ·, Dt)). By linearity of approximation and sum-
mation of approximation (Proposition 5.1), EDt{g̃t(It, ·, Dt) + z̃t+1(ft(It, ·, Dt))} is a
max{L′, L′′}-approximation of EDt{gt(It, ·, Dt)+zt+1(ft(It, ·, Dt))}. Hence, z̄t(It) is a
max{L′, L′′}-approximation of zt(It). This implies that z̄t(It) is aK

′L′-approximation
of zt(It). In this case, z̄t(It) can be determined in O(nt(tg̃t + tft + tz̃t+1)) time.

Case 2. EDt g̃t(It, ·, Dt) and EDt z̃t+1(ft(It, ·, Dt)) are monotone in the opposite
direction. In this case, we apply Proposition 5.3 with the following parameter setting.
Let D = St, C(·) = At(·), n = 2nt, m = nt, x = It, y = xt, ϕ(·) = zt(·), and
ϕ̃(·) = z̄t(·). For i = 1, . . . , nt, let ϕi(·) = pt,izt+1(·), ϕ̃i(·) = pt,iz̃t+1(·), ψi(x, y) =
ft(x, y, dt,i), Ki = K ′, Li = L′, and Wi(x) = f−1

t,i (x,W). For i = nt + 1, . . . , 2nt,
let ϕi(·) = pt,i−ntgt(It, ·, dt,i−nt), ϕ̃i(·) = pt,i−nt g̃t(It, ·, dt,i−nt), ψi(x, y) = y, and
Li = L′′.

Because z̃t+1 is an L
′-approximation of zt+1, by linearity of approximation (Propo-

sition 5.1), ϕ̃i(·) is an L′-approximation (i.e., Li-approximation) of ϕi(·) for i =
1, . . . , nt. Similarly, ϕ̃i(·) is an L′′-approximation (i.e., Li-approximation) of ϕi(·)
for i = nt + 1, . . . , 2nt. Because g̃t(It, ·, dt,i), z̃t+1, and ψi(It, ·) are monotone, the
function ϕ̃i(ψi(It, ·)) is monotone for i = 1, . . . , 2nt. In addition, ϕ̃i(ψi(It, ·)) is
monotone in one direction for i = 1, . . . , nt and is monotone in the other direc-
tion for i = nt + 1, . . . , 2nt. Because ft(It, xt, dt,i) is monotone in xt, and be-
cause W is a K ′-approximation set of z̃t+1, by composition of approximation sets
(Proposition 6.1), f−1

t,i (It,W) is a K ′-approximation set of z̃t+1(ft(It, ·, dt,i)) for i =
1, . . . , nt. By linearity of approximation sets (Proposition 6.1), f−1

t,i (It,W) is a K ′-
approximation set of ϕ̃i(ψi(It, ·)) for i = 1, . . . , nt. Thus, by Proposition 5.3, ϕ̃ is a
max{K1L1, . . . ,KmLm, Lm+1, . . . , Ln}-approximation of ϕ. Hence, z̄t is a
max{K ′L′, L′′}-approximation (i.e., a K ′L′-approximation) of zt.

In (7.1), the minimum of the function can be obtained in |W−1(It)| steps by
scanning all the elements of W−1(It). Each of these steps involves nt queries to g̃t,
ft, and z̃t+1 and requires O(nt(tg̃t + tft + tz̃t+1)) time.

Remark 4. As will be shown in Proposition 8.1, function zt in the DP for-
mulation (3.3)–(3.4) is guaranteed to be monotone. Therefore, finding a monotone
approximation for it makes sense. This is exactly the approach we take in section 8
by using Proposition 4.7.

The next proposition deals with convex DPs and is applied when both gt and zt+1

are guaranteed to be convex. Note that the minimization in (7.2), which is taken over

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1746 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

the entire action space At(It), is performed efficiently by exploiting the convexity of
EDt{g̃t(It, ·, Dt)} and EDt{z̃t+1(ft(It, ·, Dt))}.

Proposition 7.2. Suppose the DP formulation (3.3)–(3.4) is convex (so Condi-
tion 3(iii) is satisfied). Let K ′, K ′′, t, and It be fixed values, where K ′′ ≥ K ′ ≥ 1,
It ∈ St, and t ∈ [1, . . . , T]. Let g̃t(It, ·, dt,i) be a convex K ′-approximation function of
gt(It, ·, dt,i) for every i = 1, . . . , nt. Let z̃t+1 be a convex K ′′-approximation function
of zt+1. Let

(7.2) z̄t(It) = min
xt∈At(It)

EDt

{
g̃t(It, xt, Dt) + z̃t+1(ft(It, xt, Dt))

}
.

Then, z̄t(It) is a K
′′-approximation value of zt(It) and can be determined in O(nt(tg̃t+

tft + tz̃t+1) log |At(It)|) time.
Proof. We apply Proposition 5.2 with the following parameter setting. Let

D = St, C(·) = At(·), n = 2nt, x = It, y = xt, and ϕ(·) = zt(·). For i =
1, . . . , nt, let ϕi(·) = pt,igt(It, ·, dt,i), ϕ̃i(·) = pt,ig̃t(It, ·, dt,i), ψi(x, y) = y, and
Ki = K ′. For i = nt + 1, . . . , 2nt, let ϕi(·) = pt,i−ntzt+1(·), ϕ̃i(·) = pt,i−nt z̃t+1(·),
ψi(x, y) = ft(x, y, dt,i−nt), and Ki = K ′′. Because g̃t(It, ·, dt,i) is a K ′-approximation
of gt(It, ·, dt,i), by linearity of approximation (Proposition 5.1), ϕ̃i(·) is a
K ′-approximation (i.e., Ki-approximation) of ϕi(·) for i = 1, . . . , nt. Similarly, ϕ̃i(·)
is a K ′′-approximation (i.e., Ki-approximation) of ϕi(·) for i = nt+1, . . . , 2nt. Hence,
by Proposition 5.2, ϕ̃ is a max{K1, . . . ,Kn}-approximation of ϕ; that is, z̄t is a K

′′-
approximation of zt.

As for the computational time, note that for any fixed dt, function ft(It, ·, dt) is
linear with slope in {−1, 0, 1}. Thus, z̃t+1(ft(It, ·, dt)) is a convex function. Because a
conical combination (i.e., linear combination with nonnegative coefficients) of convex
functions is convex, EDt{g̃t(It, ·, Dt) + z̃t+1(ft(It, ·, Dt))} is a convex function, and
therefore its minimum can be obtained in O(log |At(It)|) steps by performing a binary
search over the contiguous interval At(It). Each of these steps involves nt queries to
g̃t, ft, and z̃t+1 and requires O(nt(tg̃t + tft + tz̃t+1)) time.

Remark 5. As will be shown in Proposition 9.1, function z̄t in (7.2) is guaranteed
to be convex. Therefore, finding a convex approximation for it makes sense. This is
exactly the approach we take in section 9.

From Propositions 7.1 and 7.2, we can see that approximating the stochastic DP
recursion (3.4) is essentially as hard as approximating the deterministic counterpart
of the problem (i.e., when the random variable is constant with probability 1), except
for an additional complexity factor of nt (i.e., the size of the support of the random
variable). This situation is substantially different from the determination of an exact
solution for the problem. For example, [33] showed that the single-item stochastic
inventory control problem with discrete demand is #P-hard (see Appendix A.5),
but it is known that the deterministic counterpart of this problem can be solved
in polynomial time as a minimum convex cost network flow problem or as a linear
program (see [25, section 4]).

8. An FPTAS for monotone DP. In this section, we develop an FPTAS for
nondecreasing DPs. The FPTAS for nonincreasing DPs is analogous. Our FPTAS is
summarized in Algorithm 3. (Recall that function IndirectApxSet is summarized in
Algorithm 2 in section 4.2.)

We give two remarks on Algorithm 3. The first remark is about step 5. In this
step, the function z̄t is given by (7.1) with the following setting. Function g̃t is set equal
to gt. The set W−1

t (It) equals
⋃nt

i=1 f
−1
t,i (It,W), where W = W̄t+1 ∪ {next(x,St+1) |

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1747

Algorithm 3. FPTAS for nondecreasing DP.

1: Procedure FPTASNondecreasingDP
2: K ← 1 + ε

2(T+1) , zT+1 ← gT+1, and W̄T+1 ← ApxSet(zT+1,ST+1, D
min,K)

3: Let z̃T+1 be the approximation of zT+1 induced by W̄T+1

4: for t := T downto 1 do
5: W̄t ← IndirectApxSet(z̄t,St,K) /* z̄t is as defined in (7.1); see details in the

text */
6: Let z̃t be the maximal nondecreasing function that is bounded from above by

z̄t on W̄t

7: end for

x ∈ W̄t+1 \ {Smax
t+1 }}. (W̄t+1 is obtained from the previous iteration of the for-loop.)

Note that z̄t is not necessarily monotone (nor unimodal). Thus, a K-approximation
set of it is undefined, and executing function ApxSet over ϕ cannot always be done
efficiently. (Step 5 of Algorithm 1 does not necessarily run in logarithmic time when
ϕ is not unimodal.) Hence, we call function IndirectApxSet instead.

The second remark is about step 6. This step determines the maximal non-
decreasing function z̃t such that z̃t(x) ≤ z̄t(x) for all x ∈ W̄t. Note that z̃t is a
nondecreasing step function. Hence, this step can be performed easily as follows.
We first set z̃t(Smax

t) ← z̄t(Smax
t). Then, we scan W̄t backward. For every pair of

consecutive elements x, y in W̄t (x < y), we set z̃t(x)← min{z̄t(x), z̃t(y)}.
In order to prove that Algorithm 3 is indeed an FPTAS, it would be essential for

certain property to remain invariant throughout the execution of the algorithm. This
property is stated in the next proposition.

Proposition 8.1 (monotone invariant). If Condition 3(i) is satisfied, then for
every t = 1, . . . , T +1, function zt in the DP formulation (3.3)–(3.4) is nondecreasing
over St.

Proof. We use backward induction. We first consider the base case of t = T + 1.
Because zT+1 ≡ gT+1 and gT+1 is nondecreasing, zT+1 is nondecreasing. Now, con-
sider any t = 1, . . . , T , and assume that zt+1 is nondecreasing. By condition 3(i), either
zt is nondecreasing or At(I) ⊆ At(I

′) for all I, I ′ ∈ St with I ≥ I ′. Thus, it suffices to
show that if At(I) ⊆ At(I

′) for all I, I ′ ∈ St with I ≥ I ′, then zt is nondecreasing. Be-
cause ft(·, xt, Dt) is nondecreasing, so is the composition function zt+1(ft(·, xt, Dt)).
Because gt(·, xt, Dt) is nondecreasing, so is the sum gt(·, xt, Dt) + zt+1(ft(·, xt, Dt)).
This implies that EDt{gt(·, xt, Dt) + zt+1(ft(·, xt, Dt))} is nondecreasing. If At(I) ⊆
At(I

′) for all I, I ′ ∈ St with I ≥ I ′, then At(·) is nonincreasing (by set contain-
ment) over St, which implies that the minimization minxt∈At(·)EDt{gt(·, xt, Dt) +
zt+1(ft(·, xt, Dt))} is nondecreasing over St. Hence, zt is nondecreasing.

The main result of this section is stated in the next theorem.
Theorem 8.2 (FPTAS for nondecreasing DP). Consider a DP that satisfies

Conditions 1, 2, and 3(i), and consider any 0 < ε < 1. For every initial state I1,
z̃1(I1) is a (1 + ε)-approximation of the optimal cost z∗(I1), where z̃1(I1) is given
in step 6 in the last iteration of Algorithm 3. Moreover, Algorithm 3 runs in time
polynomial in both 1

ε and the (binary) input size.
Proof. We first explain the correctness of Algorithm 3. Note that zT+1 is a

nonnegative unimodal function whose value is minimized at Dmin. Thus, the call to
function ApxSet in step 2 is valid. Note also that z̄t is a nonnegative function, and
function IndirectApxSet does not require its input function ϕ to be unimodal. Hence,
the call to function IndirectApxSet in step 5 is valid as well.

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1748 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

Next, we prove that Algorithm 3 returns a (1+ ε)-approximation solution. To do
so, we first show by induction that z̃t is a nondecreasing KT+2−t-approximation step
function of zt and that W̄t is a K-approximation set of z̃t, for every t = 1, . . . , T + 1.
By Propositions 4.5 and 4.6, z̃T+1 is a nondecreasing K-approximation of zT+1, and
W̄T+1 is a K-approximation set of z̃T+1. Thus, the base case of t = T + 1 is valid.
The induction hypothesis is that z̃t+1 is a nondecreasing KT+1−t-approximation step
function of zt+1, and that W̄t+1 is a K-approximation set of z̃t+1. We will show that
z̃t is a nondecreasing KT+2−t-approximation step function of zt and that W̄t is a
K-approximation set of z̃t.

The evaluation of z̄t in step 5 of Algorithm 3 is performed by applying Propo-
sition 7.1 with K ′ = L′′ = 1, L′ = KT+1−t, and W = W̄t+1 ∪ {next(x,St+1) |
x ∈ W̄t+1 \ {Smax

t+1 }}. In this way we get that z̄t is an (unnecessarily monotone)
KT+1−t-approximation of zt. (Note: The approximation of z̃t+1 induced by W̄t+1

equals z̃t+1, i.e., ˆ̃zt+1 ≡ z̃t+1; thus, by property 2 of Proposition 4.5, such a W is
indeed a 1-approximation set of z̃t+1.) Note that by the monotone invariant, zt is a
nondecreasing function. Therefore, by applying Proposition 4.7 with ϕ = z̄t, D = St,
K = K, and L = KT+1−t we get that W̄t is a K-approximation set of z̃t and that z̃t is
a nondecreasing KT+2−t-approximation step function of zt. This completes the proof
by induction, and the result implies that z̃1 is a KT+1-approximation of z1. Recall

that K = 1 + ε
2(T+1) . Hence, z∗(I1) ≤ z1(I1) ≤

[
1 + ε

2(T+1)

]T+1
z∗(I1). Because

the inequality (1 + x
n)

n ≤ 1 + 2x holds for every 0 ≤ x ≤ 1 and n ∈ N, we have
z∗(I1) ≤ z1(I1) ≤ (1 + ε)z∗(I1) for any given 0 < ε < 1.

It remains to prove that the running time of Algorithm 3 is polynomial in both
the input size and 1

ε . From Conditions 1 and 2, logUS , logUA, and logUg are all
polynomially bounded by the input size. For ease of exposition, we assume that the
values of US , UA, and Ug are at least 2 (so that their logarithmic values are at least
1). Clearly, the running time of Algorithm 3 is dominated by the for-loop, which
has T iterations. In each iteration, the running time is dominated by the execution
of function IndirectApxSet in step 5. By Proposition 4.7, each execution of func-
tion IndirectApxSet takes O(tz̄t(1 + logK(TUg)) logUS) = O(tz̄t logK(TUg) logUS)
time. (Note that the maximum possible value of z̄t is bounded from above by
KT+2−t(T + 2 − t)Ug ≤ 2TUg, as K

T+1 ≤ 1 + ε < 2.) Note that (i) by Proposi-
tion 7.1, evaluating z̄t takes O(nt(tgt + tft + tz̃t+1)|W−1(It)|) time once W−1(It) is
given; and (ii) by the monotonicity of ft(·, ·, Dt) in its first two variables, the time
needed to construct W−1(It) is O(nt|W |tft logUA), once W is given. Thus, tz̄t =
O
(
nt(tgt + tft + tz̃t+1)|W−1(It)|+nt|W |tft logUA

)
. Note that |W−1(It)| = O(nt|W |).

By Proposition 4.7, |W | = O(1 + logK(TUg)) = O(logK(TUg)). Note also that z̃t+1

(which is obtained from the previous iteration of the for-loop) can be stored succinctly
in a sorted array of size |W̄t+1|. Hence, tz̃t+1 = O(log |W̄t+1|) = O(log logK(TUg)).
(Recall that we apply Proposition 7.1 with |W | ≤ 2|W̄t+1| − 1.) This implies that

tz̄t = O
(
n2
t (tgt + tft + log logK(TUg)) logK(TUg) + nttft logUA logK(TUg)

)
.

This in turn implies that each execution of function IndirectApxSet takes O
(
[n2

t (tgt +

tft + log logK(TUg)) + nttft logUA] log2K(TUg) logUS
)
time. Therefore, the running

time of the entire algorithm is

O
(
Tn∗[n∗tg + (n∗ + logUA)tf + n∗ log logK(TUg)

]
log2K(TUg) logUS

)
,

where n∗ = maxt nt, tg = maxt tgt , and tf = maxt tft . Because 0 < ε < 1, we have

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1749

1 < K < 2. It is easy to check that O(logK(TUg)) = O(
log(TUg)

K−1). Replacing K with
1 + ε

2(T+1) , we conclude that the running time of the algorithm is

(8.1)

O

(
T 3n∗

ε2

[
n∗tg + (n∗ + logUA)tf + n∗ log

(
T

ε
log(TUg)

)]
log2(TUg) logUS

)
,

which is polynomial in both 1
ε and the input size.

Remark 6. The dependency of the running time of the algorithm on T is at most
(T logT)3 and the dependency on ε is at most 1

ε2 log
1
ε . Note that if the transition

functions ft(·, ·, Dt), t = 1, . . . , T, are given explicitly and are strictly monotone in
their second variable, then the construction of each W−1(It) can be speeded up to
O(nt|W |tft) time, and the term logUA can be dropped from (8.1).

9. An FPTAS for convex DP. In this section, we develop an FPTAS for
any DP that satisfies Conditions 1, 2, and 3(iii). Our FPTAS is summarized in
Algorithm 4. In order to prove that Algorithm 4 is indeed an FPTAS, it would be
essential for certain property to remain invariant throughout the execution of the
algorithm. This property is stated in the following proposition.

Algorithm 4. FPTAS for convex DP.

1: Procedure FPTASConvexDP
2: K ← 1 + ε

2(T+1) , x∗ ← argmin gT+1, WT+1 ← ApxSet(gT+1,ST+1, x
∗,K)

3: Let z̆T+1 be the convex extension of gT+1 induced by WT+1

4: for t := T downto 1 do
5: x∗ ← argmin z̄t /* z̄t is as defined in (7.2) with g̃t set equal to gt */
6: Wt ← ApxSet(z̄t,St, x∗,K)
7: Let z̆t be the convex extension of z̄t induced by Wt

8: end for

Proposition 9.1 (convex invariant). If Condition 3(iii) is satisfied, then func-
tion zt in the DP formulation (3.3)–(3.4) is convex over St for every t = 1, . . . , T +1,
and function z̄t in (7.2) is convex over St for every t = 1, . . . , T .

Proof. We first prove the convexity of function zt. Our proof follows the lines
of, but generalizes, the proof of Proposition 6.1 in [33]. We use backward induction.
Consider first the base case of t = T +1. Note that zT+1 ≡ gT+1. By Condition 3(iii),
gT+1 is convex, and hence zT+1 is convex. For any t = 1, . . . , T , we assume by
induction that zt+1 is convex and prove that zt is also convex. By Condition 3(iii),
(3.4) can be rewritten as

zt(I) = EDt{gIt (I,Dt)}+ min
x∈At(I)

EDt

{
gxt (x,Dt)+ut(ft(I, x,Dt))+zt+1(ft(I, xt, Dt))

}
.

Define qt(·) = EDt{gxt (·, Dt)} and yt,I(·) = EDt{ut(ft(I, ·, Dt))+zt+1(ft(I, ·, Dt))} for
all I ∈ St. Note that qt and yt,I are univariate functions over the contiguous interval
At(I). Because ut and zt+1 are convex functions and ft is linear in its second variable,
functions ut(ft(I, ·, Dt)) and zt+1(ft(I, ·, Dt)) are convex. In addition, because a
conical combination of convex functions is a convex function, functions qt, yt,I , and
EDt{gIt (·, Dt)} are convex. Since EDt{gIt (·, Dt)} is a convex function, it is sufficient
to prove that the function

(9.1) ζt(I) = min
x∈At(I)

{
qt(x) + yt,I(x)

}

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1750 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

is convex. It suffices to show that 2ζt(I) ≤ ζt(I + 1) + ζt(I − 1) for all I ∈ St \
{Smin

t ,Smax
t }. Consider any I ∈ St \ {Smin

t ,Smax
t }. Let x′ ∈ At(I − 1) such that

ζt(I − 1) = qt(x
′) + yt,I−1(x

′), and let x′′ ∈ At(I + 1) such that ζt(I + 1) = qt(x
′′) +

yt,I+1(x
′′). Let x∗ = �x′+x′′

2 � and x∗ = 	x′+x′′
2
. Because St is a contiguous interval,

the convexity of qt implies that qt(x∗) + qt(x
∗) ≤ qt(x

′) + qt(x
′′). We divide the

analysis into three different cases depending on the coefficient b of x in the function
ft(I, x,D). Suppose first that b = 1. The convexity of yt,I implies that (recall that a
is the coefficient of I in the function ft(I, x,D))

(9.2) yt,I(x∗) + yt,I(x
∗) ≤ yt,I(x′ − a) + yt,I(x

′′ + a) = yt,I−1(x
′) + yt,I+1(x

′′).

If x∗, x∗ ∈ At(I), then ζt(I) ≤ qt(x∗) + yt,I(x∗) and ζt(I) ≤ qt(x
∗) + yt,I(x

∗), which
imply that 2ζt(I)− [ζt(I+1)+ζt(I−1)] ≤ qt(x∗)+qt(x∗)− [qt(x′)+qt(x′′)]+yt,I(x∗)+
yt,I(x

∗)− [yt,I−1(x
′) + yt,I+1(x

′′)] ≤ 0, or equivalently, 2ζt(I) ≤ ζt(I + 1) + ζt(I − 1).
Hence, it suffices in this case to prove that x∗, x∗ ∈ At(I). If, on the other hand,
b = −1, we replace (9.2) with

yt,I(x∗) + yt,I(x
∗) ≤ yt,I(x′ + a) + yt,I(x

′′ − a) = yt,I−1(x
′) + yt,I+1(x

′′),

and, again, it suffices to prove that x∗, x∗ ∈ At(I). Last, if b = 0, then yt,I(·) is a
constant, say, yt,I , and we replace (9.1) with

ζt(I) = yt,I + min
x∈At(I)

{
qt(x)

}
,

so if x∗, x∗ ∈ At(I), then ζt(I) ≤ qt(x∗) + yt,I and ζt(I) ≤ qt(x
∗) + yt,I , yt,I =

yt,I−1 + a, and yt,I = yt,I+1 − a, which imply that 2ζt(I) − [ζt(I + 1) + ζt(I − 1)] ≤
qt(x∗) + qt(x

∗) − [qt(x
′) + qt(x

′′)] + 2yt,I − [yt,I−1 + yt,I+1] ≤ 0, or equivalently,
2ζt(I) ≤ ζt(I+1)+ζt(I−1). Hence, once again, it suffices to prove that x∗, x∗ ∈ At(I).

To prove that x∗, x∗ ∈ At(I) (i.e., (I, x∗), (I, x∗) ∈ St⊗At), we consider the case
where x′ ≤ x′′. The case where x′ > x′′ follows a similar argument and is omitted.
Note that (I−1, x′), (I+1, x′′) ∈ St⊗At and that St⊗At is integrally convex. Thus,
it suffices to show that both (I, x∗) and (I, x∗) are elements of the minimal integrally
convex set S that contains (I − 1, x′) and (I +1, x′′). We divide the analysis into four
different cases (see Figure 5), as follows.

Case 1. x′′ = x′. In this case, x∗ = x∗ = x′ = x′′ and S = {(I− 1, x′), (I, x′), (I+
1, x′)}. Hence, (I, x∗), (I, x∗) ∈ S.

Case 2. x′′ = x′ + 1. In this case, x∗ = x′ and x∗ = x′′. Note that the edges of
S must have slopes in {−∞,−1, 0, 1,∞}. Hence, S = {(I − 1, x′), (I, x′), (I, x′′), (I +
1, x′′)}, and therefore (I, x∗), (I, x∗) ∈ S.

Case 3. x′′ = x′+2. In this case, x∗ = x∗ = x′+x′′
2 and S = {(I−1, x′), (I, x′+x′′

2),
(I + 1, x′′)}. Hence, (I, x∗), (I, x∗) ∈ S.

Case 4. x′′ ≥ x′+3. Because the edges of S have slopes in {−∞,−1, 0, 1,∞}, set S
is bounded from below by the line connecting the points (I − 1, x′) and (I +1, x′ +2)
and is bounded from above by the line connecting the points (I − 1, x′′ − 2) and
(I + 1, x′′). Hence, points (I, x∗) and (I, x∗) must be included in S.

This completes the proof of convexity of function zt.
To show the convexity of z̄t, we define qt,I(·) = EDt{g̃t(I, ·, Dt)} and yt,I(·) =

EDt{z̃t+1(ft(I, ·, Dt))} for all I ∈ St. Then, qt,I and yt,I are convex functions, and

z̄t(I) = min
x∈At(I)

{
qt,I(x) + yt,I(x)

}
.

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1751

Using the same argument as in the above convexity proof for ζt, we get that z̄t is
convex.

It should be noted that the convex invariant does not necessarily hold if we drop
from Condition 3(iii) either the requirement that St ⊗ At is integrally convex or the
requirement that the coefficient of the second variable of ft is in {−1, 0, 1}. This is
demonstrated in the following two examples:
St⊗At is not integrally convex. Consider the following single-period example: T =

1, S1 = {0, 1, 2}, S2 = {0, 1}, A1(0) = {0}, A1(1) = {1}, A1(2) = {1}, g1(I, x, d) =
2x, g2(I) = |I|, and f1(I, x, d) = I −x. Note that in this example S1⊗A1 is depicted
in the second diagram of Figure 3, where the bottom-left point is (0, 0), and is not
integrally convex. Note also that z1(0) = 0, z1(1) = 2, and z1(2) = 3. Hence, z1 is
not convex.

The coefficient of the second variable of ft is not in {−1, 0, 1}. Consider the
following single-period example: T = 1, S1 = [0, . . . , 10], S2 = [−8, . . . , 10], A1(I) =
{0, 1, 2}, g1 ≡ 0, g2(I) = |I|, and f1(I, x, d) = I − 4x. Note that S1 ⊗A1 is integrally
convex, as it is the intersection of a rectangle with the integer lattice. The global
minima of z1 are at 0, 4, and 8 (with value 0), while the global maxima are at 2, 6,
and 10 (with value 2). Hence, z1 is not convex.

These two examples show that if one of the major requirements of Condition 3(iii)
does not hold, then the objective function z1 is not necessarily convex. But is it still
possible to design an FPTAS for the problem? The following theorem, which is proved
in Appendix C, tells us that this is unlikely to happen.

Theorem 9.2. A convex DP where either St ⊗ At is not integrally convex,
or b /∈ {−1, 0, 1}, does not necessarily admit a constant factor approximation unless
P = NP .

The main result of this section is stated in the next theorem.
Theorem 9.3 (FPTAS for convex DP). Consider a DP that satisfies Condi-

tions 1, 2, and 3(iii), and consider any 0 < ε < 1. For every initial state I1, z̆1(I1) is
a convex (1 + ε)-approximation of the optimal cost z∗(I1), where z̆1(I1) is generated
from step 7 in the last iteration of Algorithm 4. Moreover, Algorithm 4 runs in time
polynomial in both 1

ε and the (binary) input size.
Proof. Note first that the convex invariant (Proposition 9.1) ensures that all the

z̄t’s are convex functions. Hence, all calls to function ApxSet in step 6 are valid.
Next, we prove that Algorithm 4 returns a (1+ ε)-approximation solution. To do

so, we first show by induction that z̆t is a convex KT+2−t-approximation function of
zt for every t = 1, . . . , T +1. For the base case of t = T +1, we apply Proposition 6.4
with K ′ = K, L′ = 1, ϕ = ϕ̃ = zT+1, and W = WT+1, and we get that z̆T+1

is convex K-approximation of zT+1. Thus, the base case is valid. The induction
hypothesis is that z̆t+1 is a convex KT+1−t-approximation of zt+1. We will show that
z̆t is a convex KT+2−t-approximation of zt. We apply Proposition 7.2 with K ′ = 1
(since g̃t ≡ gt) and K ′′ = KT+1−t (since z̆t+1 is a convex KT+1−t-approximation
of zt+1). We get that z̄t is a KT+1−t-approximation function of zt. By the convex

� � �

Case 1

� �

� �

����

Case 2

�

�

�

�
��

Case 3

�

�

�

�

�

�

�
���
��

Case 4

Fig. 5. The four cases in the proof of Proposition 9.1.

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1752 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

invariant (Proposition 9.1), z̄t is a convex KT+1−t-approximation of zt. Applying
Proposition 6.4 with ϕ = zt, ϕ̃ = z̄t, K

′ = K, L′ = KT+1−t, and W = Wt (from
step 6 of the algorithm, Wt is a K-approximation set of z̄t), we get that z̆t is a convex
KT+2−t-approximation of zt. This completes the proof by induction, and the result
implies that z̆1 is a convex KT+1-approximation of z1. Recall that K = 1 + ε

2(T+1) .

Hence, z∗(I1) ≤ z1(I1) ≤
[
1 + ε

2(T+1)

]T+1
z∗(I1). Because the inequality (1 + x

n)
n ≤

1 + 2x holds for every 0 ≤ x ≤ 1 and n ∈ N, we have z∗(I1) ≤ z1(I1) ≤ (1 + ε)z∗(I1)
for any given 0 < ε < 1.

It remains to prove that the running time of Algorithm 4 is polynomial in both
the input size and 1

ε . From Conditions 1 and 2, logUS , logUA, and logUg are all
polynomially bounded by the input size. For ease of exposition, we assume that the
values of US , UA, and Ug are at least 2 (so that their logarithmic values are at least
1). Clearly, the running time of Algorithm 4 is dominated by the for-loop, which has
T iterations. In each iteration, the running time of step 7 is dominated by that of
steps 5 and 6. As mentioned above, z̄t is a convex function. Therefore, binary search
can be applied over the state space US to determine an argmin. Thus, step 5 takes
O(tz̄t logUS) time. Note that the maximum possible value of z̄t is bounded from
above by KT+2−t(T + 2 − t)Ug ≤ 2TUg (as KT+1 ≤ 1 + ε < 2). Subsequently, by
Proposition 4.6, step 6 takes O(tz̄t [1+ logK(TUg)] logUS) time. Hence, each iteration
of the for-loop takes O(tz̄t [1 + logK(TUg)] logUS) = O(tz̄t logK(TUg) logUS) time.
By Proposition 7.2, each evaluation of z̄t(It) requires O(nt(tgt + tft + tz̆t+1) logUA)
time. Note that z̆t+1 can be stored in a sorted array of size no larger than |Wt|.
Thus, by property 1 of Proposition 4.5 and Proposition 4.6, z̆t+1 can be evaluated in
O(log(1 + logK(TUg))) time; that is, tz̆t+1 = O(log logK(TUg)). This implies that

tz̄t = O
(
nt

[
tgt + tft + log logK(TUg)

]
logUA

)
.

Therefore, the running time of the entire algorithm is

O
(
Tn∗[tg + tf + log logK(TUg)

]
logK(TUg) logUS logUA

)
,

where n∗ = maxt nt, tg = maxt tgt , and tf = maxt tft . Because 0 < ε < 1, we have

1 < K < 2. It is easy to check that O(logK(TUg)) = O(
log(TUg)

K−1). Replacing K with
1 + ε

2(T+1) , we conclude that the running time of the algorithm is

O

(
T 2n∗

ε

[
tg + tf + log

(
T

ε
log(TUg)

)]
log(TUg) logUS logUA

)
,

which is polynomial in both 1
ε and the input size.

Remark 7. The dependency of the running time of the algorithm on T is at most
(T logT)2, and the dependency on ε is at most 1

ε log
1
ε .

10. Extensions. Our framework for designing FPTASs for stochastic DPs can
be extended well beyond the results stated in Theorems 3.2 and 3.3. However, there
is a trade-off between the level of generalization of a framework for designing FPTASs
and the complication of its construction and analysis. The goal of this paper, in this
respect, is to develop a “reasonable” sufficient set of conditions that guarantees the
existence of an FPTAS and to provide such an FPTAS. The conditions are satisfied
by some basic problems in logistics, operations management, economics, and finance,
as we have demonstrated with the 10 problems stated in the introduction. On the

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1753

other hand, it is possible to extend the framework much further at the expense of
additional complexity. In this section we show how to extend the framework in a few
directions, including maximization problems, random vectors, correlated stochastic
events, implicit descriptions of stochastic events, and profit approximation. Some
of these extensions are moderately involved and are discussed in detail here. Other
extensions, such as those in sections 10.6–10.9, are more involved and will be presented
in full in other papers.

10.1. Maximization problems. Not surprisingly, our framework also applies
to maximization problems as summarized in Theorem 3.3. We now give some detailed
explanation of why this is so. So far, we have considered the one-sided approximation,
where for every K ≥ 1, we construct a function z̃ that K-approximates z, i.e., z(x) ≤
z̃(x) ≤ Kz(x), for every x. If one draws the graph of z and z̃, then z̃ lies “above” z.
To emphasize this point, we say that z̃ K-approximates z from above. For maximiza-
tion problems, we would like to construct an approximation function z̃ so that the error
remains one-sided but is of the other side. In other words, z̃ is a K-approximation
of z from below if z

K ≤ z̃ ≤ z. Clearly, if z̃ K-approximates z from above, then z̃
K

K-approximates z from below. Similarly, if z̃ K-approximates z from below, then Kz̃
K-approximates z from above. It is possible, and rather straightforward, to extend
the definitions and results in sections 4–9 to deal with maximization problems.

10.2. Random vectors. Until now we have assumed that D1, . . . , DT are in-
dependent one-dimensional random variables. It is not difficult to check that the
analysis of our framework remains valid if D1, . . . , DT are nonnegative independent
multi-dimensional random variables, i.e., random vectors. Extending D1, . . . , DT to
random vectors enables our framework to have more applications. Consider, for ex-
ample, a more general version of the stochastic ordered adaptive knapsack problem
described in Appendix A.1, in which not only the volume vt, but also the profit πt,
is a random variable. In this case, the input includes the probability distribution of
Dt = (vt, πt). (For every t, we allow vt and πt to be nonindependent.) The domains
of the single-period cost function gt and the transition function ft are now four-
dimensional, where gt(It, xt, vt, πt) = xtπtδvt≤It and ft(It, xt, vt, πt) = (It − xtvt)+.
This example can be further extended to include random yields, in which the order
of an item for inclusion into the knapsack may not be fulfilled. Let γt be a binary
random variable, which is equal to 1 when the inclusion of item t into the knapsack
is successful, and is equal to 0 otherwise. Then, Dt = (vt, πt, γt), and the domains of
functions gt and ft are five-dimensional, where gt(It, xt, vt, πt, γt) = γtxtπtδvt≤It and
ft(It, xt, vt, πt, γt) = (It − γtxtvt)+.

An example of a binary random process in inventory control theory is given in [63].
Random yield models in logistics generalize the supply process in that the proportion
of the order being executed is a random variable. (See the survey of [80] and the
references therein.) Consider, for example, a random yield version of single-item
stochastic batch dispatch problem studied in Appendix A.6, in which the single-
period cost function gt and the transition function ft depend on both the random
variable Gt counting the number of units of newly arriving goods and a rational
random yield random variable Ot (i.e., the random vector is Dt = (Gt, Ot)). In
this case, gt(It, xt, Gt, Ot) = Ktδ�Otxt�>0 + ct�Otxt�+ ht−1It and ft(It, xt, Gt, Ot) =
It − �Otxt�+Gt.

Another example of random vectors is presented in Appendix A.7 when we deal
with single-resource revenue management with stochastic customer arrivals and can-
cellations.

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1754 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

10.3. Nonindependent random vectors. Dealing with nonindependent ran-
dom vectors would demand greater attention. Let us consider the well-studied model
of “Markov-modulated demand” (or “world-driven demand”); see, for example, [12,
42, 46, 71] and [81, pp. 415–420]. There is an exogenous discrete-time Markov process
W = {Wt}, called the world. The distribution of Dt now depends on the current
value of Wt. This means that D1, . . . , DT are no longer independent. Random vector
Dt is influenced by Wt, and the Markovian dependence among W1, . . . ,WT induces
dependence in D1, . . . , DT . We also allow Dt and the next world state Wt+1 to be
driven by common events, so that Dt and Wt+1 may be dependent. We assume,
however, that these are the only sources of dependence; that is, conditional on Wt,
the pair (Dt,Wt+1) is independent of all past events. For example, in a generaliza-
tion of the cash management problem, the world may represent the economy [37]. In
a generalization of the single-item dispatch problem in which the goods are ash of
fireplaces, the world may represent the weather.

Let the world state consist of the n states [1, . . . , n] and be represented by a
transition probability matrix (Wi,j). Note that the classical model with independent
and identically distributed Dt is a special case of this model with the world being a
single state. The basic model presented in section 3 is also a special case of this model
with the number of states in the world being n = T and the transition matrix (Wi,j)
being a T × T stochastic matrix with wi,i+1 = 1 for i = 1, . . . , T − 1, wT,T = 1, and
wi,j = 0 for all other i, j pairs.

In the Markov-modulated demand model, the domain of zt is [1, . . . , n]×St. Thus,
instead of (3.2), we have

z∗(w1, I1) = min
x1,...,xT

E

{
gT+1(wT+1, IT+1) +

T∑
t=1

gt(Wt, It, xt, Dt)

}
,

where the expectation is taken with respect to the mutual probability distribution of
Wt and Dt, and W1 = w1. Instead of (3.3)–(3.4), we have

zT+1(wT+1, IT+1) = gT+1(wT+1, IT+1)

and zt(wt, It) =

min
xt∈At(It)

EDt|Wt=wt

{
gt(wt, It, xt, Dt) + EWt+1|Wt=wt

zt+1(Wt+1, ft(wt, It, xt, Dt))
}

for t = 1, . . . , T . Instead of (3.5), we have

ED|Wt=wt

{
gt(wt, It, xt, Dt) + EWt+1|Wt=wt

zt+1(Wt+1, ft(wt, It, xt, Dt))
}

=
∑nwt

j=1 pwt,j

[
gt(wt, It, xt, dwt,j) +

∑n
i=1 wwt,izt+1(i, ft(wt, It, xt, dwt,j))

]
.

For every fixed world-state wt, we compute K-approximation sets and functions of
zt(wt, ·). Since the world transition probability matrix is given explicitly, the compu-
tation will take polynomial time in the (binary) input size.

Our framework can be easily generalized to provide FPTASs for any constant
number of Markov-modulated processes, in which each process is modulated by a
separate Markov chain. For example, if we have a Markov-modulated demand process
WD and a Markov-modulated supply processWS , as studied in [27], then the domain
of zt(w

D
t , w

S
t , It) becomes three-dimensional, and for every pair of states (wD

t , w
S
t) ∈

[1, . . . , nD]× [1, . . . , nS], we compute K-approximating sets and functions for it.

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1755

It is also possible to handle another case of nonindependence. Here, there is
no “world” state, but the random process {D1, . . . , DT } forms a Markov chain with
transition matrix (Pij). Then, the state of the environment dt in period t is dependent
only on the observed state dt−1 in period t− 1.

Finally, we consider a non-Markov-modulated process, where the world state wt

at time t transitions to the next state by a deterministic transition function ht :
W ×S ×A×D→W (i.e., being in world state wt and inventory state It, performing
action xt, and having an instantiation dt of the random variable Dt, the next world
state is ht(wt, It, xt, dt)). If the number of world states is polynomially bounded by
the input size, then this case also admits an FPTAS.

We conclude this subsection by considering monotone/convex DP with general
nonindependent random variables.

Theorem 10.1. The stochastic ordered adaptive knapsack problem with non-
independent item volumes is APX-hard.

The proof of Theorem 10.1 is provided in Appendix C. Because we have formulated
the stochastic ordered adaptive knapsack problem as a maximization nondecreasing
DP in section A.1, we have the following corollary.

Corollary 10.2. The monotone/convex DP framework presented in this pa-
per cannot be extended to deal with general nonindependent random variables unless
P = NP .

10.4. Structure of optimal policies. In this paper, we mainly deal with com-
plexity and computational issues of our framework. A natural issue to explore is the
structure of optimal and approximate policies for the problems in our framework. We
start with two definitions. A continuous real-valued function φ : Rd→R+ is said to
be V-shaped in its variable x if it is linear with nonpositive slope for x < 0 and is
linear with nonnegative slope for x ≥ 0. A policy is said to be a limit policy (r, s),
−∞ ≤ r ≤ s ≤ ∞, if (i) whenever state I falls below r, it increases the state to r
by adding r − I units; (ii) whenever state I exceeds s, it decreases the state to s by
removing I − s units; and (iii) it does nothing when state I is between r and s.

Proposition 10.3. Suppose a given convex DP satisfies the following: The
coefficients of function ft satisfy |a| = |b| for every d, and function gt can be expressed
as gt(It, xt, Dt) = vt(xt, Dt) + ut(ft(It, xt, Dt), Dt), where vt is V-shaped in xt, and
ut is convex in xt. Then, this convex DP admits an optimal limit policy (rt, st).

A proof of this proposition is available in Appendix B. Both the cash management
problem described in section A.10 and the single-item stochastic inventory control
problem described in section A.5, where procurement/disposal costs are V-shaped
and holding cost is convex, satisfy the conditions stipulated in this proposition.

Note that Algorithm 4 can be easily modified to compute an approximated limit
policy (r̂t, ŝt) for the given problem. It is because all approximated functions calculated
by the algorithm are piecewise-linear convex functions with breakpoints belonging to
the approximation sets built during the execution of the algorithm. Hence, the optimal
policy for these approximated functions is also a limit policy, with the additional
property that both policy levels are at breakpoints. Since the algorithm checks all
these breakpoints, the xt values output by the algorithm follow the optimal limit policy
for these (approximated) piecewise-linear convex functions, and these quantities will
serve as approximated quantities for the exact convex functions.

10.5. Nonexact evaluation of cost functions. In our model stated in sec-
tion 3, we assume that the input data includes an oracle that computes gt exactly.

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1756 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

We can weaken this assumption by requiring that an FPTAS exists for evaluating gt,
i.e., weakening Condition 2 to the following condition.

Condition 5. For every t = 1, . . . , T + 1, function ft is either given explicitly
(i.e., as an explicit formula) or accessed via oracle calls, and an FPTAS for evaluating
gt is given. Moreover, the values of gt are nonnegative rational numbers that are
polynomially bounded by the (binary) size of the input.

We use such nonexact evaluation of the cost function in one of the applications
of our framework, namely, dynamic capacity expansion (see Appendix A.3).

Assumption 10.4. For every Δ ≥ 0 and time period t, there exists a function ḡΔt
such that

gt(I, x, d)

1 + Δ
≤ ḡΔt (I, x, d) ≤ (1 + Δ)gt(I, x, d)

for every I ∈ St, x ∈ At(I), and d ∈ Dt, and function ḡΔt can be evaluated in time
polynomial in the input size and 1/Δ.

Definition 10.5. Let K ≥ 1, and let ϕ : D→R+ be a real-valued function
over a finite set D. We say that ϕ̃ : D→R is a two-sided K-approximation of ϕ if
ϕ(x)/K ≤ ϕ̃(x) ≤ Kϕ(x) for all x ∈ D.

Assumption 10.4 is equivalent to the statement that for every K ≥ 1, function
gt has a two-sided K-approximation. The validity of the following proposition is
obvious.

Proposition 10.6. Let K ≥ 1, and let ϕ : D→R+ be a real-valued function over
a finite domain D of real numbers. If ϕ̃ : D→R+ is a two-sided K-approximation of
ϕ, then Kϕ̃ is a (one-sided) K2-approximation of ϕ.

For a monotone DP (i.e., either Condition 3(i) or Condition 3(ii) is satisfied),
suppose an FPTAS for evaluating gt is given. In order to apply our framework, we
need to build a monotone K-approximation function for gt. We achieve this as fol-
lows: Consider the case where gt(I, ·, d) is nondecreasing. (The case where gt(I, ·, d)
is nonincreasing is analogous.) Let I ∈ St and d ∈ Dt be fixed. Let ḡ

√
K

t (I, ·, d) be
a two-sided

√
K-approximation of gt(I, ·, d). Due to Assumption 10.4, such an ap-

proximation is available to us. Let g̃t(I, ·, d) =
√
Kḡ

√
K

t (I, ·, d). By Proposition 10.6,
g̃t(I, ·, d) is a K-approximation of g(I, ·, d). Our framework remains valid if we apply
Proposition 7.1 in the proof of Theorem 8.2 with L′′ = K instead of L′′ = 1. Hence,
we have the following result.

Theorem 10.7. Every stochastic monotone DP satisfying Conditions 1 and 5
admits an FPTAS.

We now turn to convex DPs. Suppose an FPTAS for evaluating gt is given. If the
FPTAS returns values of a convex function, then we say that it is a convex FPTAS. In

this case, in the proof of Theorem 9.3, we use
√
Kḡ

√
K

t (I, ·, d) as a one-sided convex
K-approximation of gt and apply Proposition 7.2 with K ′ = K instead of K ′ = 1.

If the FPTAS is not convex, we first convert it into a convex FPTAS and then
repeat the arguments explained above. The conversion of a nonconvex FPTAS into a
convex FPTAS is quite involved and is reported in a follow-up paper, and the result
is summarized as follows.

Theorem 10.8 (see [31]). A convex function ϕ : [A,B]→R+ that cannot be
evaluated directly but only via an FPTAS admits a convex FPTAS.

Hence, we have the following result.
Theorem 10.9. Every stochastic convex DP satisfying Conditions 1 and 5 admits

an FPTAS.

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1757

Combining Theorems 10.7 and 10.9, we conclude that every stochastic DP satis-
fying Conditions 1, 3, and 5 admits an FPTAS.

10.6. Multivariate functions. One may ask if Proposition 4.6 can be general-
ized to multivariate functions. In the special case where function ϕ is separable (i.e.,
it is the sum of d univariate functions ϕ1, . . . , ϕd, each of which is either monotone or
convex), the answer is in the affirmative. To do so, we build a K-approximation set
Wi of ϕi and the approximation ϕ̂i of ϕi induced by Wi for all i = 1, . . . , d. We note
that due to summation of approximation (property 3 in Proposition 5.1),

∑d
i=1 ϕ̂i is

a K-approximation function of ϕ.
The analysis for other types of multivariate functions is more involved. For the

ease of exposition, we limit the domain of the function to be for all [A, . . . , B]d. We say
that function ϕ : [A, . . . , B]d → R is nondecreasing if ϕ(x1, . . . , xd) ≥ ϕ(x′1, . . . , x

′
d)

for every pair of vectors (x1, . . . , xd), (x
′
1, . . . , x

′
d) ∈ [A, . . . , B]d that satisfy xi ≥ x′i,

for all i = 1, . . . , d. We say that ϕ is nonincreasing if−ϕ is nondecreasing. We say that
ϕ is monotone if it is either nondecreasing or nonincreasing. Regarding the convexity
of discrete functions, as mentioned in section 2.2, different classes of discrete convex
functions have been considered [58, 23, 59]. Other known classes of discrete convex
functions include convex extensible, separable convex, L�-convex, and M�-convex.
See [59, sect. 1.4.5] for a discussion of various classes of multivariate discrete convex
functions and the inclusion relationships among them. A function ϕ is said to be
Miller’s discrete convex if

min{ϕ(z) | z ∈ N(αx + (1− α)y)} ≤ αϕ(x) + (1− α)ϕ(y)

holds for any x, y ∈ [A, . . . , B]d and any 0 ≤ α ≤ 1, where N(t) = {t′ ∈ Zd |
‖t− t′‖∞ < 1} for t ∈ Rd [58]. The following theorem states an example of a negative
approximability result regarding Miller’s discrete convex multivariate functions.

Theorem 10.10 (nonexistence of succinct approximations for multivariate Miller’s
convex functions [31]). For any 1 ≤ K < 2, a bivariate monotone discrete convex
function in the sense of Miller does not necessarily admit a succinct K-approximation,
regardless of the scheme used to represent the function.

A few open research problems related to multivariate discrete convex functions
are discussed in section 11.

10.7. Other recursive structures. The problems that fit into our framework
all share the same recursive structure (3.3)–(3.4), and it is possible to extend the
framework to other recursive structures. One such possible extension is as follows.
We can view the recursion structure (3.3)–(3.4) as “walking” on a directed path from
node T + 1 backward to node 1, where node t represents the optimal value function
in time period t, for t = T + 1, . . . , 1. Now, consider optimization problems over
other networks such as trees and series-parallel graphs. In these cases, the recursive
structure may be different. As an example, we briefly describe here a time-cost trade-
off project scheduling model studied in a follow-up paper [34].

There is a series-parallel project network of n activities in activity-on-arc rep-
resentation. Denote the activities as 1, . . . , n. Associated with each activity i is a
nonincreasing function fi : Ti→Z+, where fi(ti) is the cost incurred when the activity
time is ti, and Ti = [ti, . . . , t̄i] is the set of all possible time duration of activity i.
Here, we assume that all activity times and costs are integer-valued.

Let φ(t1, . . . , tn) denote the total duration of the project (i.e., the length of
the longest path in the network) when the time duration of activity i is ti for

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1758 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

i = 1, 2, . . . , n. Given a deadline d, we are interested in determining t1, . . . , tn so
that φ(t1, . . . , tn) ≤ d and that f1(t1) + · · ·+ fn(tn) is minimized.

A series-parallel network can be reduced to a single-arc network via a sequence
of series and parallel reduction operations. A series reduction is an operation that
replaces two series arcs by a single arc, while a parallel reduction is an operation
that replaces two parallel arcs by a single arc. In a project network, a reduction of
two series activities with time duration t′ and t′′ will result in a single activity with
time duration t′ + t′′, while a reduction of two parallel activities with time duration
t′ and t′′ will result in a single activity with time duration max{t′, t′′}. Thus, for a
given series-parallel project network of n activities, it takes only n− 1 series/parallel
reduction operations to reduce it to a single-activity network. However, when there
are time-cost tradeoff decisions for the activities, the integration of the two time-cost
tradeoff functions during a series/parallel reduction operation becomes a challenge if
we want to perform the computation efficiently.

First, suppose that we allocate t time units to a pair of parallel activities i1 and
i2; that is, we allow each of these two activities to spend no more than t time units.
Then, the merged activity, which has a maximum duration of t, will incur a cost of

(10.1) fi(t) = fi1(t) + fi2(t),

where fi1(t) and fi2(t) are the costs of the original activities i1 and i2, respectively.
Next, suppose that we allocate t time units to a pair of series activities i1 and i2;

that is, we allow these two activities to spend no more than a total of t time units.
Then, the merged activity i (along the merged arc u → w), which has a duration of
t, will incur a cost of

(10.2) fi(t) = min
t′=0,1,...,t

{
fi1(t

′) + fi2(t− t′)
}
,

where fi1(t
′) and fi2(t− t′) are the costs of the original activities i1 and i2 if they are

allocated t′ and t− t′ time units, respectively.
Suppose we do not know the exact time-cost trade-off functions fi1 and fi2 , but

instead we have a K1-approximation f̃i1 for fi1 and a K2-approximation f̃i2 for fi2 .
Then, summation of approximation (Proposition 5.1) tells us that f̃i(t) = f̃i1(t)+f̃i2(t)
is a max{K1,K2}-approximation of (10.1). In the following proposition, we extend
the calculus of K-approximation functions to deal with the recursive structure (10.2)
in a way similar to the way Proposition 5.3 deals with the recursive structure (3.3)–
(3.4).

Proposition 10.11 (see [34]). Let fi be the functions defined in (10.2). For
j = 1, 2, let Kj ≥ 1, let f̃ij (t) be a nonincreasing Kj-approximation function of fij ,
and let Wij be Kj-approximation set of fij . Then,

f̄i(t) = min
t′∈{0,1,...,t}∩(Wi1∪{t−x | x∈Wi2})

{
f̃i1(t

′) + f̃i2(t− t′)
}

is a max{K1,K2}-approximation of fi.

10.8. Different descriptions of stochastic events. One limitation of our
framework is that it requires the probability distribution functions of the random
variables to be given explicitly. In a follow-up work [35], we relax this requirement
in the following way. The input of the stochastic variables is given as oracles for
the cumulative distribution functions of each of the random variables, together with

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1759

bounds on their supports. The FPTAS is required to query these oracles a polynomial
number of times. One advantage of this model is that the assumptions are so weak
that they encompass various ways of specifying random variables, such as truncated
Poisson distribution with an a priori given rate. An example of how the calculus of
K-approximation is extended in this setting is given below.

Proposition 10.12 (see [35]). Let D be a nonnegative integer-valued random
variable, and let F be its cumulative distribution function. Let ξ : [L, . . . , U]→Z+ be
a nondecreasing function. Let K1,K2 ≥ 1, let ξ(a0) = 0, and let S = {a1 < · · · < an}
be a K1-approximation set of ξ. Let F̃ be a K2-approximation of F . Then,

ξ̃1(x) =

n∑
i=1

[
ξ(ai)− ξ(ai−1)

]
F̃ (x− ai)

is a K1K2-approximation of ED[ξ(x −D)]. Moreover, if F̃ (·) is nondecreasing, then
so is ξ̃1(·).

Considering the stochastic single-item inventory control problem discussed in the
introduction (and formally defined in Appendix A.5), we note that under general
lead times, the optimal value function is multivariate. It is well-known that this DP
can be transformed into a single-variate DP of the same form as the one presented
in section A.5. (The state corresponds to inventory position, which is defined as
the inventory on hand plus all outstanding inventory.) It is easy to show that this
transformation preserves the approximation ratio, and, as a result, it suffices to find
an FPTAS for this single-variate DP. If L > 0 is an arbitrary lead time, then the
underlying demand distribution of the transformed problem is D̄t =

∑t+L−1
t̂=t Dt̂. The

presented FPTAS requires that we know Prob(D̄t = d̄t,i), which is a convolution of
L distributions. Consequently, computing these probabilities takes (n∗)L time. If L
is 2 or 3 (or any other constant value), then the term (n∗)L is polynomial, and the
algorithm is an FPTAS. If L is not constant (e.g., L = T/4), then the running time
is exponentially large. In the latter case, our algorithm is not an FPTAS. An open
question raised in [33] is whether one can modify the approach and create an FPTAS
for the problem in which the lead times are permitted to be a fraction of T .

In [35], we give a positive answer to this question and design an FPTAS in
the following way. For 0 ≤ j ≤ L and 1 ≤ i ≤ T − j, let F j

i be the cumu-

lative distribution function of the convolution of Di, . . . , Di+j ; that is, F j
i (x) =

Prob(Di + · · ·+Di+j ≤ x). We compute F j
i exactly for j = 0, 1 and 1 ≤ i ≤ T − j.

For 2 ≤ j ≤ L and 1 ≤ i ≤ T − j, we build a Kj−1-approximation function F̃ j
i for F j

i

via K-approximation sets in a recursive way by using the calculus ofK-approximation
and the equality

F j
i (x) = P (Di+ · · ·+Di+j ≤ x) =

∑
(y≤x) and (y∈ support of Di)

Prob(Di = y)F j−1
i+1 (x−y).

(Note: Since the cumulative distribution function is monotone, a K-approximation
set for it is well-defined.) By using Proposition 10.12 and other tools, [35] derives an
FPTAS for this problem.

10.9. Approximating profits. All the problems studied in this paper and in
[32, 34] are either for minimizing cost or for maximizing revenue. If one wants to
maximize profit, i.e., the difference between revenue and cost, then having a rule in the
calculus ofK-approximation that deals with subtraction of functions is desirable. Note

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1760 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

that such a rule cannot be analogous to “summation of approximation” (Property 3
in Proposition 5.1). This is because while the ratio between ϕ1 + ϕ2 and ϕ̃1 + ϕ̃2 is
bounded, it is not necessarily so between ϕ1 − ϕ2 and ϕ̃1 − ϕ̃2 (e.g., when ϕ1 and ϕ2

are very close to each other).
The next proposition shows that by imposing the restriction that ϕ2 ≤ cϕ1 for

some given constant c > 0, the aforementioned ratio will be bounded.
Proposition 10.13 (subtraction of approximation from below [35]). Let ϕi :

D→R+ be a nonnegative function over domain D and let Ki ≥ 1 be arbitrary, i = 1, 2.
Let ϕ̃1 : D→R+ be a K1-approximation of ϕ1 from below and ϕ̃2 : D→R+ be a K2-
approximation of ϕ2 from above. Let c < 1

K1K2
be an arbitrary positive real number.

If x ∈ D satisfies ϕ2(x) ≤ cϕ1(x), then (ϕ̃1 − ϕ̃2)(x) is a (1−c)K1

1−cK1K2
-approximation of

(ϕ1 − ϕ2)(x) from below.
By using Proposition 10.13, among other ingredients, [35] derives an FPTAS for a
certain basic inventory control problem. Please refer to [35] for further details.

11. Concluding remarks and future research. In this paper we have pre-
sented a framework for obtaining FPTASs for stochastic monotone or convex DPs.
While other recent developments in approximation algorithms for stochastic dynamic
and multistage programs are based on gradients or sampling, our framework is based
on the notion of approximation sets and functions. Under our framework, standard
recurrence recursion is used, but we consider only polynomially many states. Our
algorithm relies on either monotonicity or convexity of the value function.

We start with two complexity remarks. First, Alekhnovich et al. present a model
for backtracking and DP [2]. They prove several upper and lower bounds on the
capabilities of algorithms in their model and show that their model captures the DP
framework of [79]. In their paper, they question whether their model could capture
other DP algorithms. It would be interesting to explore the capabilities of our frame-
work in this context.

Second, Dyer et al. investigate classes of counting problems that are interreducible
under approximation-preserving reductions [19]. One of these classes is the class of
counting problems that admit (randomized) FPRASs. It would be interesting to
investigate the class of counting problems that admit FPTASs in this context.

It is appropriate to point out some limitations of our approach. It is interesting to
consider relaxing any of Conditions 1–3. We have shown that the framework cannot
be extended to general nonindependent random events (Corollary 10.2). We have also
shown that the condition regarding convex DP (Condition 3(iii)) cannot be relaxed
(Theorem 9.2). Regarding Condition 1, it would have been more desirable if we could
extend our framework to deal with multivariate DPs, i.e., to allow fixed-dimensional
state and action spaces. Following the discussion in section 10.6, our FPTAS frame-
work can be extended to multivariate separable functions. Specifically, if St,At ⊂ Zd

for all t, then the transition function ft and the cost function gt can be expressed
as ft(I, x,D) = (f1

t (I1, x1, D), . . . , fd
t (Id, xd, D)) and gt(I, x,D) =

∑d
i=1 g

i
t(Ii, xi, D).

In this case, the minimization and the expectation in the DP formulation (3.3)–(3.4)
can be split into d separable problems, allowing the solution of the problem to be
d unidimensional DPs. Thus, the FPTAS can be applied, provided that Conditions
2 and 3 are satisfied by each git and f i

t . On the negative side, Theorem 10.10 tells
us that when the cost functions gt are either monotone or Miller’s convex (or both),
one cannot have a succinct K-approximation of the cost-to-go functions zt, so our
approach fails. This begs the question of whether other approaches can succeed. For
multivariate monotone functions, the answer is in the negative. It is known that the

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1761

existence of an FPTAS for the two-dimensional 0/1 knapsack problem (which can be
formulated as a two-dimensional nondecreasing DP) would imply P = NP (see [48,
p. 252] and the references therein).

This leaves open the following interesting future research directions. First, it is
interesting to characterize which of the various classes of discrete convex functions
admit succinct representation. Second, for these classes, it is desirable to extend our
FPTAS framework. The most interesting class of discrete convex functions to study is
perhaps that of L�-convex functions. Recently, [11] studied fixed-dimensional stochas-
tic DPs in a discrete setting over a finite horizon, under the primary assumption that
the cost-to-go functions are discrete L�-convex. They proposed a pseudopolynomial
time approximation scheme that solves multidimensional DPs to within an arbitrary
prespecified additive error of ε > 0. The proposed approximation algorithm is a gen-
eralization of the explicit-enumeration algorithm, offers a full control in the trade-off
between accuracy and running time, but runs in time pseudopolynomial in the input
size. If the class of discrete L�-convex functions turns out not to admit efficient
succinct approximations, then their result is in a way the best possible. Otherwise,
the knowledge of how to construct efficient succinct approximations for L�-convex
functions may be a first step toward the design of an FPTAS for such DPs.

Despite the above limitations, our framework appears to be generalizable to other
problems by using the general framework of the calculus of K-approximation. Indeed,
since the calculus of K-approximation is modular, other researchers may choose vari-
ous building blocks required for a problem at hand and develop an FPTAS by adding
more tools as appropriate. This is exactly the approach used in [34, 35].

Appendix A. Applications of the framework. In this appendix we demon-
strate the applications of our framework to various stochastic and deterministic opti-
mization problems.

A.1. Stochastic ordered adaptive knapsack problem. Consider the follow-
ing stochastic ordered adaptive knapsack problem as studied in Dean, Goemans, and
Vondrák [15]. We are given an ordered set of n items and a knapsack with con-
stant capacity B ∈ Z+. Each item t has a constant profit πt ∈ Q+. Item t has
a volume vt, which is a random variable having a known probability distribution
with support Dt as described in section 3. We would like to determine sequentially
whether an item should be placed into the knapsack. The decision of whether to put
item t in the knapsack is made after knowing the remaining capacity of the knap-
sack resulted from the execution of the previous t − 1 decisions. The actual volume
of item t is unknown until we instantiate the item by attempting to place it in the
knapsack. If its volume exceeds the remaining knapsack capacity, then the process
will terminate immediately, and the final overflowing item will contribute no profit.
The objective is to maximize the expected total profit of those items placed in the
knapsack.

Clearly, our problem is a generalization of the following classical (deterministic)
0/1 knapsack problem:

(A.1)
maximize

∑n
i=1 πixi

subject to
∑n

i=1 vixi ≤ B,
xi ∈ {0, 1}, i = 1, . . . , n,

where πi is the unit profit of item i, vi is the (deterministic) volume of item i, and
xi indicates whether item i is selected. Problem (A.1) is known to be NP-hard [47].

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1762 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

Because our problem is a generalization of problem (A.1) (the latter is a special case of
our problem in which every random variable accepts a single value with probability 1),
our problem is also NP-hard.

Variants of the stochastic knapsack problem have been studied in the literature
such as knapsack problems with deterministic item volumes and random item prof-
its [9, 36, 70, 72]. Another somewhat related variant, known as the stochastic and
dynamic knapsack problem, involves items that arrive online according to certain
stochastic process [50, 62]. The works [49, 30] have considered a stochastic knapsack
problem with “chance” constraints, in which the objective is to find a maximum-profit
set of items whose probability of overflowing the knapsack is no greater than some
specified value. Dean, Goemans, and Vondrák [15] have studied the stochastic ordered
adaptive knapsack problem, in which the item volumes are independent random vari-
ables with arbitrary distributions. They have developed a polynomial-time algorithm
for the problem. For every ε > 0, their algorithm gives a solution in which the value
is at least the optimal value, at the expense of a slight loss in terms of feasibility; that
is, the total volume of the items placed in the knapsack does not exceed (1 + ε)B.
While valuable, their algorithm is not in the spirit of FPTASs, in which constraints
are treated as “hard” and feasibility is always maintained.

The stochastic ordered adaptive knapsack problem can be formulated as a pseudo-
polynomial time DP as follows: Let zt(It) be the expected profit when considering
only items t, . . . , n, where the remaining available volume in the knapsack is It. The
recurrence relation is

(A.2) zt(It) = max
{
Evt{πtδvt≤It + zt+1((It − vt)+)}, zt+1(It)

}
for It = 0, . . . , B and t = 1, . . . , n. The boundary condition is zn+1(In+1) = 0 for
In+1 ≥ 0. The optimal solution value is z1(B). The first term in the maximization
function on the right-hand side of (A.2) is the outcome of attempting to place item t
into the knapsack, while the second term is the outcome of not doing so.

In order to show that this DP fits into our framework, we need to reformulate
(A.2) as a maximization of a function over an action space. It is easy to see that
(A.3) below is equivalent to (A.2) and that it is indeed a maximization over an action
space:

(A.3) zt(It) = max
xt=0,1

Evt

{
xtπtδvt≤It + zt+1((It − xtvt)+)

}
.

Next, we show that the above DP with recurrence relation (A.3) is a maximization
nondecreasing DP that fits into our framework; that is, a DP satisfying Conditions 1,
2, and 4(i). (Recall that Condition 4 is the maximization counterpart of Condition 3
for maximization problems.) For simplicity, we assume that πt > 0 for t = 1, . . . , T .
(Otherwise item t generates no profit and can be ignored.) Define T = n, gT+1 ≡ 0,
and ST+1 = [0, . . . , B]. For t = 1, . . . , T , we define Dt = vt, St = [0, . . . , B], At(It) =
{0, 1}, gt(It, xt, Dt) = xtπtδDt≤It , and ft(It, xt, Dt) = (It − xtDt)

+. Note that ST+1,
St, and At(It) are all contiguous intervals for any It ∈ St and t = 1, . . . , T and that the
logarithm of any nonzero element in ST+1, St, and At(It) is bounded from above by
log(B+1). Thus, Condition 1 holds. Because the functions ft, gt are given explicitly,
Condition 2 also holds. As for Condition 4(i), we notice that for t = 1, . . . , T , both
functions gt and ft are nondecreasing in It, function ft is nonincreasing in xt, and
function gt is nondecreasing in xt. Furthermore, At(It) is independent of It, which
implies that At(I) ⊆ At(I

′) for all I, I ′ ∈ St with I ≤ I ′. Therefore, Condition 4(i) is
also satisfied.

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1763

A.2. Nonlinear knapsack problem. Consider the following nonlinear knap-
sack problem with a separable nondecreasing objective function, a separable nonde-
creasing packing constraint, and integer variables:

(A.4)

maximize
∑n

i=1 πi(xi)
subject to

∑n
i=1 vi(xi) ≤ B,

�i ≤ xi ≤ ui, i = 1, . . . , n,
xi ∈ Z+, i = 1, . . . , n.

In this formulation, xi represents the number of units of item i selected, πi(xi) is the
profit generated from these xi units, vi(xi) is the space or weight consumption of these
xi units, B ≥ 0 is the capacity of the knapsack, �i ≥ 0 is a lower bound requirement
of xi, and ui ≥ 0 is an upper bound requirement of xi. We assume that πi : Z

+ → Q+

and vi : Z
+ → Z+ are nondecreasing functions which satisfy πi(0) = vi(0) = 0 and

the binary size of any of their values is polynomially bounded by the (binary) input
size. The input data for the problem consists of (i) the knapsack size B, (ii) the
bounds �i and ui (for each i = 1, . . . , n), and (iii) oracles that compute πi and vi
for each i = 1, . . . , n. Without loss of generality, we assume that

∑n
i=1 vi(�i) ≤ B.

(Otherwise the problem would be infeasible, and this can be checked in linear time.)
Because problem (A.4) is a generalization of problem (A.1) and because the input size
of (A.4) is bounded by a polynomial of the input size of (A.1), problem (A.4) is also
NP-hard.

Many versions of the nonlinear knapsack problem have been addressed in the
literature, but the setting of our problem is relatively general because functions πi
and vi are not restricted to be linear, convex, or concave. For recent surveys on
nonlinear knapsack models, see [8, 48, 45].

An FPTAS for the 0/1 knapsack problem (and for the integer knapsack problem
where xi can be any nonnegative integer) was first developed by Ibarra and Kim [41].
Lawler has improved the efficiency of Ibarra and Kim’s FPTAS and has discussed its
extension to the nonlinear case [51]. However, Lawler’s approximation scheme is no
longer polynomial when it is applied to the nonlinear knapsack problem. Hochbaum
has demonstrated that Lawler’s approximation scheme is implementable in polynomial
time when πi is concave and vi is convex for i = 1, . . . , n [38]. Kameshwaran and
Narahari [45] have developed an FPTAS for the case where vi is linear and πi is a
piecewise-linear monotone function represented explicitly by tuples of breakpoints,
slopes, and costs at breakpoints.

Problem (A.4) can be formulated as a pseudopolynomial time DP as follows.
Define ρt : Z

+ → Z+ such that ρt(y) = max{x | vt(x) ≤ y} for any y ∈ Z+. Function
ρt is nondecreasing and can be evaluated in logarithmic numbers of oracle calls to
v(·). Define zt(It) as the maximum total profit obtained from items t, . . . , n, given
that the available knapsack space is It. The recurrence relation is

zt(It) = max
xt∈[�t,...,min{ut,ρt(It−

∑
n
i=t+1 vi(�i))}]

{
πt(xt) + zt+1(It − vt(xt))

}

for
∑n

i=t vi(�i) ≤ It ≤ B −∑t−1
i=1 vi(�i) and t = 1, . . . , n. The boundary condition is

zn+1(In+1) = 0 for In+1 ≥ 0. The optimal solution value is z1(B).
Next, we show that the above is a maximization nondecreasing DP that fits into

our framework. Since the problem is deterministic, the discrete random variables
in the framework accept one single value with probability 1. For simplicity, in the

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1764 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

following discussion we omit the random variables from our functions. Also, for sim-
plicity, we assume that B > 0, ut > 0, and πt �≡ 0 for t = 1, . . . , T . Define T = n,
ST+1 = [0, . . . , B −∑T

i=1 vi(�i)], and gT+1 ≡ 0. For t = 1, . . . , T , we define St =

[
∑n

i=t vi(�i), . . . , B −
∑t−1

i=1 vi(�i)], At(It) = [�t, . . . ,min{ut, ρt(It −
∑n

i=t+1 vi(�i))}],
gt(It, xt) = πt(xt), and ft(It, xt) = It − vt(xt). Note that ST+1, St, and At(It)
are all contiguous intervals for any It ∈ St and t = 1, . . . , T , and that the loga-
rithm of any nonzero element in ST+1, St, and At(It) is bounded from above by
max{logumax, logB}, where umax = max{u1, . . . , uT }. Thus, Condition 1 holds. Be-
cause of our assumptions regarding the functions πi, vi, Condition 2 also holds. As
for Condition 4(i), we notice that for t = 1, . . . , T , both functions gt and ft are
nondecreasing in It, function ft is nonincreasing in xt, and function gt is nonde-
creasing in xt. Furthermore, because min{ut, ρt(It)} is nondecreasing in It, we have
At(I) ⊆ At(I

′) for all I, I ′ ∈ St with I ≤ I ′. Therefore, Condition 4(i) is also
satisfied.

Note that using a similar approach, we can also provide an FPTAS for the fol-
lowing nonlinear minimization knapsack problem:

(A.5)

minimize
∑n

i=1 πi(xi)
subject to

∑n
i=1 vi(xi) ≥ B,

�i ≤ xi ≤ ui, i = 1, . . . , n,
xi ∈ Z+, i = 1, . . . , n.

Remark 8. There is an alternative way to develop an FPTAS for problem (A.4).
Safer and Orlin have provided an FPTAS to the special case of problem (A.4) where
vi is a linear function [65, pp. 26–29]. We can transform problem (A.4) into Safer
and Orlin’s model as follows: For i = 1, . . . , n, let �′i ← vi(�i), u

′
i ← vi(ui), and

π′
i(y) = max{πi(x) | vi(x) ≤ y and x ∈ Z+} for all y ∈ Z+. Clearly, π′

i is a
nondecreasing function. Given any feasible solution (y1, . . . , yn) of Safer and Or-
lin’s model, we can obtain a feasible solution (x1, . . . , xn) to problem (A.4) with∑n

i=1 πi(xi) =
∑n

i=1 π
′
i(yi) by setting xi = max{x | vi(x) ≤ yi and x ∈ Z+} for

i = 1, . . . , n. Thus, we can obtain an ε-approximation solution to problem (A.4) by
transforming it to Safer and Orlin’s model and apply their FPTAS.

Remark 9. Chauhan et al. have provided an FPTAS to a “supply scheduling
problem” [10]. An alternative way of developing an FPTAS for problem (A.5) is
to transform problem (A.5) into the model of Chauhan et al. using the technique
presented in the previous remark and then apply their FPTAS.

A.3. Dynamic capacity expansion. Consider the following multiperiod ca-
pacity expansion problem in telecommunication network planning [67]: Given a set
of transmission technologies {1, . . . , n} such as copper cables of various sizes, optical
fiber cables with different bit rates, etc., we would like to determine a combination
of sizes of these technologies to be installed in each time period. Our objective is
to satisfy a given demand of circuits in each time period of the planning horizon at
minimum cost. The problem is formulated as follows:

(A.6)
minimize

∑T
t=1

∑n
i=1 πt,i(xt,i)

subject to
∑t

j=1

∑n
i=1 vixj,i ≥ Ct, t = 1, . . . , T,

xt,i ∈ Z+, t = 1, . . . , T ; i = 1, . . . , n.

In this formulation, the planning horizon is divided into T time periods. Variable xt,i
is the amount of technology i installed in period t. Parameter vi is the unit capacity

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1765

of technology i, where vi > 0. Parameter Ct is the accumulated demand over time
periods 1, . . . , t; that is, Ct =

∑t
j=1 cj , where cj as the added demand requirement

(expansion) in period j. We assume that vi and cj are integers for i = 1, . . . , n and
j = 1, . . . , T . The quantity πt,i(xt,i) is the present value of the monetary resources
spent on technology i in period t, where πt,i : Z

+ → Q+ is a nondecreasing function.
The input data for the problem consists of (i) the number of time periods T , (ii) the
accumulated demand Ct (for each t = 1, . . . , T), (iii) the number of transmission
technologies n, (iv) the unit capacity vi of technology i (for each i = 1, . . . , n), and
(v) an oracle that computes function πt,i (for each time period t and technology i).
We assume that the binary size of each of the values of πt,i is polynomially bounded
by the (binary) input size.

Note that when T = 1, problem (A.6) becomes a nonlinear minimization knapsack
problem, which is NP-hard. (See [48, pp. 412–413] for a discussion of the equivalence
between the minimization knapsack problem and the maximization knapsack prob-
lem.) Therefore, problem (A.6) is a generalization of the nonlinear minimization
knapsack problem and is also NP-hard.

Saniee [67] has studied this multiperiod capacity expansion problem in which
the function πt,i is of the form πt,i(xt,i) = xt,iπiγ

t−1, where πi is the unit cost of
technology i and γ is a constant discount factor (0 < γ < 1). He has developed
a pseudopolynomial time DP algorithm for the problem. In our model we allow a
general nondecreasing cost function πt,i.

In what follows, we develop an FPTAS for problem (A.6) by modifying Saniee’s
DP and applying our framework. First, we consider a single time period t and let
Πt(Xt) be the optimal cost to meet Xt units of demand in that period (assuming that
there is no capacity carried over from the previous period). The value of Πt(Xt) is the
optimal objective value of the following nonlinear minimization knapsack problem:

(A.7)

minimize
∑n

i=1 πt,i(xt,i)

subject to
∑n

i=1 vixt,i ≥ Xt,

xt,i = 0, . . . , x̄t,i, i = 1, . . . , n.

Here, x̄t,i represents an upper bound on xt,i. For example, we may set x̄t,i = 	Xt/vi
.
Thus, problem (A.7) is an instance of problem (A.5). Clearly, Πt is a nondecreasing
function. Therefore, by Proposition 4.6, developing a K-approximation set of Πt

and the K-approximation function induced by it would require a computational time
which is polynomial in the input size of the problem.

Problem (A.6) can be formulated as a pseudopolynomial time DP as follows.
Define zt(It) as the minimum total cost to meet the demands of periods t, . . . , T ,
given that there are already It units of accumulated capacity available from period
t − 1 (i.e., It =

∑t−1
j=1

∑n
i=1 vixj,i), for t = 1, . . . , T + 1 and It = 0, . . . , CT . The

recurrence relation is

zt(It) = min
Xt=(Ct−It)+,...,CT

{
Πt(Xt) + zt+1(min{It +Xt, CT })

}

for It = 0, . . . , CT and t = 1, . . . , T , where Xt is the increase in capacity in period t.
The boundary condition is zT+1(IT+1) = 0 for IT+1 ≥ 0. The optimal solution value
is z1(0).

Next, we show that problem (A.6) is a nonincreasing DP that fits into our
framework. Since the problem is deterministic, the discrete random variables in the

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1766 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

framework accept one single value with probability 1. For simplicity, in the follow-
ing discussion we omit the random variables from our functions. Define gT+1 ≡ 0
and ST+1 = [0, . . . , CT]. For t = 1, . . . , T , we define St = [0, . . . , CT], At(It) =
[(Ct − It)+, . . . , CT], gt(It, Xt) = Πt(Xt), and ft(It, Xt) = min{It + Xt, CT }. Note
that ST+1, St, and At(It) are all contiguous intervals for any It ∈ St and t = 1, . . . , T
and that the logarithm of any nonzero element in ST+1, St, andAt(It) is bounded from
above by log(CT +1). Thus, Condition 1 holds. As for Condition 3(ii), we notice that
for t = 1, . . . , T , function ft is nondecreasing in both It and Xt, while function gt is
constant in It and nondecreasing in Xt. Furthermore, At(It) satisfies At(I) ⊆ At(I

′)
for all I, I ′ ∈ St with I ≤ I ′. Therefore, Condition 3(ii) is also satisfied. Regarding
Condition 2, while the ft’s are given explicitly, we do not have oracles to compute the
various gt’s (i.e., Πt) exactly. However, as discussed above, we have an FPTAS for gt.
Hence, as explained in section 10.5, our framework can also be applied in this case.

Note that our FPTAS can be easily extended to the case with nonlinear capacities,
where the capacity of xt,i unit of technology i in period t is a nondecreasing function
vi : Z

+ → Z+. In addition, it is not difficult to check that the following maximization
version of problem (A.6) can be solved in an analogous way:

(A.8)
maximize

∑T
t=1

∑n
i=1 πt,i(xt,i)

subject to
∑t

j=1

∑n
i=1 vixj,i ≤ Ct, t = 1, . . . , T,

xt,i ∈ Z+, t = 1, . . . , T ; i = 1, . . . , n.

Since problem (A.8) is a generalization of the (linear) multiperiod knapsack problem
[22], our FPTAS is also applicable to the multiperiod knapsack problem.

A.4. Time-cost trade-off machine scheduling. Consider the following ma-
chine scheduling problem: There are one single machine and n jobs J1, . . . , Jn. Job
Jj has a given due date dj ∈ Z+, a late penalty wj ∈ Z+, a “normal” processing
time p̄j ∈ Z+, and a nonincreasing resource consumption function ρj : Z

+→Z+ with
ρj(x) = 0 for any x ≥ p̄j . The processing time of Jj , denoted as xj , is a nonnegative
integer decision variable, and a cost of ρj(xj) is incurred if xj is chosen to be less
than p̄j. All jobs are available for processing at time 0, and job preemption is not
allowed. The objective is to determine the job processing times and to schedule the
jobs on the machine so that the total cost,

∑n
j=1[wjδCj>dj + ρj(xj)], is minimized,

where Cj is the completion time of processing of Jj . Here, δCj>dj = 1 if Jj is a late
job, and δCj>dj = 0 if Jj is an on-time job. Note that in reality a job processing time
xj cannot be smaller than some lower limit p

j
> 0, no matter how much resources

we allocate to the job. In such a case, we define ρj(xj) = M for xj < p
j
, where

M is a large number. The input data consists of (i) the number of jobs n, (ii) the
parameters dj , wj , and p̄j for every job j = 1, . . . , n, and (iii) an oracle that com-
putes function ρj (for each job j). We assume that the binary size of any value of
ρj and the binary size of the number M are polynomially bounded by the (binary)
input size.

Note that the special case in which all job compressions are prohibitively expensive
(denoted as 1||∑wjUj in the machine scheduling literature) is already NP-hard [52].
Thus, our problem is also NP-hard. Cheng et al. [13] have considered a special case
of this problem in which ρj is a linear function. They have converted the special
case into a profit maximization problem and developed an FPTAS for it. However,
the existence of an FPTAS for the profit maximization problem does not imply the
existence of an FPTAS for the original cost minimization problem. We will present an

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1767

FPTAS for the original minimization problem and consider a general nonincreasing
resource consumption function.

Our problem can be formulated as a pseudopolynomial time DP as follows. First,
we renumber the jobs such that d1 ≥ d2 ≥ · · · ≥ dn. Note that there exists an optimal
schedule in which all on-time jobs are arranged in nondecreasing order of due dates
and all late jobs are scheduled behind the on-time jobs. Hence, it suffices to consider
the job list Jn, . . . , J1, decide which jobs in this list should be designated as late jobs
(and are removed from the list), and decide how much resources should be allocated
to the on-time jobs (which are retained in the list).

Let zt(It) be the minimum total cost of a partial schedule containing Jt, . . . , Jn,
given that the total processing time of the on-time jobs in this partial schedule is no
greater than It. For notational convenience, we denote dn+1 = 0. The recurrence
relation is
(A.9)

zt(It) = min

{
min

xt=0,...,It

{
zt+1(min{It−xt, dt+1})+ρt(xt)

}
, zt+1(min{It, dt+1})+wt

}

for t = 1, . . . , n and It = 0, . . . , dt. Here, “zt+1(min{It−xt, dt+1})+ρt(xt)” is the cost
of the partial schedule if Jt is made on time and is assigned xt units of processing time,
while “zt+1(min{It, dt+1}) +wt” is the cost of the partial schedule if Jt is selected to
be a late job. The boundary condition is zn+1(0) = 0. The optimal solution value is
z1(d1). It is easy to see that (A.9) can be rewritten as

(A.10) zt(It) = min
xt=0,...,It

{
zt+1(min{It − xt, dt+1}) + min{ρt(xt), wt}

}
.

Next, we show that the above DP with recurrence relation (A.10) is a nonincreasing
DP that fits into our framework. For simplicity, we assume that wmax > 0, where
wmax = max{w1, . . . , wn}. (Otherwise there is an optimal solution where all jobs
are late.) Define T = n, gT+1 ≡ 0, and ST+1 = {0}. For t = 1, . . . , T , we define
St = [0, . . . , dt], At(It) = [0, . . . , It], Dt = dt+1 with probability 1, gt(It, xt, Dt) =
min{ρt(xt), wt}, and ft(It, xt, Dt) = min{It − xt, Dt}. Note that ST+1, St, and
At(It) are all contiguous intervals for any It ∈ St and t = 1, . . . , T and that the
logarithm of any nonzero element in ST+1, St, and At(It) is bounded from above by
log(d1 + 1). Thus, Condition 1 holds. Because of our assumption on the values of
ρt, we get that Condition 2 also holds. As for Condition 3(ii), we notice that for
t = 1, . . . , T , function ft is nondecreasing in It and nonincreasing in xt, and function
gt is nonincreasing in It and xt. Furthermore, At(I) ⊆ At(I

′) for all I, I ′ ∈ St with
I ≤ I ′. Therefore, Condition 3(ii) is also satisfied.

A.5. Single-item stochastic inventory control. Consider the following single-
item stochastic inventory control problem with time-varying demand [33]. The plan-
ning horizon is divided into T time periods. At the beginning of a time period t, the
inventory level It is observed, and then a replenishment decision is made. Let xt ≥ 0
denote the replenishment quantity in period t. We assume that the replenishment
lead time is zero; that is, the xt units will arrive in period t. After that, a demand Dt

of the item occurs, where Dt is a nonnegative random variable. The ending inventory
level of period t equals It+1 = It+xt−Dt. Backlogging is allowed, which implies that
the inventory level It+1 can be negative. If It+1 > 0, then a holding cost is charged;
if It+1 < 0, then a backlogging cost is incurred. For ease of discussion, we refer to

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1768 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

both of these components as the holding cost. Thus, our objective is

min
x1,...,xT

E
T∑

t=1

[
ct(xt) + ht(It + xt −Dt)

]
,

subject to the system dynamics It+1 = It + xt −Dt for t = 1, . . . , T , where ct(xt) is
the procurement cost in period t when the order size is xt, ht(y) is the holding cost
in period t when the inventory level at the end of the period is y (y can be positive,
zero, or negative), and the expectation is taken with respect to the joint distribution
of the random variables involved. We assume that I1 = 0 (i.e., we start with zero
inventory). We assume that the procurement and holding costs are convex for all time
periods. The input data for the problem consists of (i) the number of time periods
T , (ii) an oracle that computes functions ct and ht (for each period t), and (iii) the
demand distribution with support Dt as described in section 3 (for each period t).
All demand, procurement, and inventory levels are integral. For every t = 1, . . . , T ,
functions ct and ht are nonnegative integer-valued, and the binary size of any of their
values is polynomially bounded by the (binary) input size.

When the demand is deterministic and the cost functions are linear, the problem is
reduced to the classical Wagner–Whitin model, which is solvable in polynomial time
[76]. However, with general cost functions, the problem becomes computationally
intractable (see, e.g., [25]). A number of authors have developed FPTASs for various
NP-hard deterministic inventory control problems with time-varying demand [74, 14].
Recently, there has been a growing interest in approximation algorithms for stochastic
inventory control problems [53, 54, 55]. However, none of these algorithms is an
FPTAS. In a previous work, we showed that the single-item stochastic inventory
control problem with discrete demand is #P-hard, and we give an FPTAS for it
[33]. While the FPTAS presented in [33] is an ad hoc algorithm tailored to the
specific problem studied, we will show in the following how this problem can be
fitted into our framework as a convex DP, and therefore the presented FPTAS can be
applied.

To formulate the problem as a convex DP, we define ST+1 = [−D∗, . . . , D∗] and
gT+1 ≡ 0. For t = 1, . . . , T , we define St = [−D∗, . . . , D∗], At(It) = [0, . . . ,min{D∗−
It, D

∗}], gt(It, xt, Dt) = ct(xt) + ht(It + xt −Dt), and ft(It, xt, Dt) = It + xt −Dt.
Then, our problem can be solved as a DP as presented in (3.3)–(3.4). Note that ST+1,
St, and At(It) are all contiguous intervals for any It ∈ St and t = 1, . . . , T and that
the logarithm of the absolute value of any nonzero element in ST+1, St, and At(It) is
bounded from above by log(D∗ + 1). Thus, Condition 1 holds. Since the binary size
of any of the values of ct and ht is polynomially bounded by the (binary) input size,
Condition 2 also holds. As for Condition 3(iii), we have St ⊗At ={
(−D∗, 0), . . . , (−D∗, D∗); (−D∗ + 1, 0), . . . , (−D∗ + 1, D∗); . . . ; (−1, 0), . . . , (−1, D∗);

(0, 0), . . . , (0, D∗); (1, 0), . . . , (1, D∗ − 1); . . . ; (D∗ − 1, 0), (D∗ − 1, 1); (D∗, 0)
}
,

which is an integrally convex set. Let gIt ≡ 0, gxt (·, d) = ct(·), and ut = ht. Then,
function gt can be expressed as gt(I, x, d) = gIt (I, d)+ gxt (x, d) +ut(ft(I, x, d)), where
gIt (·, d), gxt (·, d) and ut(·) are univariate convex functions. Let a = 1, b = 1, and
c(d) = −d. Then, function ft can be expressed as ft(I, x, d) = aI + bx + c(d).
Therefore, Condition 3(iii) is also satisfied.

It is easy to see that the three variants of the single-item stochastic inventory con-
trol problem with discrete demand stated in [33], namely, the capacitated version, the

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1769

discounted version, and the version which allows disposal at a cost, can be formulated
as convex DPs in a similar fashion.

A.6. Single-item stochastic batch dispatch. Consider managing a dispatch
station over a finite time horizon with T time periods, where a single vehicle of
capacity Q is available to dispatch the goods in each period. At the beginning of
each period t, the decision maker has to decide whether to send off the vehicle or
not and, if yes, how many units of goods should be dispatched to the vehicle. If the
vehicle is dispatched, then a fixed cost of Kt and a variable cost of ct per unit of
goods are incurred. During period t, an amount of goods Dt will arrive, where Dt is a
nonnegative random variable with a known probability distribution with support Dt

as described in section 3. The goods left at the dispatch station at the end of period t
will incur a per-unit holding cost of ht. We assume that the cost parameters ht, ct,Kt

are nonnegative rational values, and the capacity Q is a positive integer. Let It be
the amount of goods in the dispatch station at the beginning of period t, where I1 is
a given constant. Our objective is

min
x1,...,xT

E

T∑
t=1

[
Ktδxt>0 + ctxt + ht ·(It − xt +Dt)

]
,

subject to the system dynamics It+1 = It − xt + Dt for t = 1, . . . , T , where xt is
the amount of goods dispatched in period t (which must not exceed It), and the
expectation is taken with respect to the joint distribution of the random variables
involved.

Papadaki and Powell have considered a multiproduct batch dispatch problem [61].
When the number of products equals one, Papadaki and Powell’s problem becomes
a single-item batch dispatch problem. They consider the case where the fixed costs
and per-unit holding costs are time-independent, except that there is a constant dis-
count factor. Here, we analyze a more general setting of the single-product problem
with time-varying cost parameters. Neither a provably bounded approximation nor
a complexity result is known for this problem. We provide a proof of the following
theorem in Appendix C.

Theorem A.1. The single-item stochastic batch dispatch problem with time-
varying costs is #P-hard.

Define zt(It) as the optimal total cost incurred in periods t, . . . , T , given that the
inventory level at the beginning of period t is It. Denote h0 = 0. The problem can
be formulated as a DP with recurrence relation

(A.11) zt(It) = min
xt=0,...,min{Q,It}

EDt

{
Ktδxt>0 + ctxt + ht−1It + zt+1(It − xt +Dt)

}

for It = 0, . . . , I1 + D∗ and t = 1, . . . , T . The boundary condition is zT+1(IT+1) =
hT IT+1 for IT+1 ≥ 0. The optimal solution value is z1(I1).

Next, we show that this is a nondecreasing DP that fits into our framework. We
define ST+1 = [0, . . . , I1 +D∗] and gT+1(IT+1) = hT IT+1. For t = 1, . . . , T , we define
St = [0, . . . , I1 +D∗], At(It) = [0, . . . ,min{Q, It}], gt(It, xt, Dt) = Ktδxt>0 + ctxt +
ht−1It (for t = 1, . . . , T), and ft(It, xt, Dt) = It − xt +Dt. Note that ST+1, St, and
At(It) are all contiguous intervals for any It ∈ St and t = 1, . . . , T and that the
logarithm of any nonzero element in ST+1, St, and At(It) is bounded from above by
log(I1 + D∗ + 1). Thus, Condition 1 holds. Since the binary size any of the values
of gt is polynomially bounded by the (binary) input size, Condition 2 also holds. As

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1770 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

for Condition 3(i), we notice that for t = 1, . . . , T , function ft is nondecreasing in
It and nonincreasing in xt, and function gt is nondecreasing in It and nondecreasing
in xt. Thus, to show that Condition 3(i) holds, it suffices to show by induction that
zt is nondecreasing for every t. Obviously, zT+1 is nondecreasing. For t = 1, . . . , T ,
suppose that zt+1 is nondecreasing. Consider any I ∈ [1, . . . , I1 +D∗], and let x∗t be
a minimizer of the right hand side of (A.11) when It = I. If x∗t = 0, then

zt(I−1) ≤ EDt{ht−1·(I−1)+zt+1(I−1+Dt)} ≤ EDt{ht−1I+zt+1(I+Dt)} = zt(I).

If x∗t ≥ 1, then

zt(I − 1) ≤ EDt

{
Ktδx∗

t−1>0 + ct ·(x∗t − 1) + ht−1 ·(I−1) + zt+1

(
(I−1)− (x∗t−1) +Dt

)}
≤ EDt

{
Ktδx∗

t>0 + ctx
∗
t + ht−1I + zt+1(I − x∗t +Dt)

}
= zt(I).

Hence, zt is also nondecreasing. Therefore, Condition 3(i) is satisfied.
We note that our FPTAS can be easily extended to the nonlinear case in which

the disposal costs and holding costs are nondecreasing functions.

A.7. Single-resource revenue management. We consider a static setting of
single-resource capacity control in revenue management as studied in Talluri and van
Ryzin, in which customers arrive in batches, and only a single class can arrive in
each time period [73, sect. 2.2]. We present a model that assumes no cancellations or
no-shows, no overbookings, and independent customer arrivals. The model presented
here does not follow the convention in Talluri and van Ryzin, in which their (pseudo-
polynomial time) DP formulation assumes that in each period the action is taken
after the demand of that period is revealed. Our framework requires that the action
is taken before the demand is realized. (Note: The two conventions are mathematically
equivalent.)

Let C ∈ Z+ be the available capacity. There are T customer classes, where class
t has a revenue contribution of rt ∈ Q+ per arrival (t = 1, . . . , T). All customers in
class t arrive in period t, and the number of such customers is distributed randomly
based on nonnegative random variable Dt with support Dt as described in section 3.
Let the state of the system It correspond to the number of bookings accepted up to
period t − 1, and let xt be an upper bound on the number of accepted bookings in
period t. The problem is to find acceptance policies (i.e., x1, . . . , xT) to maximize the
expected total revenue. To the best of our knowledge, no FPTAS is known for this
model. A proof of the following theorem is provided in Appendix C.

Theorem A.2. The single-resource revenue management problem is #P-hard.
Let us define zt(It) as the optimal expected total revenue in periods t, . . . , T , given

that It bookings have already been made in previous time periods. The problem can
be formulated as a DP with recurrence relation

(A.12) zt(It) = max
xt=0,...,C−It

EDt

{
rt min{xt, Dt}+ zt+1(It +min{xt, Dt})

}
for It = 0, . . . , C. The boundary condition is zT+1(IT+1) = 0 for 0 ≤ IT+1 ≤ C, and
the optimal solution value is z1(0).

We now show that the above DP with recurrence relation (A.12) is a maximization
nonincreasing DP that fits into our framework. Define T = n, gT+1 ≡ 0, and ST+1 =
[0, . . . , C]. For t = 1, . . . , T , we define St = [0, . . . , C], At(It) = [0, . . . , C − It],
gt(It, xt, Dt) = rt min{xt, Dt}, and ft(It, xt, Dt) = It +min{xt, Dt}. Note that ST+1,

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1771

St, and At(It) are all contiguous intervals for any It ∈ St and t = 1, . . . , T and that the
logarithm of any nonzero element in ST+1, St, and At(It) is bounded from above by
log(C +1). Thus, Condition 1 holds. Because the functions ft, gt are given explicitly,
Condition 2 also holds. As for Condition 4(ii), we notice that for t = 1, . . . , T ,
function ft is nondecreasing in It and xt, and function gt is nondecreasing in xt and
nonincreasing in It. Furthermore, At(I) ⊆ At(I

′) for all I, I ′ ∈ St with I ≥ I ′.
Therefore, Condition 4(ii) is also satisfied.

Exogenous cancellations can also be handled by using random vectors as explained
in section 10.2. To this end, let Wt be a random variable modeling the number of
cancellations in time period t. Then, we have

ft(It, xt, (Dt,Wt)) = It −min{It,Wt}+min{xt, Dt},

where we assume that in each period cancellations are recorded before sales.
Unfortunately, the addition of overbookings to the model does not fit our frame-

work. Such a modification would require negative terminal costs.

A.8. Lifetime consumption of risky capital. Consider the following problem
studied in Phelps [64]. There is an individual who manages her capital in discrete
time periods. In each time period, she can consume some of her capital, and utility is
derived from her consumption based on an underlying utility function. The remaining
capital in the period yields a return at a stochastic rate. In addition, she receives
a deterministic income at the end of the period. The problem is to find an optimal
consumption strategy which maximizes her expected total utility throughout the time
horizon.

To formalize this problem, let T be the number of time periods, and let It be the
amount of capital on hand at the beginning of period t. In period t, the individual
selects an amount of capital xt to consume. The utility ut of consuming xt units is a
nonnegative, nondecreasing, and rational-valued concave function. The unconsumed
capital, It − xt, grows according to an exogenous stochastic process specifying the
growth rate and defined by discrete rational random variable Dt with support Dt as
described in section 3. In addition to this stochastic growth, the individual receives
an amount yt ≥ 0 units of nonwealth income at the end of period t. She would
like to maximize her expected total utility in periods 1, . . . , T by making dynamic
consumption decisions x1, . . . , xt; that is, her objective is

max
x1,...,xT

E

T∑
t=1

ut(xt),

subject to the system dynamics

It+1 = (1 +Dt)(It − xt) + yt

for t = 1, . . . , T .
Phelps [64] considered a stationary growth rate distribution D, a stationary in-

come y, and a discounted utility function of the form ut(xt) = αt−1u(xt), where
α ∈ (0, 1] is the discount rate and u is a stationary (nonnegative, nondecreasing,
and concave) utility function. Here, we consider a more general model with a time-
dependent growth rate distribution Dt, a time-varying income yt, and a general time-
dependent utility function ut that need not be concave. (See [56, 26] for discussions
of time-dependent utility functions.)

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1772 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

We assume that the utility function ut is rational-valued and that the binary
size of any of its function values is polynomially bounded by the (binary) input size.
We assume that I1, yt, and xt are integer-valued. Recall that Dt = {dt,1, . . . , dt,nt}.
For t = 1, . . . , T and i = 1, . . . , nt, because dt,i is rational, we can express it as
dt,i = rt,i/qt,i, where rt,i, qt,i ∈ N. The input data for the problem consists of (i) the
number of time periods T , (ii) the initial capital I1, (iii) the income yt for all t, (iv) rt,i
and qt,i for all t and i, and (v) an oracle that computes the utility function ut (for
each time period t). No FPTAS is known for this problem. A proof of the following
theorem is provided in Appendix C.

Theorem A.3. The problem of lifetime consumption of risky capital is #P-hard
when Dt and ut are time-dependent.

We now cast our problem as a maximization nondecreasing DP. To convert the
problem into a DP with integer state spaces, we let Lt =

∏T
j=t

∏nj

i=1 qj,i for t =
1, . . . , T and let LT+1 = 1. We multiply I1 and yt by L1 (so now I1 and yt become
multiples of L1) and restrict the xt value to be a multiple of Lt (for t = 1, . . . , T).
Thus, It must be a multiple of Lt for every t. This ensures that I2, . . . , IT+1 are all
integers.

We define gT+1 ≡ 0. For t = 1, . . . , T + 1, we define St = {0, Lt, 2Lt, . . . , (1 +
|d1,n1 |)(1 + |d2,n2 |) · · · (1 + |dt−1,nt−1 |)(I1 + y1 + · · · + yt−1)}. For t = 1, . . . , T , we
define At(It) = {0, Lt, 2Lt, . . . , It}, gt(It, xt, dt) = ut(xt), and ft(It, xt, dt) = (1 +
dt)(It − xt) + yt. Let ymax = maxt=1,...,T {yt}. Note that the kth largest element in
ST+1, St, and At(It) can be identified in constant time for any 1 ≤ k ≤ |At(It)|,
It ∈ St, and t = 1, . . . , T . Furthermore, the logarithm of any nonzero element in
ST+1, St, and At(It) is bounded from above by T log(1 +D∗) + log(I1 + Tymax) =

T log(1+D∗)+log(Ĩ1+T ỹmax)+
∑T

j=1

∑nj

i=1 log qj,i, where Ĩ1 and ỹmax are the values
of I1 and ymax, respectively, before they are multiplied by L1. Thus, Condition 1 holds.
Note that the assumption on the utility function ut implies that Condition 2 also holds.
As for Condition 4(i), we notice that for t = 1, . . . , T , function ft is nondecreasing in
It and nonincreasing in xt, and function gt is nondecreasing in It and xt. Furthermore,
At(I) ⊆ At(I

′) for all I, I ′ ∈ St with I ≤ I ′. Hence, Condition 4(i) is also satisfied.

A.9. Stochastic growth model. This is a variant of “lifetime consumption of
risky capital” proposed by Adda and Cooper [1, Chap. 5]. In each time period, a
household decides how much of its capital to consume, and utility is derived from its
consumption based on an underlying utility function. The rest of the capital can be
used to produce output (and generate more capital) via a production process. There is
a constant depreciation rate of capital, and there are fluctuations in capital created by
random shocks to the production process. The objective is to maximize the expected
total utility throughout the time horizon.

Adda and Cooper [1, Chap. 5] considered two versions of this growth model,
namely, the deterministic version with no random shocks and the stochastic version
in which the random shock is a random variable following a first-order Markov process.
They assume that the time horizon is infinite. They use a discounted utility function
of the form ut(xt) = αt−1u(xt), where α ∈ (0, 1] is the discount rate, and u is a
stationary, nonnegative, strictly increasing, concave function.

Here, we consider the problem in a slightly different setting. Namely, the time
horizon is finite; the utility function ut is a general time-dependent, nonnegative,
nondecreasing function which is not necessarily concave; and the random shock is
defined by positive discrete random variable Dt with support Dt as described in
section 3, which is independent of the random shock in other time periods.

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1773

To formalize our problem, let T be the number of time periods, Δ be the depre-
ciation rate, It be the amount of capital on hand at the beginning of period t, and xt
be the amount of capital consumed in period t. The household’s objective is

max
x1,...,xT

E

T∑
t=1

ut(xt),

and the system dynamics are

It+1 = Dtpt(It) + (1−Δ)It − xt
for t = 1, . . . , T , where pt is a nondecreasing concave production function. We assume
that in each period t, the realization of Dt takes place after the value of xt has been
decided, and xt is no greater than dt,1pt(It) + (1−Δ)It.

We assume that the utility function ut is rational-valued and the production
function pt is integer-valued and that the binary size of any of their function values
is polynomially bounded by the (binary) input size. (We do not assume concavity of
ut and pt.) We assume that I1 and xt are integer-valued, and Δ is rational-valued.
For t = 1, . . . , T and i = 1, . . . , nt, because dt,i is rational, we can express it as
dt,i = rt,i/qt,i, where rt,i, qt,i ∈ N. Similarly, we can express Δ as Δ = α/β, where
α, β ∈ N. The input data for the problem consists of (i) the number of time periods
T , (ii) the initial capital I1, (iii) α and β, (iv) rt,i and qt,i for all t and i, (v) an oracle
that computes the utility function ut (for each time period t), and (vi) an oracle that
computes the production function pt (for each time period t). No FPTAS is known
for this problem. A proof of the following theorem is provided in Appendix C.

Theorem A.4. The stochastic growth model is #P-hard.
We now cast our problem as a maximization nondecreasing DP. To convert the

problem into a DP with integer state spaces, we let Lt = βT−t+1
∏T

j=t

∏nj

i=1 qj,i for
t = 1, . . . , T , and let LT+1 = 1. We multiply I1 by L1, and we scale the elements in
the domain and range of pt by a factor of Lt (so now I1 and pt(It) become multiples
of L1 and Lt, respectively). We also restrict the xt value to be a multiple of Lt

(for t = 1, . . . , T). Thus, It must be a multiple of Lt for every t. This ensures that
I2, . . . , IT+1 are all integers.

We define gT+1 ≡ 0. For t = 1, . . . , T + 1, we define the state space recursively
as follows: S1 = {0, L1, 2L1, . . . , I1}, and

St = {0, Lt, 2Lt, . . . , d1,n1d2,n2 · · · dt−1,nt−1pt−1(Īt−1) + (1 −Δ)Īt−1},

where Īt−1 is the largest element in St−1. For t = 1, . . . , T , we define At(It) =
{0, Lt, 2Lt, . . . , dt,1pt(It) + (1 − Δ)It}, gt(It, xt, dt) = ut(xt), and ft(It, xt, dt) =
dtpt(It) + (1 − Δ)It − xt. Note that the kth largest element in ST+1, St, and
At(It) can be identified in constant time for any 1 ≤ k ≤ |At(It)|, It ∈ St, and
t = 1, . . . , T . Furthermore, for t = 2, . . . , T + 1, log Īt is bounded from above by
T logD∗ + log pt−1(Īt−1) + log Īt−1. This implies that the logarithm of any nonzero
element in ST+1, St, and At(It) is bounded from above by the (binary) input size.
Thus, Condition 1 holds. Note that the assumptions on the utility function ut and
the production function pt implies that Condition 2 also holds. As for Condition 4(i),
we notice that for t = 1, . . . , T , function ft is nondecreasing in It and nonincreasing
in xt, and function gt is nondecreasing in It and xt. Furthermore, At(I) ⊆ At(I

′) for
all I, I ′ ∈ St with I ≤ I ′. Hence, Condition 4(i) is also satisfied.

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1774 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

A.10. Cash management problem. Consider the following cash management
problem stated in Dreyfus and Law (with some changes in notation) [16, pp. 154–155].
A mutual fund would like to decide how much cash it should keep in its bank account
for each of the next T time periods. At the beginning of each period, the cash balance
can be increased by selling stocks (at a cost of s ∈ Q+ per $1 value of stocks), de-
creased by buying stocks (at a cost of b ∈ Q+ per $1 value of stocks), or left constant.
We assume that the amount of time required to implement the decision is negligible.
During the period (after implementing the decision), the mutual fund receives de-
mands for cash from customers redeeming their mutual fund shares and cash inflows
from customers buying the mutual fund shares. Let Dt be a discrete integer random
variable describing the net amount of cash withdrawal made by customers during
period t, where the distribution of Dt is given in section 3. Note that Dt may be
positive or negative, where the latter case means that there is a net deposit of cash
into the mutual fund. If the cash balance falls below zero during a period, the bank
will automatically lend the fund the additional amount. However, the fund must pay
the bank an interest charge of k ∈ Q+ per $1 value of loan per period. Conversely,
if the fund has a positive cash balance at the end of a period, it will incur a cost
of � ∈ Q+ per $1 excessive cash per period, since the fund’s money could have been
invested elsewhere. The given cash balance at the beginning of period 1 is I1. We
assume that there is a constant discount factor α ∈ Q (0 < α ≤ 1), and there are no
terminal costs. We would like to determine the cash balance in each period so as to
minimize the expected total discounted cost for operating the fund.

Let It be the cash balance at the beginning of period t. Let yt be the cash balance
after the buying/selling of stocks in period t has taken place and before the realization
of Dt. Thus, the system dynamics are It+1 = yt −Dt. Let Lt(yt) denote the single-
period cost of having a cash balance of yt immediately before the realization of Dt.
Then, the objective can be written as

min
y1,...,yT

EDt

T∑
t=1

αt−1
[
s(yt − It)+ + b(It − yt)+ + Lt(yt)

]
,

where

EDtLt(yt) =
∑

dt,i∈Dt| dt,i≤yt
�(yt − dt,i)pt,i +

∑
dt,i∈Dt| dt,i>yt

k(dt,i − yt)pt,i.

Dreyfus and Law have provided a pseudopolynomial time DP formulation for
this problem [16, p. 272]. Elton and Gruber [20] have studied a similar problem with
continuous and stationary demand distribution. Other classical models closely related
to this problem include [21, 78]. Recently, Nascimento and Powell [60] have studied a
similar cash balance problem with a fairly general setting, which includes a Markovian
demand process and time-dependent costs on positive and negative cash levels. Their
model assumes that the per-unit stock selling cost s and the per-unit stock buying
cost b are equal. They have proposed a convergent approximate DP algorithm for
their problem. To the best of our knowledge, no FPTAS is known for our problem.

Let D∗ be the maximal aggregated positive demand change throughout the time
horizon, and assume without loss of generality that D∗ is greater than or equal to
the absolute value of the minimal aggregated negative demand change throughout the
time horizon and that −D∗ ≤ I1 ≤ D∗. A DP formulation of our problem is given
as follows. (Note: this DP formulation is different from the one in Dreyfus and Law
[1977, p. 272].) Let zt(It) be the minimum expected total discounted cost for periods

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1775

t through T , given that there is a cash balance of It at the beginning of period t.
Define c : Z→ Q+ such that c(x) = bx if x ≥ 0 and that c(x) = −sx if x < 0. Define
h : Z → Q+ such that h(I) = �I if I ≥ 0 and that h(I) = −kI if I < 0. Note that
functions c and h are V-shaped (see the definition in section 10.4) and thus convex.
The recurrence relation is

(A.13)

zt(It) = min
xt=It−D∗,...,It+D∗

ED

{
αt−1

[
c(xt) + h(It − xt −Dt)

]
+ zt+1(It − xt −Dt)

}
,

where xt represents the amount of cash holding reduction in period t. The boundary
condition is zT+1(IT+1) = 0 for any IT+1 ∈ Z. The optimal solution value of our
problem is z1(I1).

Next, we cast problem (A.13) as a convex DP. Define gT+1 ≡ 0 and ST+1 =
[−D∗, . . . , D∗]. For t = 1, . . . , T , we define St = [−D∗, . . . , D∗], At(It) = [It −
D∗, . . . , It + D∗], gt(It, xt, Dt) = αt−1[c(xt) + h(It − xt − Dt)], and ft(It, xt, Dt) =
It − xt − Dt. Note that ST+1, St, and At(It) are all contiguous intervals for any
It ∈ St and t = 1, . . . , T and that the logarithm of the absolute value of any nonzero
element in ST+1, St, and At(It) is bounded from above by log(2D∗ + 1). Hence,
Condition 1 holds. Note also that the functions c(·) and h(·) are given explicitly.
Hence, Condition 2 also holds. As for Condition 3(iii), we have St ⊗At ={

(−D∗,−2D∗), . . . , (−D∗, 0); (−D∗ + 1,−2D∗ + 1), . . . , (−D∗ + 1, 1); . . . ;

(−1,−D∗ − 1), . . . , (−1, D∗ − 1); (0,−D∗), . . . , (0, D∗); (1,−D∗ + 1), . . . ,

(1, D∗ + 1); . . . ; (D∗ − 1,−1), . . . , (D∗ − 1, 2D∗ − 1); (D∗, 0), . . . , (D∗, 2D∗)
}
,

which is an integrally convex set. Let gIt ≡ 0, gxt (·, d) = αt−1c(·), and ut = αt−1h.
Then, function gt can be expressed as gt(I, x, d) = gIt (I, d) + gxt (x, d) + ut(ft(I, x, d)),
where gIt (·, d), gxt (·, d) and ut(·) are univariate convex functions. Let a = 1, b = −1,
and c(d) = −d. Then, function ft can be expressed as ft(I, x, d) = aI + bx + c(d).
Therefore, Condition 3(iii) is also satisfied.

The above analysis implies that our problem can be cast as a convex DP (and thus
an FPTAS exists). It remains an open question of whether our problem is NP-hard.
It is easy to check that problem (A.13) remains a convex DP if we generalize our
model to allow the cost parameters s, b, k, and � to be time-varying (denoted st, bt,
kt, and �t, respectively). A proof of the following theorem is provided in Appendix C.

Theorem A.5. The generalized cash management problem with time-varying
cost parameters st, bt, kt, and �t is #P-hard.

Appendix B. Proofs of propositions in sections 4, 5, 6, and 10.

B.1. Proposition 4.5.
Proof. Let x∗ = argminϕ. We first consider the case where x∗ = Dmin. In this

case, ϕ is nondecreasing, and function ϕ̂ can be rewritten as

(B.1) ϕ̂(x) =

{
ϕ(x) if x ∈ W,
ϕ(next(x,W)) otherwise.

Note that if x∗W �= x∗, then ϕ (as well as ϕ̂) is constant over D ∩ [x∗, . . . , x∗W]. Note
also that

(B.2) ϕ(x) ≤ ϕ(next(x,W)) ∀x ∈ D \W.

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1776 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

To prove property 1, consider any x ∈ D. If x ∈ W , then ϕ̂(x) = ϕ(x), which
implies that ϕ(x) ≤ ϕ̂(x) ≤ Kϕ(x). If x /∈W , then

ϕ̂(x) = max{ϕ(prev(x,W)), ϕ(next(x,W))} ≤ Kϕ(x),
where the inequality is due to the locality of K-approximation sets. Furthermore,
because ϕ is nondecreasing over W and due to (B.2), we have

ϕ̂(x) = max{ϕ(prev(x,W)), ϕ(next(x,W))} = ϕ(next(x,W)) ≥ ϕ(x).
Thus, ϕ̂ is aK-approximation of ϕ. If ϕ is stored in a sorted array {(x, ϕ(x)) | x ∈W},
then for any x ∈ D, we can determine the value of ϕ̂(x) inO(log |W |) time using binary
search.

To prove property 2, we first show that W is a K-approximation set of ϕ̂. Condi-
tion 1 of Definition 4.2 is satisfied because ϕ and ϕ̂ share the same domain. Condition 2
is satisfied because ϕ(x) = ϕ̂(x) for all x ∈ W . By Proposition 4.3, condition 3 is
also satisfied. Next, we show that W ∪W+ is a 1-approximation set of ϕ̂. Denote
W ′ = W ∪W+. (i) Because Dmin, Dmax ∈ W , we have Dmin, Dmax ∈ W ′. (ii) Con-
sider any x ∈ W ′\{Dmax} such that next(x,D) /∈W ′. Then, next(x,D) /∈W+, which
implies that x /∈ W . Thus, y /∈ W for any y ∈ D that satisfies x ≤ y < next(x,W).
By (B.1),

(B.3) ϕ̂(y) = ϕ(next(x,W)) ∀y ∈ D s.t. x ≤ y ≤ next(x,W).

Applying (B.3) with y = x, we have ϕ̂(x) = ϕ(next(x,W)). Note that next(x,W ′) ≤
next(x,W). Hence, applying (B.3) with y = next(x,W ′), we have ϕ̂(next(x,W ′)) =
ϕ(next(x,W)). Thus, max{ϕ̂(x), ϕ̂(next(x,W ′))} = min{ϕ̂(x), ϕ̂(next(x,W ′))}.
Therefore, W ′ satisfies condition 2 of Definition 4.2. (iii) By Proposition 4.3, W ′

also satisfies condition 3.
To prove property 3, we consider any x ∈ D \ {Dmax}, we divide the analysis into

four different cases, and we apply (B.1) to each case.
Case 1. x ∈ W and next(x,D) ∈W . In this case, ϕ̂(x) = ϕ(x) ≤ ϕ(next(x,D)) =

ϕ̂(next(x,D)), where the inequality follows from the fact that ϕ is nondecreasing
over W .

Case 2. x ∈ W and next(x,D) /∈ W . In this case, ϕ̂(x) = ϕ(x) ≤ ϕ(next(x,W)) =
ϕ(next(next(x,D),W)) = ϕ̂(next(x,D)), where the inequality follows from the fact
that ϕ is nondecreasing over W .

Case 3. x /∈ W and next(x,D) ∈ W . In this case, ϕ̂(x) = ϕ(next(x,W)) =
ϕ(next(x,D)) = ϕ̂(next(x,D)).

Case 4. x /∈ W and next(x,D) /∈ W . In this case, ϕ̂(x) = ϕ(next(x,W)) =
ϕ(next(next(x,D),W)) = ϕ̂(next(x,D)).

Combining these four cases, we conclude that ϕ̂(x) ≤ ϕ̂(next(x,D)). Hence, ϕ̂ is
nondecreasing over D. Next, suppose that ϕ is convex over D. Let ψ be the convex
extension of ϕ̂ induced by W . Because ϕ̂ is nondecreasing, ψ is also nondecreasing.
Thus, it is minimized at x∗. Note that ϕ is a convex function whose values are no
larger than those of ϕ̂, while ψ is the greatest convex function whose values at the
elements of W are no larger than those of ϕ̂. Hence, ϕ(x) ≤ ψ(x) for every x ∈ D
and ψ(x) ≤ ϕ̂(x) for every x ∈ W . This implies that ψ(x) ≤ ϕ̂(x) for every x ∈ D
(by definition of ϕ̂ and the fact that ψ is convex). Because ϕ̂ is a K-approximation of
ϕ, we have ϕ̂(x) ≤ Kϕ(x) for every x ∈ D. Thus, ϕ(x) ≤ ψ(x) ≤ ϕ̂(x) ≤ Kϕ(x) for
every x ∈ D. Therefore, ψ is a convex K-approximation of ϕ. Note that if x∗W �= x∗,

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1777

then because ϕ̂ is constant over D ∩ [x∗, . . . , x∗W], so is ψ. Hence, ψ is minimized
at x∗W .

The proof of the case where x∗ = Dmax is similar and is therefore omitted. For
the case where x∗ /∈ {Dmin, Dmax}, we note that ϕ must be either nonincreasing over
the domain D ∩ [Dmin, . . . , x∗W] or nondecreasing over D ∩ [x∗W , . . . , Dmax] (or both).
Suppose, without loss of generality, that ϕ is nonincreasing over D ∩ [Dmin, . . . , x∗W].
We then apply the proof of the case “x∗ = Dmax” to the domain D ∩ [Dmin, . . . , x∗W].
Consider the domain D∩ [x∗W , . . . , Dmax]. Note that x∗ ≥ x∗W and ϕ is nondecreasing
over W ∩ [x∗W , . . . , Dmax]. Note also that ϕ(x) ≤ ϕ(next(x,W)) for all x ∈ (D ∩
[x∗W , . . . , Dmax])\W . Thus, (B.1)–(B.2) hold. Since the proof of the case “x∗ = Dmin”
relies on the facts that ϕ is nondecreasing over W and that (B.1)–(B.2) hold (and
does not require the monotonicity of ϕ over D), we can apply it to the domain
D ∩ [x∗W , . . . , Dmax]. This completes the proof of the proposition.

B.2. Proposition 4.6.
Proof. Let x∗ be a minimizer of function ϕ. We first consider the case where

x∗ = Dmin. In this case, ϕ is nondecreasing, and function ϕ̂ can be rewritten as
(B.1). Note that when x∗ = Dmin, step 5 of Algorithm 1 is executed in each iteration
of the while-loop (and step 6 is not executed). We can perform this step via binary
search in O(log |D|tϕ) time. Let x(1), . . . , x(k) denote the sequence of x values that
are included into W in the while-loop. We observe that Kϕ(x(i+2)) < ϕ(x(i)) for

i = 1, . . . , k − 2. Thus, the while-loop repeats at most O(1 + logK
ϕmax

ϕmin) times.

Moreover, for i = 1, . . . , k − 1, if x(i+1) �= prev(x(i), D), then Kϕ(x(i+1)) ≥ ϕ(x(i)).
Hence, for any x ∈ W \ {Dmax}, if next(x,D) /∈ W , then Kϕ(x) ≥ ϕ(next(x,W)),
or equivalently, Kmin{ϕ(x), ϕ(next(x,W))} ≥ max{ϕ(x), ϕ(next(x,W))}. Thus, the
set W returned by ApxSet satisfies condition 2 of Definition 4.2. Clearly, condition 1
is satisfied. By Proposition 4.3, condition 3 is also satisfied. Therefore, W is a K-
approximation set of ϕ.

The proof of the case where x∗ = Dmax is similar and is therefore omitted.
For the case where x∗ /∈ {Dmin, Dmax}, we note that x∗ is included in the set W
returned by the algorithm. Therefore we apply the proof of the case “x∗ = Dmax” to
the domain D ∩ [Dmin, . . . , x∗] and apply the proof of the case “x∗ = Dmin” to the
domain D ∩ [x∗, . . . , Dmax]. This completes the proof of the proposition.

B.3. Proposition 4.7.
Proof. We start by considering the cardinality of W̄ and the running time of

the algorithm. We execute step 4 of Algorithm 2 as follows. We determine x′ by
performing binary search over the domain D. In the first iteration of the search, the
scope is D1 = D ∩ {y ∈ D | y ≤ x}, and the condition of the while-loop implies that
Kϕ̄(Dmin

1) < ϕ̄(x). In addition, Kϕ̄(Dmax
1) ≥ ϕ̄(x) (since Dmax

1 = x). We choose a
middle elementm ∈ D1 (i.e., m is the 	|D1|/2
-th largest element of D1). We consider
two different cases.

Case 1. Kϕ̄(m) < ϕ̄(x). In this case, we set m′ ← next(m,D1). If Kϕ̄(m′) ≥
ϕ̄(x), then the search is completed by assigning x ← m. Otherwise, we set the new
(reduced) scope of the search to D2 = D1 ∩ {y ∈ D | y ≥ m′}.

Case 2. Kϕ̄(m) ≥ ϕ̄(x). In this case, we set m′ ← prev(m,D). If Kϕ̄(m′) <
ϕ̄(x), then the search is completed by assigning x ← m′. Otherwise, we set the new
(reduced) scope of the search to D2 = D1 ∩ {y ∈ D | y ≤ m′}.

In both cases, if the search is not completed, then we get a new scope D2 which is
at most half the size of D1, and it satisfies Kϕ̄(Dmin

2) < ϕ̄(x) and Kϕ̄(Dmax
2) ≥ ϕ̄(x).

We continue the search this way. Clearly, the search can be completed in O(log |D|)

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1778 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

steps. Let x(1), next(x(1), D), x(2), next(x(2), D), . . . denote the sequence of x values
that are included into W̄ in the while-loop. We observe that Kϕ̄(x(i+1)) < ϕ̄(x(i))

for i = 1, 2, Thus, the while-loop repeats at most O(1 + logK
ϕmax

ϕmin) times and

therefore |W̄ | = O(1+ logK
ϕmax

ϕmin). The computational time required in each iteration

of the loop is O(tϕ̄ log |D|), so the claimed running time of the algorithm follows. We
note in passing that

(B.4) ϕ̄(next(x,W)) ≤ Kϕ̄(x) ∀x ∈W \ {Dmax} such that next(x,D) /∈ W.
We now prove that W̄ is a K-approximation set of ϕ̃. Consider any x ∈ W̄t \ {Dmax}
such that next(x,D) /∈ W̄ . We divide the analysis into two cases.

Case 1. ϕ̃(x) < ϕ̄(x). In this case, ϕ̃ differs from ϕ̄ on x. Since ϕ̃ is a maximal non-
decreasing function bounded from above by ϕ̄ over W̄ , we have ϕ̃(x) = ϕ̃(next(x, W̄)).

Case 2. ϕ̃(x) = ϕ̄(x). In this case, applying (B.4), we have ϕ̄(next(x, W̄)) ≤
Kϕ̄(x) = Kϕ̃(x). By definition of ϕ̃, we have ϕ̃(next(x, W̄)) ≤ ϕ̄(next(x, W̄)). Thus,
ϕ̃(next(x, W̄)) ≤ Kϕ̃(x).

Combining Cases 1 and 2, we conclude that ϕ̃(next(x, W̄)) ≤ Kϕ̃(x) for any
x ∈ W̄ \ {Dmax} that satisfies next(x,D) /∈ W̄ . Note that Dmin, Dmax ∈ W̄ . Hence,
by Proposition 4.3, W̄ is a K-approximation set of ϕ̃.

We next prove that ϕ̃ is a nondecreasing KL-approximation step function of ϕ.
By definition of ϕ̃, we have ϕ̃(x) ≤ ϕ̄(x) for any x ∈ W̄ . This, together with the fact
that ϕ̄ is an L-approximation of ϕ, implies that

ϕ̃(x) ≤ Lϕ(x) ∀x ∈ W̄ .

On the other hand, for any x ∈ W̄ , there exists y ∈ W̄ such that y ≥ x and ϕ̃(x) =
ϕ̄(y). Because ϕ̄ is an L-approximation of ϕ, we have ϕ̄(y) ≥ ϕ(y). Thus,

ϕ̃(x) = ϕ̄(y) ≥ ϕ(y) ≥ ϕ(x) ∀x ∈ W̄ ,

where the second inequality is due to the monotonicity of ϕ. Hence, ϕ̃ is a non-
decreasing L-approximation step function of the restriction of ϕ over W̄ . Applying
approximation of approximation sets (Proposition 6.2) with ϕ1 = ϕ̃, ϕ2 = ϕ, K1 = K,
K2 = L, andW1 = W̄ , we get that ˆ̃ϕ is a nondecreasingKL-approximation step func-
tion of ϕ. Note that since ϕ̃ is a nondecreasing step function, we get that ˆ̃ϕ ≡ ϕ̃.
Therefore, ϕ̃ is a nondecreasing KL-approximation step function of ϕ.

B.4. Proposition 5.2.
Proof. By summation of approximation and composition of approximation (i.e.,

properties 3 and 4 of Proposition 5.1),
∑n

i=1 ϕ̃i(ψi) is a max{K1, . . . ,Kn}-approx-
imation function of

∑n
i=1 ϕi(ψi). Consider any fixed x ∈ D. The quantity

∑n
i=1 ϕ̃i(ψi

(x, y)) is a max{K1, . . . ,Kn}-approximation value of
∑n

i=1 ϕi(ψi(x, y)) for all y ∈
C(x). By minimization of approximation (i.e., property 6 of Proposition 5.1), this
implies that ϕ̃(x) is a max{K1, . . . ,Kn}-approximation value of ϕ(x). Hence, ϕ̃ is a
max{K1, . . . ,Kn}-approximation function of ϕ.

B.5. Proposition 5.3.
Proof. Consider any fixed x ∈ D. Let y@ ∈ ⋃m

i=1Wi(x) be a realizer of ϕ̃(x); that
is, ϕ̃(x) =

∑n
i=1 ϕ̃i(ψi(x, y

@)). By composition of approximation (Proposition 5.1),
ϕ̃i(ψi(x, ·)) is an Li-approximation of ϕi(ψi(x, ·)) for i = 1, . . . , n, and therefore,

ϕ(x) = min
y∈C(x)

{
n∑

i=1

ϕi(ψi(x, y))

}
≤

n∑
i=1

ϕi(ψi(x, y
@)) ≤

n∑
i=1

ϕ̃i(ψi(x, y
@)) = ϕ̃(x).

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1779

Let y∗ be the smallest realizer of ϕ(x).
We first consider the scenario where m �= n and divide the analysis into two cases.
Case 1. ϕ̃1(ψ1(x, ·)) is nondecreasing, and ϕ̃n(ψn(x, ·)) is nonincreasing. In this

case, for i = 1, . . . ,m, define y′i = y∗ if y∗ ∈ Wi(x), and define y′i = next(y∗,Wi(x))
if y∗ /∈ Wi(x). Because Wi(x) is a Ki-approximation set of ϕ̃i(ψi(x, ·)), we have
ϕ̃i(ψi(x, y

′
i)) ≤ Kiϕ̃i(ψi(x, y

∗)) for i = 1, . . . ,m. Let y′ = mini=1,...,m{y′i}. For
i = 1, . . . ,m, since ϕ̃i(ψi(x, ·)) is nondecreasing, we have

(B.5) ϕ̃i(ψi(x, y
′)) ≤ ϕ̃i(ψi(x, y

′
i)) ≤ Kiϕ̃i(ψi(x, y

∗)) ≤ KiLiϕi(ψi(x, y
∗)),

where the last inequality follows from the fact that ϕ̃i(ψi(x, ·)) is an Li-approximation
of ϕi(ψi(x, ·)). For i = m + 1, . . . , n, since ϕ̃i(ψi(x, ·)) is nonincreasing and y′ ≥ y∗,
we have ϕ̃i(ψi(x, y

′)) ≤ ϕ̃i(ψi(x, y
∗)). This, together with the fact that ϕ̃i(ψi(x, ·)) is

an Li-approximation of ϕi(ψi(x, ·)), gives us
(B.6) ϕ̃i(ψi(x, y

′)) ≤ Liϕi(ψi(x, y
∗))

for i = m+ 1, . . . , n. Because y′ ∈ ⋃m
i=1Wi(x), we have

(B.7) ϕ̃(x) ≤
n∑

i=1

ϕ̃i(ψi(x, y
′)).

From (B.5), (B.6), and (B.7), we have

ϕ̃(x) ≤
m∑
i=1

ϕ̃i(ψi(x, y
′)) +

n∑
i=m+1

ϕ̃i(ψi(x, y
′))

≤
m∑
i=1

KiLiϕi(ψi(x, y
∗)) +

n∑
i=m+1

Liϕi(ψi(x, y
∗))

≤ max{K1L1, . . . ,KmLm, Lm+1, . . . , Ln}ϕ(x).

(B.8)

Case 2. ϕ̃1(ψ1(x, ·)) is nonincreasing, and ϕ̃n(ψn(x, ·)) is nondecreasing. In this
case, for i = 1, . . . ,m, define y′i = y∗ if y∗ ∈ Wi(x), and define y′i = prev(y∗,Wi(x)) if
y∗ /∈ Wi(x). Letting y′ = maxi=1,...,m{y′i} ≤ y∗ and following the same argument as
in Case 1, it is easy to verify that inequality (B.8) holds.

Next, we consider the scenario where m = n. If ϕ̃i(ψi(x, ·)) is nondecreasing
for i = 1, . . . , n, then inequality (B.5) holds for i = 1, . . . , n, and therefore (B.8)
remains valid. On the other hand, if ϕ̃i(ψi(x, ·)) is nonincreasing for i = 1, . . . , n, then
inequality (B.6) holds for i = 1, . . . , n, which implies that ϕ̃(x) ≤∑n

i=1 ϕ̃i(ψi(x, y
′)) ≤∑n

i=1 Liϕi(ψi(x, y
∗)) ≤ max{L1, . . . , Ln}ϕi(x) ≤ max{K1L1, . . . ,KnLn}ϕi(x). This

completes the proof of the proposition.

B.6. Proposition 6.1.
Proof. Properties 1 and 4 follow directly from the definitions of K-approximation

sets and functions, and their proofs are therefore omitted. A proof for monotonic-
ity of approximation sets, composition of approximation sets, and maximization of
approximation sets is given below.

Monotonicity of approximation sets. Clearly, Dmin, Dmax ∈ W1 ⊆ W ′.
Thus, the first condition in Definition 4.2 is satisfied.

To prove the boundedness of W ′, consider any x ∈ W ′ \ {Dmax} such that
next(x,D) /∈ W ′. We will show that

(B.9) max{ϕ1(x), ϕ1(next(x,W
′))} ≤ K1min{ϕ1(x), ϕ1(next(x,W

′))}.

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1780 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

Note that prev(x,W1) ≤ x < next(x,W ′) ≤ next(x,W1). (If x = Dmin we slightly
abuse notation by defining prev(Dmin,W1) = Dmin.) Hence, by the unimodality of ϕ1,

(B.10) max{ϕ1(x), ϕ1(next(x,W
′))} ≤ max{ϕ1(prev(x,W1)), ϕ1(next(x,W1))}.

We consider four different cases.
Case 1. x ∈ W1 and next(x,W ′) ∈ W1. In this case, next(x,W ′) = next(x,W1).

Hence, (B.9) holds due to the boundedness of W1.
Case 2. x /∈ W1 and next(x,W ′) ∈ W1. In this case, by the locality of W1,

we have max{ϕ1(prev(x,W1)), ϕ1(next(x,W1))} ≤ K1ϕ1(x). In addition, because
prev(x,W1) ∈ W1 \ {Dmax} and next(prev(x,W1), D) /∈ W1, by the boundedness of
W1, we have max{ϕ1(prev(x,W1)), ϕ1(next(x,W1))} ≤ K1ϕ1(next(x,W1)). Hence,

max{ϕ1(prev(x,W1)), ϕ1(next(x,W1))} ≤ K1min{ϕ1(x), ϕ1(next(x,W1))}.

This, together with (B.10) and the fact that next(x,W ′) = next(x,W1), implies the
validity of (B.9).

Case 3. x /∈ W1 and next(x,W ′) /∈ W1. By the locality of W1, we have
max{ϕ1(prev(x,W1)), ϕ1(next(x,W1))} ≤ K1ϕ1(x). Because next(x,W ′) ∈ D \W1,
by the locality of W1, we have

max{ϕ1(prev(next(x,W
′),W1)), ϕ1(next(next(x,W

′),W1))} ≤ K1ϕ1(next(x,W
′));

that is, max{ϕ1(prev(x,W1)), ϕ1(next(x,W1))} ≤ K1ϕ1(next(x,W
′)). Hence,

max{ϕ1(prev(x,W1)), ϕ1(next(x,W1))} ≤ K1 min{ϕ1(x), ϕ1(next(x,W
′))}.

This, together with (B.10), implies the validity of (B.9).
Case 4. x ∈ W1 and next(x,W ′) /∈ W1. In this case, next(x,D) /∈ W1. Thus, by

the boundedness of W1, we have max{ϕ1(x), ϕ1(next(x,W1))} ≤ K1ϕ1(x). Because
next(x,W ′) ∈ D\W1, by the locality ofW1, we have max{ϕ1(prev(next(x,W

′),W1)),
ϕ1(next(next(x,W

′),W1))} ≤ K1ϕ1(next(x,W
′)); that is, max{ϕ1(x),

ϕ1(next(x,W1))} ≤ K1ϕ1(next(x,W
′)). Hence,

max{ϕ1(x), ϕ1(next(x,W1))} ≤ K1min{ϕ1(x), ϕ1(next(x,W
′))}.

This, together with the fact that ϕ1(next(x,W
′)) ≤ max{ϕ1(x), ϕ1(next(x,W1))} (by

the unimodality of ϕ1), implies the validity of (B.9).
To show the locality of W ′, consider any x ∈ D \W ′. We have

max{ϕ1(prev(x,W
′)), ϕ1(next(x,W

′))} ≤ max{ϕ1(prev(x,W1)), ϕ1(next(x,W1))}
≤ K1ϕ1(x),

where the first inequality is due to the unimodality of ϕ1 and the second inequal-
ity is due to the locality of W1. This completes the proof of the monotonicity of
approximation sets.

Composition of approximation sets. We give a proof for the case where ψ
is nondecreasing. The proof for the case with nonincreasing ψ is similar. Note that
ϕ1(ψ) is a unimodal function, and hence a K-approximation set of it is well-defined.
Because ψ(x) ≥ Dmin for all x ∈ D′, we have min{x | ψ(x) ≥ Dmin} = D′min. This,
together with the fact that Dmin ∈ W1, implies that D′min ∈ ψ−1(W1). Because
ψ(x) ≤ Dmax for all x ∈ D′, we have max{x | ψ(x) ≤ Dmax} = D′max. This, together

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1781

with the fact that Dmax ∈ W1, implies that D′max ∈ ψ−1(W1). Therefore, the first
condition in Definition 4.2 is satisfied.

To prove the boundedness of ψ−1(W1), consider any x ∈ ψ−1(W1)\{D′max} such
that next(x,D′) /∈ ψ−1(W1). We will show that

(B.11) ϕ1(ψ(next(x, ψ
−1(W1)))) ≤ K1ϕ1(ψ(x))

and

(B.12) ϕ1(ψ(x)) ≤ K1ϕ1(ψ(next(x, ψ
−1(W1)))).

Suppose, by negation, that there is y ∈W1 such that ψ(x) < y < ψ(next(x, ψ−1(W1))).
Then, y �= ψ(x′) for any x′ ∈ D′. (Otherwise, by definition of ψ−1(W1), y = ψ(x̄) for
some x̄ ∈ ψ−1(W1), implying that x < x̄ < next(x, ψ−1(W1)) for some x̄ ∈ ψ−1(W1),
which is impossible.) Thus, x = max{u ∈ D′ | ψ(u) ≤ y} and next(x, ψ−1(W1)) =
min{u ∈ D′ | ψ(u) ≥ y}. This implies that next(x, ψ−1(W1)) = next(x,D′), which
contradicts that next(x,D′) /∈ ψ−1(W1). Hence, there does not exist any y ∈ W1 such
that ψ(x) < y < ψ(next(x, ψ−1(W1))). This implies that

ψ(x) ≤ ψ(next(x, ψ−1(W1))) ≤ next(ψ(x),W1).

By the unimodality of ϕ1, we have

(B.13) ϕ1(ψ(next(x, ψ
−1(W1)))) ≤ max

{
ϕ1(ψ(x)), ϕ1(next(ψ(x),W1))

}
.

Furthermore, if ψ(x) ∈W1, then

(B.14) prev(ψ(next(x, ψ−1(W1))),W1) = ψ(x).

We consider three different cases.
Case 1. ψ(x) ∈W1 and next(ψ(x), D) /∈ W1. In this case, by the boundedness of

W1,

max{ϕ1(ψ(x)), ϕ1(next(ψ(x),W1))} ≤ K1ϕ1(ψ(x)).

This, together with (B.13), implies the validity of (B.11). We now prove inequality
(B.12). If ψ(next(x, ψ−1(W1))) /∈W1, then by the locality of W1 we have

ϕ1(prev(ψ(next(x, ψ
−1(W1))),W1)) ≤ K1ϕ1(ψ(next(x, ψ

−1(W1)))).

By (B.14), ϕ1(prev(ψ(next(x, ψ
−1(W1))),W1)) = ϕ1(ψ(x)). Hence, (B.12) is valid.

If ψ(next(x, ψ−1(W1))) ∈ W1, then ψ(next(x, ψ
−1(W1))) = next(ψ(x),W1). Because

next(ψ(x), D) /∈W1, by the boundedness ofW1, we have ϕ1(ψ(x)) ≤ K1ϕ1(next(ψ(x),
W1)), which implies the validity of (B.12).

Case 2. ψ(x) ∈ W1 and next(ψ(x), D) ∈ W1. In this case, either ψ(next(x, ψ−1

(W1))) = ψ(x) or ψ(next(x, ψ−1(W1))) = next(ψ(x), D). Suppose, to the con-
trary, that ψ(next(x, ψ−1(W1))) = next(ψ(x), D). Because next(x,D′) /∈ ψ−1(W1),
there exists x̄ ∈ D′ such that x < x̄ < next(x, ψ−1(W1)). Then, ψ(x) ≤ ψ(x̄) ≤
ψ(next(x, ψ−1(W1))). In other words, either ψ(x̄) = ψ(x) or ψ(x̄) = next(ψ(x),
D). If ψ(x̄) = ψ(x), then let x′ be the largest element in D′ such that ψ(x′) =
ψ(x). Clearly, x < x′ < next(x, ψ−1(W1)). By definition of ψ−1(W1), we have
x′ ∈ ψ−1(W1), which is a contradiction. If ψ(x̄) = next(ψ(x), D), then let x′′ be
the smallest element in D′ such that ψ(x′′) = next(ψ(x), D). Clearly, x < x′′ <

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1782 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

next(x, ψ−1(W1)). By definition of ψ−1(W1), we have x′′ ∈ ψ−1(W1), which is also a
contradiction. Therefore, ψ(next(x, ψ−1(W1))) = ψ(x), which implies the validity of
both (B.11) and (B.12).

Case 3. ψ(x) /∈ W1. In this case, by the locality of W1,

ϕ1(next(ψ(x),W1)) ≤ K1ϕ1(ψ(x)).

This, together with (B.13), implies the validity of (B.11). We now prove inequality
(B.12). If ψ(next(x, ψ−1(W1))) /∈W1, then by the locality of W1 we have

ϕ1(prev(ψ(next(x, ψ
−1(W1))),W1)) ≤ K1ϕ1(ψ(next(x, ψ

−1(W1)))).

By (B.14), ϕ1(prev(ψ(next(x, ψ
−1(W1))),W1)) = ϕ1(ψ(x)). Hence, (B.12) is valid.

If ψ(next(x, ψ−1(W1))) ∈ W1, then ψ(next(x, ψ
−1(W1))) = next(ψ(x),W1). Because

ψ(x) /∈ W1, we have next(prev(ψ(x),W1), D) /∈ W1. Thus, by the boundedness of
W1,

(B.15)
max

{
ϕ1(prev(ψ(x),W1)), ϕ1(next(prev(ψ(x),W1),W1))

}
≤ K1ϕ1(next(prev(ψ(x),W1),W1)).

By the unimodality of ϕ1, we have

ϕ1(ψ(x)) ≤ max
{
ϕ1(prev(ψ(x),W1)), ϕ1(next(prev(ψ(x),W1),W1))

}
.

This, together with (B.15), implies that

ϕ1(ψ(x)) ≤ K1ϕ1(next(prev(ψ(x),W1),W1)) = K1ϕ1(ψ(next(x, ψ
−1(W1))),

where the equality is due the fact that there is no y ∈ W1 such that ψ(x) < y <
ψ(next(x, ψ−1(W1))). This implies the validity of (B.12).

To prove the locality of ψ−1(W1), consider any x ∈ D′ \ ψ−1(W1). We will show
that

(B.16) max
{
ϕ1(ψ(prev(x, ψ

−1(W1)))), ϕ1(ψ(next(x, ψ
−1(W1))))

} ≤ K1ϕ1(ψ(x)).

By the same argument as in the proof of the boundedness of ψ−1(W1), there does
not exist any y ∈ W1 such that ψ(prev(x, ψ−1(W1))) < y < ψ(next(x, ψ−1(W1))).
Hence, either ψ(prev(x, ψ−1(W1))) = ψ(x) = ψ(next(x, ψ−1(W1))) or ψ(x) /∈ W1. If
ψ(prev(x, ψ−1(W1))) = ψ(x) = ψ(next(x, ψ−1(W1))), then clearly inequality (B.16)
is valid. If ψ(x) /∈W1, then by the locality of W1,

(B.17) max
{
ϕ1(prev(ψ(x),W1)), ϕ1(next(ψ(x),W1))

} ≤ K1ϕ1(ψ(x)).

Note that prev(ψ(x),W1) ≤ ψ(prev(x, ψ−1(W1))) ≤ ψ(next(x, ψ−1(W1)))
≤ next(ψ(x),W1). Thus, by the unimodality of ϕ1,

max
{
ϕ1(ψ(prev(x, ψ

−1(W1)))), ϕ1(ψ(next(x, ψ
−1(W1))))

}
≤ max

{
ϕ1(prev(ψ(x),W1)), ϕ1(next(ψ(x),W1))

}
.

This, together with (B.17), implies the validity of (B.16).
Maximization of approximation sets. Let ϕmax(x) = max{ϕ1(x), ϕ2(x)}

for all x ∈ D. Note that unimodality is closed under maximization. Thus, ϕmax

is a unimodal function, and a K-approximation set of it is well-defined. Denote

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1783

W12 = W1 ∪ W2. Clearly, Dmin, Dmax ∈ W12. Therefore, the first condition in
Definition 4.2 is satisfied.

To prove the boundedness of W12 (with respect to function ϕmax), consider any
x ∈ W12 \ {Dmax} such that next(x,D) /∈ W12. By the monotonicity of approxima-
tion sets, W12 is a Ki-approximation set of ϕi for i = 1, 2. Hence, by the bounded-
ness of W12 (with respect to function ϕi), we have max{ϕi(x), ϕi(next(x,W12))} ≤
Kimin{ϕi(x), ϕi(next(x,W12))} for i = 1, 2. This implies that

ϕi(x) ≤ max{K1,K2}min{ϕmax(x), ϕmax(next(x,W12))}
and

ϕi(next(x,W12)) ≤ max{K1,K2}min{ϕmax(x), ϕmax(next(x,W12))}
for i = 1, 2. Therefore,

max{ϕmax(x), ϕmax(next(x,W12))}≤max{K1,K2}min{ϕmax(x), ϕmax(next(x,W12))},
and the boundedness of W12 (with respect to function ϕmax) follows.

To show the locality of W12, consider any x ∈ D \W12. For i = 1, 2, because
prev(x,Wi) ≤ prev(x,W12) < x, by the unimodality of ϕi, we have ϕi(prev(x,W12)) ≤
max{ϕi(prev(x,Wi)), ϕi(x)}. By the locality of Wi, we have ϕi(prev(x,Wi)) ≤
Kiϕi(x). Thus,

(B.18) ϕi(prev(x,W12)) ≤ max{Kiϕi(x), ϕi(x)} ≤ max{K1,K2}ϕmax(x).

Because x < next(x,W12) ≤ next(x,Wi), by the unimodality of ϕi, we have
ϕi(next(x,W12)) ≤ max{ϕi(x), ϕi(next(x,Wi))}. By the locality of Wi, we have
ϕi(next(x,Wi)) ≤ Kiϕi(x). Thus,

(B.19) ϕi(next(x,W12)) ≤ max{ϕi(x),Kiϕi(x)} ≤ max{K1,K2}ϕmax(x).

From (B.18) and (B.19),

max{ϕmax(prev(x,W12)), ϕmax(next(x,W12))} ≤ max{K1,K2}ϕmax(x),

and the locality of W12 follows. This completes the proof of the maximization of
approximation sets.

B.7. Proposition 6.2.
Proof. Denote W12 = W1 ∪ W2. We give a proof for the case where ϕ1 and

ϕ2 are both nondecreasing. The proof for the case with nonincreasing ϕ1 and ϕ2

is similar. We first prove the summation of approximation sets. Let ϕsum(x) =
ϕ1(x) + ϕ2(x) for all x ∈ D. Note that ϕsum is nondecreasing, and hence a K-
approximation set of it is well-defined. Clearly, Dmin, Dmax ∈ W12. Thus, the first
condition of Definition 4.2 is satisfied. To prove the boundedness ofW12 (with respect
to function ϕsum), consider any x ∈ W12 \ {Dmax} such that next(x,D) /∈ W12. By
the monotonicity of approximation sets, W12 is a Ki-approximation set of ϕi for
i = 1, 2. Hence, by the boundedness of W12 (with respect to function ϕi), we have
max{ϕi(x), ϕi(next(x,W12))} ≤ Kimin{ϕi(x), ϕi(next(x,W12))} for i = 1, 2. This,
together with the fact that ϕsum is nondecreasing, implies that

max{ϕsum(x), ϕsum(next(x,W12))} = ϕsum(next(x,W12)) =
∑2

i=1 ϕi(next(x,W12))

≤∑2
i=1Kiϕi(x) ≤ max{K1,K2}ϕsum(x)

= max{K1,K2}min{ϕsum(x), ϕsum(next(x,W12))},

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1784 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

and the boundedness of W12 (with respect to function ϕsum) follows. The locality of
W12 follows directly from Proposition 4.3.

Next, we prove the minimization of approximation sets. Let ϕmin(x) = min{ϕ1(x),
ϕ2(x)} for all x ∈ D. Note that ϕmin is nondecreasing and hence, a K-approximation
set of it is well-defined. Clearly, Dmin, Dmax ∈ W12. Thus, the first condition of
Definition 4.2 is satisfied. To prove the boundedness of W12 (with respect to function
ϕmin), consider any x ∈ W12 \ {Dmax} such that next(x,D) /∈ W12. As mentioned
above, max{ϕi(x), ϕi(next(x,W12))} ≤ Kimin{ϕi(x), ϕi(next(x,W12))} for i = 1, 2.
This, together with the fact that ϕmin is nondecreasing, implies that

max{ϕmin(x), ϕmin(next(x,W12))} = ϕmin(next(x,W12)) = mini=1,2 ϕi(next(x,W12))

≤ mini=1,2Kiϕi(x) ≤ max{K1,K2}ϕmin(x)

= max{K1,K2}min{ϕmin(x), ϕmin(next(x,W12))},
and the boundedness of W12 (with respect to function ϕmin) follows. The locality of
W12 follows directly from Proposition 4.3.

Finally, we prove the approximation of approximation sets. The condition “ϕ1 is
a K2-approximation of the restriction of ϕ2 over W1” is equivalent to

(B.20) ϕ2(x) ≤ ϕ1(x) ≤ K2ϕ2(x) ∀x ∈W1.

This implies that

(B.21) ϕ2(x) ≤ ϕ̂1(x) ≤ K2ϕ2(x) ∀x ∈W1.

Note that

(B.22) ϕ̂1(x) = ϕ1(next(x,W1)) ≥ ϕ2(next(x,W1)) ≥ ϕ2(x) ∀x ∈ D \W1,

where the equality follows from the definition of approximation induced by an ap-
proximation set, the first inequality follows from (B.20), and the second inequality
holds because ϕ2 is nondecreasing. Note also that

ϕ̂1(x) = ϕ1(next(x,W1)) = ϕ1(next(prev(x,W1),W1))

≤ K1ϕ1(prev(x,W1)) ≤ K1K2ϕ2(prev(x,W1)) ≤ K1K2ϕ2(x) ∀x ∈ D \W1,

(B.23)

where the first inequality is due to the boundedness of W1, the second inequality
follows from (B.20), and the last inequality holds because ϕ2 is nondecreasing. From
(B.21)–(B.23), we conclude that ϕ̂1 is a K1K2-approximation of ϕ2 over D.

B.8. Proposition 6.3.
Proof. Let W12 =W1∪W2 and ϕsum(x) = ϕ1(x)+ϕ2(x) for all x ∈ D. Note that

the sum of two convex functions is a convex function. Thus, ϕsum is a convex function,
and a K-approximation set of it is well-defined. Clearly, Dmin, Dmax ∈ W12. Thus,
the first condition of Definition 4.2 is satisfied. To prove the boundedness ofW12 (with
respect to function ϕsum), consider any x ∈W12\{Dmax} such that next(x,D) /∈W12.
By the monotonicity of approximation sets, W12 is a Ki-approximation set of ϕi

for i = 1, 2. Hence, by the boundedness of W12 (with respect to function ϕi), we
have max{ϕi(x), ϕi(next(x,W12))} ≤ Kimin{ϕi(x), ϕi(next(x,W12))} for i = 1, 2. If
ϕsum(x) ≤ ϕsum(next(x,W12)), then

max{ϕsum(x), ϕsum(next(x,W12))} = ϕsum(next(x,W12)) =
∑2

i=1 ϕi(next(x,W12))

≤∑2
i=1Kiϕi(x) ≤ max{K1,K2}ϕsum(x)

= max{K1,K2}min{ϕsum(x), ϕsum(next(x,W12))}.

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1785

If ϕsum(x) > ϕsum(next(x,W12)), then

max{ϕsum(x), ϕsum(next(x,W12))} = ϕsum(x) =
∑2

i=1 ϕi(x) ≤
∑2

i=1 Kiϕi(next(x,W12))

≤ max{K1,K2}ϕsum(next(x,W12)) = max{K1,K2}min{ϕsum(x), ϕsum(next(x,W12))}.

Therefore, the boundedness of W12 (with respect to function ϕsum) follows. To prove
the locality of W12, consider any x ∈ D \W12. By the locality of W12 (with respect
to ϕi), we have

max{ϕi(prev(x,W12)), ϕi(next(x,W12))} ≤ Kiϕi(x)

for i = 1, 2. Thus,

max{ϕsum(prev(x,W12)), ϕsum(next(x,W12))}
= max{ϕ1(prev(x,W12)) + ϕ2(prev(x,W12)), ϕ1(next(x,W12)) + ϕ2(next(x,W12))}
≤ max{ϕ1(prev(x,W12)), ϕ1(next(x,W12))}+max{ϕ2(prev(x,W12)), ϕ2(next(x,W12))}
≤∑2

i=1 Kiϕi(x) ≤ max{K1, K2}ϕsum(x).

Therefore, the locality of W12 (with respect to function ϕsum) follows.

B.9. Proposition 10.3.
Proof. Consider any fixed t. For ease of exposition, we refer to the state It as

inventory level and the action xt as production/disposal quantity (“production” for
positive values of xt and “disposal” for negative values of xt). Due to Condition 3(iii),
and because |a| = |b|, the coefficients |a| and |b| are either −1, 0, or 1. From (3.4),
and by the linearity of expectation, the optimal policy chooses x∗t that minimizes

(B.24) EDtgt(It, ·, Dt) + EDtzt+1(ft(It, ·, Dt)).

The convex invariant (Proposition 9.1) implies that zt+1 is convex. Since ft(It, ·, Dt)
is linear in its second variable, zt+1(ft(It, ·, Dt)) is also convex. Since a convex com-
bination of convex functions is convex, the expression in (B.24) is also convex. Let

αt(xt) = EDtvt(xt, Dt) and
βt(It, xt) = EDtut(ft(It, xt, Dt), Dt) + EDtzt+1(ft(It, xt, Dt)).

Then,

zt(It) = min
xt∈At(It)

{αt(xt) + βt(It, xt)} ,

where αt is V-shaped and βt(It, ·) is convex for every fixed It. Let α
−
t and α+

t be the
slope of αt on negative and positive xt’s, respectively.

Case 1. Both coefficients of It and xt in function ft are 0. In this case, ft(·, ·, Dt)
is indifferent to the action xt, and so is βt. Thus, the best strategy is to minimize the
V-shaped function αt (i.e., do nothing). Hence, in this case rt = −∞ and st =∞.

Case 2. Both coefficients of It and xt in function ft are 1. In this case, βt(I, x) =
βt(I

′, x′) for any I, I ′, x, x′ such that I+x = I ′+x′. Note that it is beneficial to move
from inventory level I − 1 to inventory level I by producing one unit when

αt(1) + βt(I − 1, 1) < αt(0) + βt(I − 1, 0),

that is, when

βt(0, I − 1)− βt(0, I) > α+
t .

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1786 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

Let Rt = {I ∈ Z | βt(0, I− 1)−βt(0, I) > α+
t } be all the inventory levels at which the

production of one unit is beneficial. Similarly, let St = {I ∈ Z | βt(0, I+1)−βt(0, I) >
|α−

t |} be all the inventory levels at which the disposal of one unit is beneficial. Let

rt = maxRt and st = minSt.

(Note: In case a set is empty, we define its maximum and minimum to be −∞ and∞,
respectively.) The convexity of function βt(0, ·) implies that the sets Rt and St are
connected over Z. Thus, if the current inventory level is It ∈ Rt, then it is beneficial to
produce rt− It units. Similarly, if the current inventory is It ∈ St, then it is beneficial
to dispose of It − st units. Hence, rt and st are the threshold levels of a limit policy.

Case 3. The coefficients of It and xt in function ft are 1 and −1, respectively.
Then, a negative xt represents production, and a positive x represents disposal. In
this case, βt(I, x) = βt(I

′, x′) for any I, I ′, x, x′ such that I − x = I ′ − x′. Note that
it is beneficial to move from inventory level I − 1 to inventory level I by producing
one unit (i.e., by setting x = −1) when

αt(−1) + βt(I − 1,−1) < αt(0) + βt(I − 1, 0),

that is, when

βt(0, 1− I)− βt(0,−I) > |α−
t |.

Let R′
t = {I ∈ Z | βt(0, 1 − I) − βt(0,−I) > |α−

t |} be all the inventory levels at
which the production of one unit is beneficial. Similarly, let S′

t = {I ∈ Z | βt(0,−I −
1) − βt(0,−I) > α+

t } be all the inventory levels at which the disposal of one unit
is beneficial. Let rt = maxR′

t and st = minS′
t. The convexity of function βt(0, ·)

implies that the sets R′
t and S

′
t are connected over Z. Thus, if the current inventory

level is It ∈ R′
t, then it is beneficial to produce rt − It units. Similarly, if the current

inventory is It ∈ S′
t, then it is beneficial to dispose of It − st units. Hence, rt and st

are the threshold levels of a limit policy.
Case 4. Both coefficients of It and xt in function ft are −1. This case is analogous

to Case 2, and the proof is therefore omitted.
Case 5. The coefficients of It and xt in function ft are −1 and 1, respectively.

This case is analogous to Case 3, and the proof is therefore omitted.

Appendix C. Hardness results.
In this appendix, some #P-hardness and approximation hardness proofs are pre-

sented. These proofs make transformations from the following problems:

Problem: Partition
Instance: Finite set V = {v1, . . . , vn} of positive integers.
Question: Is there a subset V ′ ⊆ V such that

∑
v∈V ′ v =

∑
v∈V \V ′ v?

Note: Partition is NP-hard [29, p. 223].

Problem: Evaluating the CDF of convolution of discrete random variables
(CDF)
Instance: Discrete random variables X1, . . . , Xn and probabilities pi,j = Prob(Xi =
ai,j), where ai,j ∈ Z+, for i = 1, . . . , n and j = 1, . . . ,m. Values Γ ∈ Z+ and γ ∈ Q+,
where 0 < γ ≤ 1.
Question: Is Prob(

∑n
i=1Xi ≤ Γ) ≥ γ?

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1787

Note: CDF is #P-hard even whenm = 2, pi,j =
1
2 for all i, j, and ai,2 = 0 for all i [33].

Problem: Max k-Cover (MkC)
Instance: A set S = {1, . . . ,m}, � distinct subsets S1, . . . , S� ⊂ S, and a positive
integer k ≤ �.
Question: What is the maximum number of elements of S that can be covered by k
subsets?
Note: MkC is known not to be approximated within a factor of 1 − 1

e , unless P =
NP [24].

C.1. Theorem 9.2.
Proof. Let K ≥ 1 be a fixed desired approximation ratio. We will transform any

given arbitrary instance of the partition problem to a convex DP except that one of
the conditions stated in the theorem is not satisfied. LetM = 1

2

∑
v∈V v. Without loss

of generality, we assume M is a positive integer. (Otherwise the problem is trivially
solved.)

We first consider the case where S ⊗A is not integrally convex. We consider the
following deterministic DP with T = 2 time periods. (For simplicity, we slightly abuse
the notation by omitting the random variableDt from the functions.) In the first time
period, we set S1 = [0], A1(0) = [0, . . . , 2n−1], g1(0, x1) = 0, and f1(0, x1) = x1. The
meaning of action x1 is that we choose the ith element of V if and only if the ith bit of
x1 is 1. In the second time period, we set S2 = [0, . . . , 2n− 1], A2(I2) = {δval(I2)=M},
g2(I2, x2) = 1 − x2, f2(I2, x2) = 0, where val(I2) =

∑n
i=1 viδthe ith bit of I2 is 1. Here,

function val decodes the value of the state. We let the terminal cost function be
g3(I3) = 0 and the terminal state be S3 = {0}. For every time period, the state space
is a contiguous interval, and the logarithm of its maximal element is polynomially
bounded by the (binary) input size. The action space in period 1 is a contiguous
interval for every state I1, and the logarithm of its maximal element is polynomially
bounded by the (binary) input size. The action space in time period 2 is a singleton
for every state I2, and the value of this singleton is computed in polynomial time.
Thus, Condition 1 holds. Clearly, Condition 2 also holds. Note that this is a convex
DP, except that S2 ⊗A2 is not necessarily an integrally convex set when there exists
a partition V ′ ⊆ V such that

∑
v∈V ′ v =M .

In this DP, z1(0) = 0 if there exists V ′ ⊆ V such that
∑

v∈V ′ v =M , and z1(0) = 1
otherwise. Therefore, unless P = NP , there is no polynomial-time K-approximation
algorithm for this DP.

Next, we consider the case where b is not restricted to −1, 0, or 1. We consider
a deterministic DP with T = n time periods, initial state M in period 1, and the
following parameter setting: St = [−M, . . . ,M] for t = 1, . . . , T + 1; At(It) = {0, 1},
gt(It, xt) = vtxt, and ft(It, xt) = It − vtxt for any It ∈ St and t = 1, . . . , T ; and
gT+1(IT+1) = KM |IT+1| for any IT+1 ∈ ST+1. Clearly, this is a convex DP, except
that the coefficient of the second variable of ft is not restricted to −1, 0, or 1.

In this DP, z1(M) = M if there exists V ′ ⊆ V such that
∑

v∈V ′ v = M , and
z1(M) > KM otherwise. Hence, we can distinguish whether V ′ exists such that∑

v∈V ′ v = M by calculating a K-approximation for z1(M). Therefore, unless P =
NP , there is no polynomial-time K-approximation algorithm for this DP.

C.2. Theorem 10.1.
Proof. Given an arbitrary instance of MkC, we denote σj = |Sj | and Sj =

{sj,1, . . . , sj,σj} for j = 1, . . . , �, and we construct the following instance of the stochas-
tic ordered adaptive knapsack problem with nonindependent item volumes (SKP):

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1788 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

• Number of items, n = �+ 2m.

• Knapsack capacity, B = 2n�k + (2n − 1)k.

• Profit of item t,

πt =

{
0 for t = 1, . . . , �;
1 for t = �+ 1, . . . , �+ 2m.

• For j = 1, . . . ,m, define a random variable Y (j) with Prob(Y (j) = 0) =
Prob(Y (j) = 1) = 1

2 .

• Volume of item t,

vt =

⎧⎪⎪⎨
⎪⎪⎩

20Y (st,1) + 21Y (st,2) + · · ·
+2σt−1Y (st,σt) + 2n� for t = 1, . . . , �;
M · Y (t− �) for t = �+ 1, . . . , �+m;
M [1− Y (t− �−m)] for t = �+m+ 1, . . . , �+ 2m;

where M = B + 1.
Clearly, this construction can be done in polynomial time. Note that random variables
Y (1), . . . , Y (m) introduce dependencies among the item volumes.

To solve SKP, we can first select certain items among items 1, . . . , �. Although
these items have zero profit, they help to reveal which of the items � + 1, . . . , �+ 2m
have volume 0 and which of them have volume M . (Those items have volume M
will overflow the knapsack.) More specifically, for t = 1, . . . , �, we can express vt as
a binary number. If the jth last digit of this binary number is 1, then Y (st,j) = 1,
which implies that item �+ st,j has volume M and item �+m+ st,j has volume 0. If
the jth last digit is 0, then Y (st,j) = 0, which implies that item �+ st,j has volume 0
and item �+m+ st,j has volume M .

Suppose a maximum of q elements of S can be covered by k subsets. Then, the
optimal solution to SKP should have an expected total profit of at least q but less
than q + 1. To see this, let Sr1 , . . . , Srk be those subsets by which the q elements are
covered. We put items r1, . . . , rk into the knapsack. These items help us identify q
out of the items �+1, . . . , �+2m with zero volume. These q items have a total profit
of q. Note that among items 1, . . . , �, we can put at most k items into the knapsack
(otherwise the knapsack capacity will be exceeded), and selecting these k items allows
us to reveal at most q items with zero volume. The other 2m− q items can only be
chosen randomly. The total expected profit obtained from items �+1, . . . , �+2m via
random selection is less than 1. (Since each item has a 0.5 probability of overflowing
the knapsack, the expected number of items that are chosen successfully is less than 1.)

The above analysis implies that if we know the optimal solution value of SKP
is within [q, q + 1), then in the given instance of MkC, a maximum of q elements of
S can be covered by k subsets. Now, suppose we have a polynomial-time algorithm

which can approximate SKP within a factor of r = 3(e−1)
2e ≈ 0.948. Then, given any

instance of MkC, we apply this r-approximation algorithm to the corresponding SKP.
If this r-approximation algorithm generates a solution with an expected total profit
less than 3, then the optimal solution value of SKP is less than 2e

e−1 < 4, implying
that the number of elements of S that can be covered by k subsets is at most 3. In
such a case, k ≤ 3 and σj ≤ 3 for j = 1, . . . , �. Thus, the number of choices of k

distinct subsets among S1, . . . , S� is
(
�
k

) ≤ �3. Hence, we can obtain in polynomial
time an optimal solution to the given instance of MkC by enumerating all possible
solutions. (Note that a more careful algorithm would find an optimal solution in time

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1789

linear in �.) On the other hand, if the r-approximation algorithm generates a solution
with an expected total profit of z ≥ 3, then the optimal solution value of SKP is at
most z

r , implying that the number of elements of S which can be covered by k subsets
must be within [�z�, . . . , � zr �]. It is easy to check that z−1

z/r ≥ 1− 1
e . Hence, �z�/� zr � ≥

1− 1
e , which implies that the solution to the given instance of MkC is approximated

within a factor of 1 − 1
e . This is impossible unless P = NP . Therefore, unless

P = NP , there is no polynomial-time algorithm which can approximate SKP within a
factor of r.

C.3. Theorem A.1.
Proof. Consider an arbitrary instance of the special case of CDF with m = 2,

and pi,j = 1
2 for all i, j, and ai,2 = 0 for all i. We denote M = 2

∑n
i=1 ai,1 + 1 and

construct the following instance of the single-item stochastic batch dispatch problem:
• Number of time periods, T = n+ 1 time periods.

• Vehicle capacity, Q =
∑n

i=1 ai,1.

• Initial amount of goods in the dispatch station, I1 = Q.

• Amount of goods arriving in period t (t = 1, . . . , n),

Dt = Xt =

{
at,1 with probability 1

2 ;

0 with probability 1
2 .

• Amount of goods arriving in period n+ 1, Dn+1 = 0 with probability 1.

• Fixed cost of dispatching the vehicle in period t,

Kt =

{
0 for t = 1 and n+ 1;
M for t = 2, . . . , n.

• Unit cost of dispatching the goods in period t,

ct =

{
1− γ for t = 1;
0 for t = 2, . . . , n+ 1.

• Unit holding cost in period t,

ht =

{
0 for t = 1, . . . , n;
1 for t = n+ 1.

Clearly, this construction can be done in polynomial time.
Note that in the optimal solution of this constructed instance, there must be

no dispatching of goods in periods 2, . . . , n (because dispatching a vehicle in any of
these periods costs M , which exceeds the total cost of the trivial feasible solution
of never dispatching any vehicle). Denote X =

∑n
t=1Dt. Let x1 be the amount of

goods dispatched in period 1. Clearly, once the value of x1 is chosen, the optimal
decision is to dispatch min{Q− x1 +X,Q} units (at zero cost) in period n+ 1, and
the holding cost incurred in period n + 1 is (X − x1)+. Thus, choosing the optimal
value of x1 is a newsvendor problem, in which the cost of ordering one unit too many
is 1 − γ, and the cost of ordering one unit too few is γ. Hence, the optimal decision
is to select the smallest x1 ∈ Z such that Prob(X ≤ x1) ≥ γ

γ+(1−γ) = γ (see, e.g.,

[69, sect. 9.2.1]). Therefore, if there exists a polynomial-time algorithm for solving
the single-item stochastic batch dispatch problem, then this algorithm can be used
for evaluating the CDF of convolution of discrete random variables. This implies
that the single-item stochastic batch dispatch problem with time-varying costs is
#P-hard.

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1790 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

C.4. Theorem A.2.
Proof. Consider an arbitrary instance of the special case of CDF with m = 2, and

pi,j = 1
2 for all i, j, and ai,2 = 0 for all i. We construct the following instance of the

single-resource revenue management problem:
• Number of customer classes, T = n+ 1.

• Available capacity, C =
∑n

i=1 ai,1.

• Number of class 1 customers, D1 = C with probability 1.

• Number of class t customers (t = 2, . . . , n+ 1),

Dt = Xt−1 =

{
at−1,1 with probability 1

2 ;

0 with probability 1
2 .

• Revenue contribution per arrival of class t customer,

rt =

{
1− γ for t = 1;
1 for t = 2, . . . , n+ 1.

Clearly, this construction can be done in polynomial time.
Let xt be the upper limit on the number of accepted bookings in period t. Obvi-

ously, it is optimal to set x2 = · · · = xn+1 = C (as r2, . . . , rn+1 are the same). Thus,
choosing the optimal value of x1 is a newsvendor problem, where the cost of ordering
one unit too many (i.e., setting x1 too low) is 1 − γ, and the cost of ordering one
unit too few (i.e., setting x1 too high) is γ. The rest of the proof follows the same
argument as in the proof of Theorem A.1.

C.5. Theorem A.3.
Proof. Consider an arbitrary instance of the special case of CDF with m = 2, and

pi,j =
1
2 for all i, j, and ai,2 = 0 for all i. In this instance of CDF, Prob(

∑n
i=1Xi ≤ Γ)

must be a multiple of 1
2n regardless of what Γ is. Hence, we may assume that γ is a

multiple of 1
2n .

We define āi = ai,1+
1
2i (i = 1, . . . , n) and Γ̄ = Γ+1− 1

2n . Because Γ, ai,1, . . . , ai,n ∈
Z+,

(C.1)
∑
i∈U

ai,1 ≤ Γ if and only if
∑
i∈U

āi ≤ Γ̄, ∀ U ⊆ {1, . . . , n}.

Thus, the given CDF problem is equivalent to the problem of determining whether
Prob(

∑n
i=1 Yi ≤ Γ̄) ≥ γ, where Y1, . . . , Yn are random variables with Prob(Yi = āi) =

Prob(Yi = 0) = 1
2 for i = 1, . . . , n. Let āmax = max{ā1, . . . , ān} and M = 22n+1ā2max.

It is easy to check that for any U ⊆ {1, . . . , n},

1 +

∑
i∈U āi

M
≤

∏
i∈U

(
1 +

āi
M

)
≤ 1 +

∑
i∈U āi

M
+

2nā2max

M2
= 1 +

∑
i∈U āi

M
+

1

2n+1M
.

Let Γ̂ = 1 + Γ̄
M + 1

2n+1M . Hence, for any U ⊆ {1, . . . , n}, ∑i∈U āi ≤ Γ̄ if and only if∏
i∈U (1 +

āi

M) ≤ Γ̂. (Note that if
∏

i∈U (1 +
āi

M) ≤ Γ̂, then
∑

i∈U āi ≤ Γ̄ + 1
2n+1 , which

implies that
∑

i∈U āi ≤ Γ̄ because Γ̄, ā1, . . . , ān are all multiples of 1
2n .) Therefore, by

(C.1), for any U ⊆ {1, . . . , n}, ∑i∈U ai,1 ≤ Γ if and only if
∏

i∈U (1 +
āi

M) ≤ Γ̂.
We now construct the following instance of lifetime consumption of risky capital:
• Number of time periods, T = n+ 1.

• Initial capital, I1 =M .

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1791

• Income received by the individual at the end of period t, yt = 0.

• Utility function

ut(xt) =

⎧⎪⎨
⎪⎩
xt if t = 1;

0 if t = 2, . . . , n;

min
{

xt

γ , M
}

if t = n+ 1.

• Prob(Dt = 0) = Prob(Dt =
āt

M) = 1
2 for t = 1, . . . , n, and Prob(Dn+1=0)=1.

Obviously, this construction can be done in polynomial time.
Let (H−1)×100% denote the total percentage growth of capital between period 1

and period T , where H is a random variable. Since the utility is zero in periods
2, . . . , T −1, the optimal decision is to make consumption in periods 1 and T only and
set xT = IT . Thus, the only decision is to select a consumption amount x1 in period 1.
Let x∗1 ∈ Z+ denote the optimal value of x1. Let S = {t | Dt = 1+ āt

M ; 1 ≤ t ≤ T −1},
which is a random subset of time periods. Then, H =

∏
t∈S

(
1 + āt

M

)
. Note that

H ≤ (
1 + 1

4n

)n ≤ [
1 + 1

(n+1)2n

]n
= 1 + n

(n+1)2n +
(
n
2

)
1

(n+1)222n +
(
n
3

)
1

(n+1)323n + · · ·+ (
n
n

)
1

(n+1)n2n·n

≤ 1 + n
(n+1)2n +

[(
n
2

)
+
(
n
3

)
+ · · ·+ (

n
n

)]
1

(n+1)22n

≤ 1 + n
(n+1)2n + 1

(n+1)2n = 1 + 1
2n .

Hence,

(C.2) 1 ≤ H ≤ 1 +
1

2n
.

If x1 is less than I1− γM
H , then xT = IT = (I1−x1)H > γM , and therefore the utility

in period T is M , regardless of how much x1 is below I1 − γM
H . Thus, the unit cost

of setting x1 too low is 1 (i.e., the utility of consuming one unit in period 1). If x1 is
greater than I1 − γM

H , then xT = IT = (I1 − x1)H < γM , and therefore the utility in
period T is 1

γ (I1 − x1)H . Thus, the unit cost of setting x1 too high is 1
γH − 1. By

(C.2), this unit cost is at least 1
γ − 1 and at most 1

γ − 1 + 1
2nγ .

Define problem PH to be the same as the constructed instance, except that the
unit cost of setting x1 too high is replaced by 1

γ − 1. We let x̄∗1 denote the optimal
value of x1 in this problem. Define problem PL to be the same as the constructed
instance, except that the unit cost of setting x1 too high is replaced by 1

γ − 1 + 1
2nγ .

We let x∗1 denote the optimal value of x1 in this problem. Clearly, x∗1 ≤ x∗1 ≤ x̄∗1.
The optimal solution to PH can be obtained by first solving a newsvendor prob-

lem, in which the decision is to select the smallest value of x ∈ R+, denoted as x′,
such that

Prob

(
H ≤ γM

I1 − x
)
≥ 1

1 + (1γ − 1)
= γ,

and then setting x̄∗1 to either �x′� or 	x′
, whichever yields a higher expected total
utility. The optimal solution to PL can also be obtained by first solving a newsvendor
problem, in which the decision is to select the smallest value of x ∈ R+, denoted as
x′′, such that

(C.3) Prob

(
H ≤ γM

I1 − x
)
≥ 1

1 + (1γ − 1 + 1
2nγ)

=

(
1− 1

2n + 1

)
γ,

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1792 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

and then setting x∗1 to either �x′′� or 	x′′
, whichever yields a higher expected total
utility. Note that by our assumption γ is a multiple of 1

2n , Prob(H ≤ Γ′) is a multiple
of 1

2n for any Γ′ ∈ R, and γ − 1
2n < (1− 1

2n+1)γ < γ. Thus, (C.3) can be rewritten as

Prob

(
H ≤ γM

I1 − x
)
≥ γ.

Hence, x′ = x′′, which implies that x∗1 = x∗1 = x̄∗1.
We conclude that the constructed instance is reduced to the problem of selecting

the smallest value x ∈ R+ such that Prob(H ≤ γM
I1−x) ≥ γ, that is, selecting the

smallest Γ̂ such that Prob(
∏

t∈S(1 + āt

M) ≤ Γ̂) ≥ γ. This is equivalent to selecting
the smallest Γ such that Prob(

∑
i∈U ai,1 ≤ Γ) ≥ γ, or equivalently, Prob(

∑n
i=1Xi ≤

Γ) ≥ γ. Therefore, if there exists a polynomial-time algorithm for solving our problem,
this algorithm can be used for evaluating the CDF of convolution of discrete random
variables. This implies that lifetime consumption of risky capital is #P-hard.

C.6. Theorem A.4.
Proof. The proof is similar to the one of Theorem A.3. Let āj and M be defined

as in the proof of Theorem A.3. Consider an arbitrary instance of the special case of
CDF with m = 2, and pi,j =

1
2 for all i, j, and ai,2 = 0 for all i. We transform it into

the following instance of our problem:
• Number of time periods, T = n+ 2.

• Initial capital, I1 =M .

• Production function, pt(It) = It, for It ≥ 0 and t = 1, . . . , n+ 2.

• Depreciation rate, Δ = 1.

• Utility function

ut(xt) =

⎧⎪⎨
⎪⎩
xt if t = 1;

0 if t = 2, . . . , n+ 1;

min
{
xt

γ , M
}

if t = n+ 2.

• Prob(Dt = 1) = Prob(Dt = 1+ āt−1

M) = 1
2 for t = 2, . . . , n+1, and Prob(D1 =

1) = Prob(Dn+2 = 1) = 1.
The rest of the proof follows the same argument as used in the proof of Theorem
A.3.

C.7. Theorem A.5.
Proof. Consider an arbitrary instance of the special case of CDF with m = 2,

and pi,j = 1
2 for all i, j and ai,2 = 0 for all i. We denote M =

∑n
i=1 ai,1 + 1, and we

construct the following instance of the generalized cash management problem:
• Number of time periods, T = n.

• Net amount of cash withdrawal made by customers in period t (t = 1, . . . , n),

Dt = Xt =

{
at,1 with probability 1

2 ;

0 with probability 1
2 .

• Cost of selling $1 value of stock in period t,

st =

{
1− γ for t = 1;
M for t = 2, . . . , n.

• Cost of buying $1 value of stock in period t (t = 1, . . . , n), bt =M .

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1793

• Cost of having $1 value of shortage in cash at the end of period t,

kt =

{
0 for t = 1, . . . , n− 1;
1 for t = n.

• Cost of holding $1 value of excessive cash at the end of period t (t = 1, . . . , n),
�t = 0.

• Initial cash balance, I1 = 0.

• Discount factor, α = 1.
Clearly, this construction can be done in polynomial time.

Let xt be the amount of cash holding reduction in period t. Note that D1, . . . , Dn

are all integers, and therefore it suffices to consider solutions with integer xt values.
Obviously, it is optimal to set x1 ≤ 0 and x2 = · · · = xn = 0 (because M is greater
than the total cost of the trivial feasible solution of never buying or selling any stock).
Thus, choosing the optimal value of x1 is a newsvendor problem, in which the cost of
ordering one unit too many (i.e., setting x1 too low or, equivalently, raising too much
cash in period 1) is 1 − γ, and the cost of ordering one unit too few (i.e., setting x1
too high or, equivalently, raising too little cash in period 1) is γ. The rest of the proof
follows the same argument as in the proof of Theorem A.1.

Acknowledgments. The authors thank the anonymous referees for their helpful
comments and suggestions. The first author also thanks Oded Goldreich, Sudipto
Guha, and Asaf Levin, for their inspiring discussions regarding the conference version
of this paper, and Nimrod Megiddo, for bringing his attention to the book of Murota
and the references therein.

REFERENCES

[1] J. Adda and R. Cooper, Dynamic Economics: Quantitative Methods and Applications, MIT
Press, Cambridge, MA, 2003.

[2] M. Alekhnovich, A. Borodin, J. Buresh-Oppenheim, R. Impagliazzo, A. Magen, and

T. Pitassi, Toward a model for backtracking and dynamic programming, in Proceedings
of the 20th Annual IEEE Conference on Computational Complexity, 2005.

[3] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and

M. Protasi, Complexity and Approximation: Combinatorial Optimization Problems and
Their Approximability Properties, Springer, Berlin, 1999.

[4] A. Bandyopadhyay and D. Gamarnik, Counting without sampling: Asymptotics of the log-
partition function for certain statistical physics models, Random Structures Algorithms,
33 (2008), pp. 452–479.

[5] M. Bayati, D. Gamarnik, D. Katz, C. Nair, and P. Tetali, Simple deterministic approxi-
mation algorithms for counting matchings, in Proceedings of the 39th Annual ACM Sym-
posium on Theory of Computing, 2007, pp. 122–127.

[6] R. E. Bellman and S. E. Dreyfus, Applied Dynamic Programming, Princeton University
Press, Princeton, NJ, 1962.

[7] D. P. Bertsekas, Dynamic Programming and Optimal Control, vol. I, 3rd ed., Athena Scien-
tific, Belmont, MA, 2005.

[8] K. M. Bretthauer and B. Shetty, The nonlinear knapsack problem—algorithms and appli-
cations, European J. Oper. Res., 138 (2002), pp. 459–472.

[9] R. L. Carraway, R. L. Schmidt, and L. R. Weatherford, An algorithm for maximizing
target achievement in the stochastic knapsack problem with normal returns, Naval Res.
Logist., 40 (1993), pp. 161–173.

[10] S. S. Chauhan, A. V. Eremeev, A. A. Romanova, V. V. Servakh, and G. J. Woeginger,
Approximation of the supply scheduling problem, Oper. Res. Lett., 33 (2005), pp. 249–254.

[11] W. Chen, M. Dawande, and G. Janakiraman, Fixed-dimensional stochastic dynamic pro-
grams: An approximation scheme and an inventory application, Oper. Res., 62 (2014),
pp. 81–103.

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1794 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

[12] X. Chen and D. Simchi-Levi, Coordinating inventory control and pricing strategies with ran-
dom demand and fixed ordering cost: The finite horizon case, Oper. Res., 52 (2004),
pp. 887–896.

[13] T. C. E. Cheng, Z.-L. Chen, C.-L. Li, and B. M.-T. Lin, Scheduling to minimize the total
compression and late costs, Naval Res. Logist., 45 (1998), pp. 67–82.

[14] S. Chubanov, M. Y. Kovalyov, and E. Pesch, An FPTAS for a single-item capacitated eco-
nomic lot-sizing problem with monotone cost structure, Math. Programming, 106 (2006),
pp. 453–466.

[15] B. C. Dean, M. X. Goemans, and J. Vondrák, Approximating the stochastic knapsack prob-
lem: The benefit of adaptivity, Math. Oper. Res., 33 (2008), pp. 945–964.

[16] S. E. Dreyfus and A. M. Law, The Art and Theory of Dynamic Programming, Academic
Press, New York, 1977.

[17] M. Dyer, Approximate counting by dynamic programming, in Proceedings of the 35th Annual
ACM Symposium on the Theory of Computing, San Diego, CA, 2003, pp. 693–699.

[18] M. Dyer, A. Frieze, and M. Jerrum, Approximately counting Hamilton paths and cycles in
dense graphs, SIAM J. Comput., 27 (1998), pp. 1262–1272.

[19] M. Dyer, L. A. Goldberg, C. Greenhill, and M. Jerrum, The relative complexity of ap-
proximate counting problems, Algorithmica, 38 (2004), pp. 471–500.

[20] E. J. Elton and M. J. Gruber, On the cash balance problem, Oper. Res. Quart., 25 (1974),
pp. 553–572.

[21] G. D. Eppen and E. F. Fama, Cash balance and simple dynamic portfolio problems with
proportional costs, Internat. Econ. Rev., 10 (1969), pp. 119–133.

[22] B. H. Faaland, The multiperiod knapsack problem, Oper. Res., 29 (1981), pp. 612–616.
[23] P. Favati and F. Tardella, Convexity in nonlinear integer programming, Ric. Operativa, 53

(1990), pp. 3–44.
[24] U. Feige, A threshold of lnn for approximating set cover, J. ACM, 45 (1998), pp. 634–652.
[25] M. Florian, J. K. Lenstra, and A. H. G. Rinnooy Kan, Deterministic production planning:

Algorithms and complexity, Management Sci., 26 (1980), pp. 669–679.
[26] S. Frederick, G. Loewenstein, and T. O’Donoghue, Time discounting and time preference:

A critical review, J. Econom. Literature, 40 (2002), pp. 351–401.
[27] G. Gallego and H. Hu, Optimal policies for production/inventory systems with finite capacity

and Markov-modulated demand and supply processes, Ann. Oper. Res., 126 (2004), pp. 21–
41.

[28] D. Gamarnik and D. Katz, Correlation decay and deterministic FPTAS for counting colorings
of a graph, J. Discrete Algorithms, 12 (2012), pp. 29–47.

[29] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-completeness, W. H. Freeman, New York, 1979.

[30] A. Goel and P. Indyk, Stochastic load balancing and related problems, in Proceedings of the
40th Annual IEEE Symposium on Foundations of Computer Science, 1999, pp. 579–586.

[31] N. Halman, Approximating Convex Functions via Non-convex Oracles Under the Rel-
ative Noise Model, Technical report 4226, www.optimization-online.org/DB HTML/
2014/02/4226.html, 2014.

[32] N. Halman, D. Klabjan, C.-L. Li, J. Orlin, and D. Simchi-Levi, Fully polynomial time
approximation schemes for stochastic dynamic programs, in Proceedings of the 19th Annual
ACM-SIAM Symposium on Discrete Algorithms, 2008, pp. 700–709.

[33] N. Halman, D. Klabjan, M. Mostagir, J. Orlin, and D. Simchi-Levi, A fully polynomial-
time approximation scheme for single-item stochastic inventory control with discrete de-
mand, Math. Oper. Res., 34 (2009), pp. 674–685.

[34] N. Halman, C.-L. Li, and D. Simchi-Levi, Fully polynomial-time approximation schemes for
time-cost tradeoff problems in series-parallel project networks, Oper. Res. Lett., 37 (2009),
pp. 239–244.

[35] N. Halman, J. B. Orlin, and D. Simchi-Levi, Approximating the nonlinear newsvendor and
single-item stochastic lot-sizing problems when data is given by an oracle, Oper. Res., 60
(2012), pp. 429–446.

[36] M. I. Henig, Risk criteria in a stochastic knapsack problem, Oper. Res., 38 (1990), pp. 820–825.
[37] K. Hinderer and K.-H. Waldmann, Cash management in a randomly varying environment,

European J. Oper. Res., 130 (2001), pp. 468–485.
[38] D. S. Hochbaum, A nonlinear Knapsack problem, Oper. Res. Lett., 17 (1995), pp. 103–110.
[39] D. S. Hochbaum, Various notions of approximations: Good, better, best, and more, in Ap-

proximation Algorithms for NP-Hard Problems, D. S. Hochbaum, ed., PWS Publishing,
Boston, MA, 1997, pp. 346–398.

[40] E. Horowitz and S. Sahni, Exact and approximate algorithms for scheduling nonidentical
processors, J. ACM, 23 (1976), pp. 317–327.

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

www.optimization-online.org/DB_HTML/2014/02/4226.html
www.optimization-online.org/DB_HTML/2014/02/4226.html

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FPTAS FOR STOCHASTIC DYNAMIC PROGRAMS 1795

[41] O. H. Ibarra and C. E. Kim, Fast approximation algorithms for the knapsack and sum of
subset problems, J. ACM, 22 (1975), pp. 463–468.

[42] D. L. Iglehart and S. Karlin, Optimal policy for dynamic inventory process with nonsta-
tionary stochastic demands, in Studies in Applied Probability and Management Science,
K. J. Arrow, S. Karlin, and H. Scarf, eds., Stanford University Press, Stanford, CA, 1962,
pp. 127–147.

[43] M. Jerrum and A. Sinclair, Approximating the permanent, SIAM J. Comput., 18 (1989),
pp. 1149–1178.

[44] M. Jerrum, A. Sinclair, and E. Vigoda, A polynomial-time approximation algorithm for the
permanent of a matrix with nonnegative entries, J. ACM, 51 (2004), pp. 671–697.

[45] S. Kameshwaran and Y. Narahari, Nonconvex piecewise linear knapsack problems, European
J. Oper. Res., 192 (2009), pp. 56–68.

[46] S. Karlin and A. J. Fabens, A stationary inventory model with Markovian demand, in Math-
ematical Methods in the Social Sciences, K. J. Arrow, S. Karlin, and P. Suppes, eds.,
Stanford University Press, Stanford, CA, 1959, pp. 159–175.

[47] R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Compu-
tations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85–103.

[48] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems, Springer, Berlin, 2004.

[49] J. Kleinberg, Y. Rabani, and É. Tardos, Allocating bandwidth for bursty connections, in
Proceedings of the 29th Annual ACM Symposium on Theory of Computing, 1997, pp. 664–
673.

[50] A. J. Kleywegt and J. D. Papastavrou, The dynamic and stochastic knapsack problem with
random sized items, Oper. Res., 49 (2001), pp. 26–41.

[51] E. L. Lawler, Fast approximation algorithms for knapsack problems, Math. Oper. Res., 4
(1979), pp. 339–356.

[52] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, Sequencing and
scheduling: Algorithms and complexity, in Logistics of Production and Inventory, S. C.
Graves, A. H. G. Rinnooy Kan, and P. H. Zipkin, eds., Handbooks Oper. Res. Management
Sci. 4, North-Holland, Amsterdam, 1993, pp. 445–522.

[53] R. Levi, M. Pál, R. O. Roundy, and D. B. Shmoys, Approximation algorithms for stochastic
inventory control models, Math. Oper. Res., 32 (2007), pp. 284–302.

[54] R. Levi, R. O. Roundy, and D. B. Shmoys, Provably near-optimal sampling-based policies
for stochastic inventory control models, Math. Oper. Res., 32 (2007), pp. 821–839.

[55] R. Levi, R. O. Roundy, D. B. Shmoys, and V. A. Truong, Approximation algorithms for
capacitated stochastic inventory control models, Oper. Res., 56 (2008), pp. 1184–1199.

[56] L. W. McKenzie, Turnpike theory, Econometrica, 44 (1976), pp. 841–865.
[57] M. Mihail and P. Winkler, On the number of Eulerian orientations of a graph, Algorithmica,

16 (1996), pp. 402–414.
[58] B. L. Miller, On minimizing nonseparable functions defined on the integers with an inventory

application, SIAM J. Appl. Math., 21 (1971), pp. 166–185.
[59] K. Murota, Discrete Convex Analysis, SIAM, Philadelphia, 2003.
[60] J. Nascimento and W. Powell, Dynamic programming models and algorithms for the mutual

fund cash balance problem, Management Sci., 56 (2010), pp. 801–815.
[61] K. P. Papadaki and W. B. Powell, An adaptive dynamic programming algorithm for stochas-

tic multiproduct batch dispatch problem, Naval Res. Logist., 50 (2003), pp. 742–769.
[62] J. D. Papastavrou, S. Rajagopalan, and A. J. Kleywegt, The dynamic and stochastic

knapsack problem with deadlines, Management Sci., 42 (1996), pp. 1706–1718.
[63] M. Parlar, Y. Wang, and Y. Gerchak, A periodic review inventory model with Markovian

supply availability, Internat. J. Production Econom., 42 (1995), pp. 131–136.
[64] E. S. Phelps, The accumulation of risky capital: A sequential utility analysis, Econometrica,

30 (1962), pp. 729–743.
[65] H. M. Safer and J. B. Orlin, Fast approximation schemes for multi-criteria flow, knap-

sack, and scheduling problems, Working paper 3757-95, Sloan School of Management,
Massachusetts Institute of Technology, Cambridge, 1995.

[66] S. K. Sahni, Algorithms for scheduling independent tasks, J. ACM, 23 (1976), pp. 116–127.
[67] I. Saniee, An efficient algorithm for the multiperiod capacity expansion of one location in

telecommunications, Oper. Res., 43 (1995), pp. 187–190.
[68] D. B. Shmoys and C. Swamy, An approximation scheme for stochastic linear programming

and its application to stochastic integer programs, J. ACM, 53 (2006), pp. 978–1012.
[69] D. Simchi-Levi, X. Chen, and J. Bramel, The Logic of Logistics: Theory, Algorithms, and

Applications for Logistics Management, 3rd ed., Springer-Verlag, New York, 2014.
[70] M. Sniedovich, Preference order stochastic knapsack problems: Methodological issues, J. Oper.

Res. Soc., 31 (1980), pp. 1025–1032.

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1796 HALMAN, KLABJAN, LI, ORLIN, AND SIMCHI-LEVI

[71] J.-S. Song and P. Zipkin, Inventory control in a fluctuating demand environment, Oper. Res.,
41 (1993), pp. 351–370.

[72] E. Steinberg and M. S. Parks, A preference order dynamic program for a knapsack problem
with stochastic rewards, J. Oper. Res. Soc., 30 (1979), pp. 141–147.

[73] K. T. Talluri and G. J. van Ryzin, The Theory and Practice of Revenue Management,
Kluwer, Boston, 2004.

[74] C. P. M. Van Hoesel and A. P. M. Wagelmans, Fully polynomial approximation schemes
for single-item capacitated economic lot-sizing problems, Math. Oper. Res., 26 (2001),
pp. 339–357.

[75] V. V. Vazirani, Approximation Algorithms, Springer, Berlin, 2001.
[76] H. M. Wagner and T. M. Whitin, Dynamic version of the economic lot size model, Manage-

ment Sci., 5 (1958), pp. 89–96.
[77] D. Weitz, Counting independent sets up to the tree threshold, in Proceedings of the 38th

Annual ACM Symposium on Theory of Computing, 2006, pp. 140–149.
[78] W. D. Whisler, A stochastic inventory model for rented equipment, Management Sci., 13

(1967), pp. 640–647.
[79] G. J. Woeginger, When does a dynamic programming formulation guarantee the existence

of a fully polynomial time approximation scheme (FPTAS)?, INFORMS J. Comput., 12
(2000), pp. 57–74.

[80] C. A. Yano and H. L. Lee, Lot sizing with random yields: A review, Oper. Res., 43 (1995),
pp. 311–334.

[81] P. H. Zipkin, Foundations of Inventory Management, McGraw-Hill, Boston, 2000.

D
ow

nl
oa

de
d

05
/1

6/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

