

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. OPTIM. c© 2015 Society for Industrial and Applied Mathematics
Vol. 25, No. 1, pp. 317–350

A COMPUTATIONALLY EFFICIENT FPTAS FOR CONVEX
STOCHASTIC DYNAMIC PROGRAMS∗

NIR HALMAN†, GIACOMO NANNICINI‡ , AND JAMES ORLIN§

Abstract. We propose a computationally efficient fully polynomial-time approximation
scheme (FPTAS) to compute an approximation with arbitrary precision of the value function of
convex stochastic dynamic programs, using the technique of K-approximation sets and functions
introduced by Halman et al. [Math. Oper. Res., 34, (2009), pp. 674–685]. This paper deals with
the convex case only, and it has the following contributions. First, we improve on the worst-case
running time given by Halman et al. Second, we design and implement an FPTAS with excellent
computational performance and show that it is faster than an exact algorithm even for small prob-
lem instances and small approximation factors, becoming orders of magnitude faster as the problem
size increases. Third, we show that with careful algorithm design, the errors introduced by floating
point computations can be bounded, so that we can provide a guarantee on the approximation factor
over an exact infinite-precision solution. We provide an extensive computational evaluation based on
randomly generated problem instances coming from applications in supply chain management and
finance. The running time of the FPTAS is both theoretically and experimentally linear in the size
of the uncertainty set.

Key words. dynamic programming, approximation algorithms, inventory control, fully
polynomial-time approximation scheme, discrete convexity

AMS subject classifications. 90C27, 90C39, 90C59

DOI. 10.1137/13094774X

1. Introduction. We consider a discrete-time finite-horizon undiscounted
stochastic dynamic program (DP) with finite state and action spaces, as defined
in [4]. We now introduce the type of problems addressed in this paper, postpon-
ing a rigorous definition of each symbol until section 2. Our model has an un-
derlying discrete-time system that evolves through time with dynamics of the form
It+1 = f(It, xt, Dt), t = 1, . . . , T , where

t: discrete-time index;
It ∈ St: state of the system at time t

(St is the state space at stage t);
xt ∈ At(It): action or decision to be selected at time t

(At(It) is the action space at stage t and state It);
Dt: discrete random variable over the sample space Dt;
T : number of time periods.

∗Received by the editors December 5, 2013; accepted for publication (in revised form) October
21, 2014; published electronically January 29, 2015. An extended abstract of this work appeared in
Proceedings of ESA 2013, Lecture Notes in Comput. Sci. 8125, H. Bodlaender and G. Italiano, eds.,
Springer, Berlin, 2013, pp. 577–588.

http://www.siam.org/journals/siopt/25-1/94774.html
†Jerusalem School of Business Administration, Hebrew University, Jerusalem, Israel, and De-

partment of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cam-
bridge, MA 02139 (halman@huji.ac.il). Partial support for this author’s research was provided by
EU FP7/2007–2013 grant 247757 and the Recanati Fund of the Jerusalem School of Business Ad-
ministration.

‡Engineering Systems and Design, Singapore University of Technology and Design, Singapore
(nannicini@sutd.edu.sg). Partial support for this author’s research was provided by SUTD grant
SRES11012 and IDC grants IDSF1200108 and IDG21300102.

§Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139
(jorlin@mit.edu). Partial support for this author’s research was provided by ONR grant
N000141410073.

317

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/158414848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.siam.org/journals/siopt/25-1/94774.html
mailto:halman@huji.ac.il
mailto:nannicini@sutd.edu.sg
mailto:jorlin@mit.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

318 NIR HALMAN, GIACOMO NANNICINI, AND JAMES ORLIN

In the context of this paper, Dt represents an exogenous information flow. The cost
function gt(It, xt, Dt) gives the cost of performing action xt from state It at time
t for each possible realization of the random variable Dt. The random variables
are assumed independent but not necessarily identically distributed. A relaxation
of this assumption to handle the case of finite-horizon Markov decision processes
(MDPs) is discussed later in the paper. Costs are accumulated over all time pe-

riods: the total incurred cost is equal to
∑T

t=1 gt(It, xt, Dt) + gT+1(IT+1). In this
expression, gT+1(IT+1) is the cost paid if the system ends in state IT+1, and the
sequence of states is defined by the system dynamics. A discount factor α is some-
times introduced to weigh the “value of money” in the future, yielding the expression∑T

t=1 α
tgt(It, xt, Dt) + αT+1gT+1(IT+1) for the total cost. This variant can be taken

into account within the framework discussed in this paper by suitably modifying the gt
functions. The problem is that of choosing a sequence of actions x1, . . . , xT that min-
imizes the expectation of the total incurred cost. This problem is called a stochastic
DP. Formally, we want to determine

z∗(I1) = min
x1,...,xT

E

[
g1(I1, x1, D1) +

T∑
t=2

gt(f(It−1, xt−1, Dt−1), xt, Dt) + gT+1(IT+1)

]
,

where I1 is the initial state of the system and the expectation is taken with respect
to the joint probability distribution of the random variables Dt.

It is well known that such a problem can be solved through a recursion.
Theorem 1.1 (see [3]). For every initial state I1, the optimal value z∗(I1) of the

DP is given by z1(I1), where z1 is the function defined by the recursion:

zt(It) =

{
gT+1(IT+1) if t = T+1,

minxt∈At(It) EDt [gt(It, xt, Dt) + zt+1(f(It, xt, Dt))] if t = 1,. . . ,T.

Assuming that |At(It)| = |A| and |St| = |S| for every t and It ∈ St, this gives a
pseudopolynomial algorithm that runs in time O(T |A||S|).

A fully polynomial-time approximation scheme (FPTAS) is an approximation al-
gorithm that, for every given ε > 0, returns a solution with relative error at most
ε in polynomial time in the size of the instance and 1/ε. The work [19] (an earlier
version appeared in [18]) gives an FPTAS for three classes of problems that fall into
this framework. This FPTAS is not problem-specific but relies solely on structural
properties of the DP, and it computes an ε-approximation of the optimal value func-
tion. The three classes of [19] are convex DP, nondecreasing DP, and nonincreasing
DP. In this paper we propose a modification of the FPTAS for the convex DP case
that achieves better running time and is practically viable. Several applications of
convex DPs are the resource management problems discussed in [31]. Two examples
are the following:

1. Stochastic single-item inventory control [17, 20]. We want to find replen-
ishment quantities in each time period for a warehouse managing a sin-
gle item, to minimize expected procurement and holding/backlogging costs
while facing uncertain demand. This is a classic problem in supply chain
management.

2. Cash management [14, 32]. we want to manage the cash flow of a mutual
fund taking into account uncertainty in the amount of money deposited or
withdrawn from the fund in each time period. At the beginning of each
stage we can buy or sell stocks, thereby changing the cash balance. At the
end of each stage the net value of deposits/withdrawals is revealed. If the

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTATIONALLY EFFICIENT FPTAS FOR STOCHASTIC DPs 319

cash balance of the mutual fund is positive, we incur some opportunity cost
because the money could have been invested somewhere. If the cash balance
is negative, we must borrow money from the bank at some cost.

Assuming convex cost functions, these problems fall under the convex DP case.

Our modification of the FPTAS is designed to improve the theoretical worst-case
running time while making the algorithm a computationally useful tool. We show that
our algorithm has excellent performance on randomly generated problem instances of
the two applications described above: it is faster than an exact algorithm even on
small instances where no large numbers are involved and for low approximation fac-
tors (0.1%), becoming orders of magnitude faster on larger instances. The algorithm
is significantly faster than the original FPTAS of [19]. Furthermore, it compares fa-
vorably to a provably convergent approach based on a hybrid value-policy iteration
scheme (see, e.g., [34]). We show that the running time of the FPTAS is in practice
linear in the support of the random variables involved in the problem and in the num-
ber of states of the underlying MDP; thus our method is particularly effective if the
DP has a small uncertainty set. The three curses of dimensionality of DPs described
by [34] are the sizes of the state space, the action space, and the outcome space. Our
method deals effectively with the first two for a large class of problems with special
structure. While the FPTAS currently has limitations, in particular because multi-
variate convex functions cannot be efficiently approximated in general [19], we show
that it works well under some practically relevant scenarios, and we discuss how these
limitations could be overcome in the future. We believe that the proposed method
could be successfully used as a subroutine within other approximate DP approaches.
This claim is supported by [6], which reports good experimental results using one
of the routines proposed in the present paper to implement an approximation algo-
rithm for a stochastic DP with multidimensional state space [7]. Being an FPTAS, our
method has the attractive feature of a single input parameter ε that provides an a pri-
ori guarantee on the relative approximation error and an upper bound on the running
time, allowing the user to adjust this trade-off. To the best of our knowledge, this is
the first time that a framework for the automatic generation of FPTAS is shown to be
a practically as well as a theoretically useful tool. The only computational evaluation
with positive results of an FPTAS we could find in the literature is [2], which tackles
a specific problem (multiobjective 0–1 knapsack), whereas our algorithm addresses a
whole class of problems, without explicit knowledge of problem-specific features. We
believe that this paper is a first step in showing that FPTAS do not have to be looked
at as a purely theoretical tool. Another novelty of our approach is that the algo-
rithm design allows bounding the errors introduced by floating point computations,
so that we can guarantee the specified approximation factor with respect to the op-
timal infinite-precision solution under reasonable assumptions. The implementation
described in this paper is open-source and available from the second author.

The rest of this paper is organized as follows. In section 2, we formally introduce
our notation and the original FPTAS of [19], discussing its applicability and limi-
tations. In section 3, we improve the worst-case running time of the algorithm. In
section 4, we discuss our implementation of the FPTAS. In section 5, we analyze the
applicability of the proposed method on problems with vector (as opposed to scalar)
states and actions. Section 6 contains an experimental evaluation of the proposed
method, while section 7 concludes the paper with final remarks and future research
perspectives. In the rest of this section we provide a review of existing literature.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

320 NIR HALMAN, GIACOMO NANNICINI, AND JAMES ORLIN

1.1. Literature review. Stochastic dynamic programming is a natural paradigm
to model and solve an enormous number of real-world problems, and therefore litera-
ture on the topic is abundant. Comprehensive references are [4, 34], which also point
to many fundamental works in this area.

While there are many possible approximate solution approaches that perform well
in practice, a common shortcoming is a lack of bounds on the approximation error
or on the running time. There are of course notable exceptions, typically based on
computing value function approximations as a linear combination of a suitable set of
basis functions. The work [10] is a seminal paper that proposes an approximate linear
programming (LP) approach with error bounds on the value function approximation;
see also follow-up work and extensions in the same spirit such as [11, 12]. These papers
discuss infinite-horizon discounted DPs and provide a bound on the approximation
error as compared to the best value function approximation that can be obtained
given the choice of basis functions.

A fundamentally different but commonly used methodology is the least squares
Monte Carlo approach [5, 26, 39] stemming from applications in finance, in particular
pricing of American options. This problem is naturally cast as a finite-horizon dis-
counted DP because real-world financial contracts almost invariably prescribe finite
expiration times. The derivation of error bounds when using least squares Monte
Carlo approaches has been investigated in [13, 30]. These error bounds are similar in
nature to the ones for approximate LP approaches, that is, they provide guarantees
on the error with respect to some best value function approximation given the basis
functions.

A third, related stream of work is that on the successive projective approximation
routine (SPAR) that exploits concavity (for a maximization problem) of the optimal
value function [36]. This approach builds a piecewise linear approximation of the
value function that maintains concavity, and it is provably convergent for certain
classes of finite-horizon problems with special structure [32, 33]. The concavity prop-
erty exploited by SPAR is strictly related to the convexity properties required in the
framework presented in this paper, and in fact the resource management problems of
[31] to which SPAR is applied also fit in our framework. While SPAR converges to
the optimal value function, it does not offer error bounds in terms of the number of
sample paths of the simulations or in connection to the running time.

The approaches discussed above are more general than the FPTAS discussed in
this paper, but there are fundamental differences in the type of error bounds provided.
Indeed, the literature on approximate LP and least squares Monte Carlo is concerned
with finding a good approximation using a set of prespecified basis functions. If the
basis functions do not capture the structure of the optimal value function, then the
resulting approximation can be poor. The burden of choosing appropriate basis func-
tions rests on the user. Moreover, the approximation guarantees are only given a
posteriori. The FPTAS discussed in this paper requires DPs with a certain struc-
ture, but it does not require a choice of basis functions, and it provides an a priori
approximation guarantee with respect to the optimal solution of the problem. For
this reason, the interpretation of the error bound is more intuitive, and the FPTAS
requires a single input parameter to determine the approximation guarantee.

2. Preliminaries. In this section we formally introduce our notation and give
the necessary definitions, discussing the type of problems that can be handled by
the algorithm we propose. We then review the FPTAS as presented in [19], which
constitutes the starting point for our method. We remark that this paper deals with

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTATIONALLY EFFICIENT FPTAS FOR STOCHASTIC DPs 321

convex functions over finite sets, which are analyzed differently from convex functions
over continuous domains [29].

2.1. Definitions. Let N, Z, Q, R be the sets of nonnegative integers, integers,
rational numbers, and real numbers, respectively. For �, u ∈ Z, we call any set of
the form {�, � + 1, . . . , u} a contiguous interval. We denote a contiguous interval by
[�, . . . , u], whereas [�, u] denotes a real interval. Given D ⊂ R and ϕ : D → R such
that ϕ is not identically zero, we denote Dmin := min{x ∈ D}, Dmax := max{x ∈ D},
ϕmin := minx∈D{|ϕ(x)| : ϕ(x) �= 0}, and ϕmax := maxx∈D{|ϕ(x)|}. Given a finite set
D ⊂ R and x ∈ [Dmin, Dmax], for x < Dmax let next(x,D) := min{y ∈ D : y > x},
and for x > Dmin let prev(x,D) := max{y ∈ D : y < x}. Given a function defined

over a finite set ϕ : D → R, we define σϕ(x) := ϕ(next(x,D))−ϕ(x)
next(x,D)−x as the slope of

ϕ at x for any x ∈ D \ {Dmax}, σϕ(D
max) := σϕ(prev(D

max, D)). Given a set X
and a set Y (x) ∀x ∈ X , define X ⊗ Y :=

⋃
x∈X({x}, Y (x)). Let ST+1 and St

be contiguous intervals for t = 1, . . . , T . For t = 1, . . . , T and It ∈ St, let At and
At(It) ⊆ At be contiguous intervals. For t = 1, . . . , T let Dt ⊂ Q be a finite set, and
let gt : St⊗At×Dt → Q+ and ft : St⊗At×Dt → St+1. Finally, let gT+1 : ST+1 → Q+.

In this paper we deal with a class of problems labeled “convex DP” for which an
FPTAS is given by [19]; [19] additionally defines two classes of monotone DPs, but
in this paper we address the convex DP case only. The definition of a convex DP
requires the notion of an integrally convex set; see [29].

Definition 2.1. Let X be a contiguous interval and Y (x) a nonempty contiguous
interval ∀x ∈ X. The set X ⊗Y ⊂ Z2 is integrally convex if there exists a polyhedron
CXY such that X ⊗ Y = CXY ∩ Z2, and the slope of the edges of CXY is an integer
multiple of 45◦.

Definition 2.2 (see [19]). A DP is a convex DP if the terminal state space ST+1

is a contiguous interval. For all t = 1, . . . , T+1 and It ∈ St, the state space St and the
action space At(It) are contiguous intervals. gT+1 is a nonnegative convex function
over ST+1. For every t = 1, . . . , T , the set St ⊗ At is integrally convex, function gt
can be expressed as gt(I, x, d) = gIt (I, d) + gxt (x, d) + ut(ft(I, x, d)), and function ft
can be expressed as ft(I, x, d) = a(d)I + b(d)x+ c(d), where gIt (·, d), gxt (·, d), ut(·) are
univariate nonnegative convex functions, a(d) ∈ Z, b(d) ∈ {−1, 0, 1}, and c(d) ∈ Z.

Let US := maxt=1,...,T+1 |St|, UA := maxt=1,...,T,It∈St |At(It)|, and Ug :=
maxt=1,...,T+1 gmax

t

mint=1,...,T+1 gmin
t

. Given ϕ : D → R, let σmax
ϕ := maxx∈D{|σϕ(x)|} and σmin

ϕ :=

minx∈D{|σϕ(x)| : |σϕ(x)| > 0}. For t = 1, . . . , T , we define σmax
gt := maxxt∈At,dt∈Dt

σmax
gt(·,xt,dt)

, and σmin
gt := minxt∈At,dt∈Dt σ

min
gt(·,xt,dt)

. Let Uσ :=
maxt=1,...,T+1 σmax

gt

mint=1,...,T+1 σmin
gt

. We

require that logUS , logUA, and logUg are polynomially bounded in the input size.
This implies that logUσ is polynomially bounded.

Under these conditions, it is shown by [19] that a convex DP admits an FPTAS,
using a framework that we review later in this section. The input data of a DP
problem consists of the number of time periods T , the initial state I1, an oracle that
evaluates gT+1, oracles that evaluate the functions gt and ft for each time period
t = 1, . . . , T , and the discrete random variable Dt. For each Dt we are given nt,
the number of different values it admits with positive probability, and its support
Dt = {dt,1, . . . , dt,nt}, where dt,i < dt,j for i < j. Moreover, we are given positive
integers qt,1, . . . , qt,nt such that P [Dt = dt,i] =

qt,i∑nt
j=1 qt,j

. For every t = 1, . . . , T and

i = 1, . . . , nt, we define the following values:
pt,i := P [Dt = dt,i]: probability that Dt takes value dt,i;

n∗ := maxt nt: maximum number of different values that Dt can take.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

322 NIR HALMAN, GIACOMO NANNICINI, AND JAMES ORLIN

For any function ϕ : D → R, tϕ denotes an upper bound on the time needed to
evaluate ϕ.

2.2. Limitations of convex DPs and extensions. We now discuss the
restrictions imposed by Definition 2.2.

The condition b(d) ∈ {−1, 0, 1} imposes a specific structure on the stochastic DPs
we can model, namely, one where state transitions do not depend on the action, or the
action allows reaching a set of contiguous states. The work [19] shows that a convex
DP where b(d) �∈ {−1, 0, 1} in Definition 2.2 does not necessarily admit an FPTAS
unless P = NP.

The condition that St and At(It) are contiguous intervals ∀t allows us to model
only stochastic DPs where the state and action spaces are unidimensional. We can
relax this restriction in some special cases that are discussed in section 5; see also
the discussion in [19, sect. 10.3]. One such case with practical importance is that of
an MDP where the one-step transition matrix is given explicitly. We study this case
experimentally in section 6.6.

The condition that the random variables Dt are independent cannot be relaxed in
general unless P = NP; see [19, sect. 10.3]. However, some types of dependency such
as MDPs can be handled. In this paper we mostly deal with independent random
variables until section 6.6.

The limitation of explicitly listing the support of the random variables as a prob-
lem input is quite severe in practice and does not allow us to effectively handle prob-
lems with a very rich uncertainty model, e.g., problems for which computing expec-
tations is impractical. The work [22] proposes an approach to deal with the more
general case where we only have an oracle for the cumulative distribution function
of Dt instead of explicit knowledge of the probability distribution function. This is
not straightforward with the modifications to the framework proposed in the present
paper, hence we keep the more restrictive assumption for now.

We note that the framework of this paper can be applied heuristically in a more
general setting. We provide two notable examples. If the state and action spaces are
continuous intervals, we can compute an approximation of the value function with
a relatively straightforward adaptation of the routines. If the cost function is not
convex, one can still adapt the algorithm to treat it as if it were convex. Doing
so forsakes any guarantee on the approximation factor or the running time. In this
paper, we discuss only the cases for which such guarantees hold.

2.3. The algorithm. The basic idea underlying the FPTAS of Halman et al.
[19] is to approximate the functions involved in the DP by keeping only a logarithmic
number of points in their domain. We then use a step function or linear interpolation
to determine the function value at points that have been eliminated from the domain.

Definition 2.3 (see [19]). Let K ≥ 1 and let ϕ : D → R+, where D ⊂ R is a
finite set. We say that ϕ̃ : D → R+ is a K-approximation function of ϕ (or more
briefly, a K-approximation of ϕ) if ∀x ∈ D we have ϕ(x) ≤ ϕ̃(x) ≤ Kϕ(x).

Definition 2.4 (see [19]). Let K ≥ 1 and let ϕ : D → R+, where D ⊂ R is a
finite set, be a unimodal function. We say that W ⊆ D is a K-approximation set of
ϕ if the following three properties are satisfied: (i) Dmin, Dmax ∈ W . (ii) For every
x ∈ W \ {Dmax}, either next(x,W) = next(x,D) or max{ϕ(x), ϕ(next(x,W))} ≤
Kmin{ϕ(x), ϕ(next(x,W))}. (iii) For every x ∈ D \W , we have ϕ(x) ≤ max{ϕ(prev
(x,W)), ϕ(next(x,W))} ≤ Kϕ(x).

An algorithm to construct K-approximations of functions with special structure
(namely, convex or monotone) in polylogarithmic time was first introduced in [20]. In

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTATIONALLY EFFICIENT FPTAS FOR STOCHASTIC DPs 323

Algorithm 1. ApxSet(ϕ,D,K).

1: x← Dmax

2: W ← {Dmin, Dmax}
3: while x > Dmin do
4: x← min{prev(x,D),min{y ∈ D : Kϕ(y) ≥ ϕ(x)}}
5: W ←W ∪ {x}
6: return W

this paper we only deal with the convex case; therefore when presenting results from
[19, 20] we try to avoid the complications of the two monotone cases. In the rest of
this paper it is assumed that the conditions of Definition 2.2 are met.

Definition 2.5 (see [19]). Let ϕ : D → R. For all E ⊆ D, the convex extension
of ϕ induced by E is the function ϕ̂ defined as the lower envelope of the convex hull
of {(x, ϕ(x)) : x ∈ E}.

The main building block of the FPTAS is the routine ApxSet given in Algo-
rithm 1, which computes a K-approximation set of a function ϕ over the domain D.
The idea is to only keep points in D such that the function value “jumps” by less
than a factor K between adjacent points. For brevity, in the rest of this paper the
algorithms to compute K-approximation sets are presented for convex nondecreasing
functions. They can all be extended to general convex functions by applying the algo-
rithm to the right and to the left of the minimum, which can be found in O(log |D|)
time by binary search. Hence, theorems are presented for the general case.

Theorem 2.6 (see [19]). Let ϕ : D → R+ be a convex function over a finite
domain of real numbers. Then for every K > 1 the following holds: (i) ApxSet

computes a K-approximation set W of cardinality O(1 + logK
ϕmax

ϕmin) in O(tϕ(1 +

logK
ϕmax

ϕmin) log |D|) time. (ii) The convex extension ϕ̂ of ϕ induced by W is a convex

K-approximation of ϕ whose value at any point in D can be determined in O(log |W |)
time for any x ∈ [Dmin, Dmax] if W is stored in a sorted array (x, ϕ(x)), x ∈W .

Proposition 2.7 (see [19]). Let 1 ≤ K1 ≤ K2, 1 ≤ t ≤ T, It ∈ St, be fixed. Let
ĝt(It, ·, dt,i) be a convex K1-approximation of gt(It, ·, dt,i) for every i = 1, . . . , nt. Let

ẑt+1 be a convex K2-approximation of zt+1, and define Ĝt(It, ·) := EDt [ĝt(It, ·, Dt)],
Ẑt+1(It, ·) := EDt [ẑt+1(ft(It, ·, Dt))] . Then

(2.1) z̄t(It) := min
xt∈A(It)

{
Ĝt(It, xt) + Ẑt+1(It, xt)

}
is a K2-approximation of zt that can be computed in O(log(|At(It)|)nt(tĝ + tẑt + tft))
time for each value of It.

We can now describe the FPTAS for convex DPs given by [19]. The algorithm is
given in Algorithm 2. It is shown in [19] that zt, z̄t are convex for every t.

Theorem 2.8 (see [19]). Given 0 < ε < 1, for every initial state I1, ẑ1(I1) is
a (1 + ε)-approximation of the optimal cost z∗(I1). Moreover, Algorithm 2 runs in

O((tg + tf + log(Tε log(TUg)))
n∗T 2

ε log(TUg) logUS logUA) time, which is polynomial
in 1/ε and the input size.

3. Improved running time. In this section we show that for the convex DP
case, we can improve the running time given in Theorem 2.8.

In the framework of [19], monotone functions are approximated by a step function,
and Definition 2.4 guarantees the K-approximation property for this case. However,
ApxSet greatly overestimates the error committed by the convex extension induced

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

324 NIR HALMAN, GIACOMO NANNICINI, AND JAMES ORLIN

Algorithm 2. Original FPTAS for convex DP.

1: K ← 1 + ε
2(T+1)

2: WT+1 ← ApxSet(gT+1,ST+1,K)
3: Let ẑT+1 be the convex extension of gT+1 induced by WT+1

4: for t = T, . . . , 1 do
5: Define z̄t as in (2.1) with ĝt set equal to gt
6: Wt ← ApxSet(z̄t,St,K)
7: Let ẑt be the convex extension of z̄t induced by Wt

8: return ẑ1(I1)

Algorithm 3. ApxSetSlope(ϕ,D,K).

1: x← Dmin

2: W ← {Dmin}
3: while x < Dmax do
4: x← max{next(x,D),max{y ∈ D : ϕ(y) ≤ K(ϕ(x) + σϕ(x)(y − x)}}
5: W ←W ∪ {x}
6: return W

by W . For the convex DP case we propose the simpler Definition 3.1 of the K-
approximation set, which preserves correctness of the FPTAS and the analysis carried
out in [19].

Definition 3.1. Let K ≥ 1 and let ϕ : D → R+, where D ⊂ R is a finite set, be
a convex function. Let W ⊆ D and let ϕ̂ be the convex extension of ϕ induced by W .
We say that W is a K-approximation set of ϕ if (i) Dmin, Dmax ∈ W ; (ii) for every
x ∈ D, ϕ̂(x) ≤ Kϕ(x).

Note that a K-approximation set according to the new definition is not neces-
sarily such under the original Definition 2.4 as given in [19]. For example, D =
{0, 1, 2}, ϕ(0) = 0, ϕ(1) = 1, ϕ(2) = 2K; the only K-approximation set according to
the original definition is D itself, whereas {0, 2} is a (smaller) K-approximation set
in the sense of Definition 3.1. An algorithm to compute a K-approximation set in the
sense of Definition 3.1 is given in Algorithm 3 (for nondecreasing functions).

Theorem 3.2. Let ϕ : D → Q+ be a convex function over a finite domain of in-
tegers. Then for every K > 1, ApxSetSlope(ϕ,D,K) computes a K-approximation

set W of size O(logK min{σ
max
ϕ

σmin
ϕ

, ϕmax

ϕmin }) in O(tϕ logK min{σ
max
ϕ

σmin
ϕ

, ϕmax

ϕmin } log |D|) time.

The proof of Theorem 3.2 is given in Appendix C. As a consequence of this theo-
rem, we can approximate linear or V-shaped piecewise linear functions very efficiently
with an approximation set of constant size, because in this case σmax

ϕ /σmin
ϕ = 1. Note

that in general if the cost functions grow as a polynomial of degree d, their slopes
grow as a polynomial of degree d− 1; therefore an approximation algorithm based on
slopes can yield a significant practical advantage. We can improve on Theorem 2.8
by replacing each call to ApxSet with a call to ApxSetSlope in Algorithm 2.

Theorem 3.3. Given 0 < ε < 1, for every initial state I1, ẑ1(I1) is a (1 + ε)-
approximation of the optimal cost z∗(I1). Moreover, Algorithm 2 runs in

O

((
tg + tf + log

(
T

ε
log(min{Uσ, TUg})

))
n∗T 2

ε
log(min{Uσ, TUg}) logUS logUA

)

time, which is polynomial in both 1/ε and the (binary) input size.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTATIONALLY EFFICIENT FPTAS FOR STOCHASTIC DPs 325

4. From theory to practice. In this section we introduce an algorithm that
builds on the idea of section 3 to compute smallerK-approximation sets thanApxSet-

Slope in practice, although we do not improve over Theorem 3.2 from a theoretical
standpoint, and the analysis is more complex. Then, we discuss how to implement
the FPTAS efficiently and how to handle floating point computations to guarantee
the desired approximation factor despite rounding errors.

4.1. An improved routine for K-approximation sets. Given two points
(x, y), (x′, y′) ∈ R2 we denote by Line((x, y), (x′, y′), ·) : R → R the straight line
through them. We first discuss how to exploit convexity of ϕ to compute a bound on

the approximation error Line((x,ϕ(x)),(x′,ϕ(x′)),w)
ϕ(w) ∀w ∈ [x, . . . , x′].

Proposition 4.1. Let ϕ : [�, u] → R+ be a nondecreasing convex function. Let
h ≥ 3, E = {xi : xi ∈ [�, u], i = 1, . . . , h} with � = x1 < x2 < · · · < xh−1 < xh = u, let
yi := ϕ(xi)∀i, (x0, y0) := (x1 − 1, y1) and (xh+1, yh+1) := (xh + 1, 2yh − f(xh − 1)).
For all i = 1, . . . , h− 1, define LBi(x) as

LBi(x) :=

⎧⎪⎨
⎪⎩
max

{
Line((xi−1, yi−1), (xi, yi), x),

Line((xi+1, yi+1), (xi+2, yi+2), x)

}
if x ∈ [xi, xi+1],

0 otherwise.

Define ϕ(x) :=
∑h−1

i=1 LBi(x). Observe that LBi(x) is the maximum of two linear
functions, so it has at most one breakpoint over the interval (xi, xi+1). Let B be the
set of these breakpoints. For 1 ≤ j < k ≤ h let

γE(xj , xk) := max
xe∈[xj ,xk]∩(E∪B)

{
Line((xj , yj), (xk, yk), xe)

ϕ(xe)

}
.(4.1)

Then

∣∣∣∣Line((xj , yj), (xk, yk), w)

ϕ(w)

∣∣∣∣ ≤ γE(xj , xk) ≤ yk
yj
∀w ∈ [xj , xk].

It is easy to show that if ϕ is defined only on integer points, then if xe ∈ B and
xe �∈ Z, we can replace xe with the two points �xe�, �xe� in B. This gives slightly
tighter error bounds and, more importantly, it allows us to compute ϕ only at integer
points, which is one of the assumptions in section 4.3.

The set B of Proposition 4.1 allows the computation of a bound γE(xj , xk) on
the error committed by approximating ϕ with a linear function between xj , xk. We
use this bound in ApxSetConvex; see Algorithm 4 (for nondecreasing functions).
In the description of ApxSetConvex, Λ > 1 is a given constant. We used Λ = 2 in
our experiments.

The idea of the algorithm is to construct a good underestimator ϕ of ϕ using all
points in the domain where the function value is known, following Proposition 4.1.
This underestimator improves at every iteration and is used to build an approximation
set with few points. One important difference of ApxSetConvex with respect to
ApxSetSlope is the following: ApxSetSlope looks for the next point to be added
to the approximation set using binary search, therefore the search interval is itera-
tively halved until it collapses to a single point; ApxSetConvex employs a modified
binary search that may discard the search interval without adding points to the ap-
proximation set, if it can show—thanks to the progressively improving underestimator
ϕ—that no approximation point is necessary in that interval.

The running time of ApxSetConvex can be a factor log2 log |D| slower than
ApxSetSlope, but its practical performance is superior for two reasons: it produces

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

326 NIR HALMAN, GIACOMO NANNICINI, AND JAMES ORLIN

Algorithm 4. ApxSetConvex(ϕ,D,K).

1: W ← {Dmin, Dmax}
2: x← Dmax

3: E ← {Dmin,
⌊
(Dmin +Dmax)/2

⌋
, Dmax}

4: while x > Dmin do
5: �← Dmin, r ← x, counter← 0, z ← x
6: while r > next(�,D) do
7: w ← min{y ∈ E : (y > Dmin) and (γE(y, x) ≤ K)}
8: �← prev(w,E), r ← w, counter++

9: E ← E ∪ {�(�+ r)/2�} ∩ [Dmin,max{next(r, E), arg γE(r, x)}]
10: if counter > Λ log(|D|) then
11: if ϕ(z) > Kϕ(r) then
12: counter← 0, z ← r
13: else
14: �← prev(r,D)
15: x← min{prev(x,D), r}
16: W ←W ∪ {x}, E ← E ∩ [Dmin, x]
17: return W

smaller approximation sets and it evaluates z̄ fewer times (each evaluation of z̄ is ex-
pensive; see below). We remark that we experimented with applying Proposition 4.1
in conjunction with ApxSetSlope, but this did not improve the algorithm’s perfor-
mance; therefore we omit the discussion for space reasons.

Theorem 4.2. Let ϕ : D → Q+ be a convex function defined over a set of inte-
gers. Then ApxSetConvex(ϕ,D,K) computes a K-approximation set of ϕ of size

O(logK min{σ
max
ϕ

σmin
ϕ

, ϕmax

ϕmin }) in time O(tϕ logK min{σ
max
ϕ

σmin
ϕ

, ϕmax

ϕmin } log |D| log2 log |D|).
For space reasons we omit a full proof of Theorem 4.2, which is given in Ap-

pendix C. We provide a sketch of the main ideas. First, we show that we can safely
ignore all points to the right of max{next(r, E), arg γE(r, x)} on line 9. Then, we show

thatApxSetConvex computes an approximation set of sizeO(logK min{σ
max
ϕ

σmin
ϕ

, ϕmax

ϕmin }),
and line 7 is executed O(log |D|) times for each point added to the approxima-
tion set. The crucial part is bounding the running time of the loop that finds the
subsequent point to be added to the approximation set. For this, we first show
that |E| = O(log |D|) throughout the algorithm and that line 7 can be executed in
O(log2 log |D|) time by performing binary search separately on the sets E and B of
Proposition 4.1. This running time relies on skip lists [37] that allow for O(log n)
insertion, deletion and search on a list with n elements. The worst-case running times
for operations on skip lists are “with high probability” in the original paper [37], but
[28] describes an implementation that achieves the same bounds in deterministic time.

4.2. Efficient implementation. We see from Algorithm 2 that at each iteration
of the main loop we have to construct an approximation ẑt of the value function z̄t
at the current stage t. By (2.1), each evaluation of z̄t requires the minimization of a
convex function. Hence, evaluating z̄t is expensive. We briefly discuss our approach
to perform the computation of a K-approximation set of z̄ efficiently, which is crucial
because such computation is carried out T times in the FPTAS.

First, we make sure that the minimization in the definition (2.1) of z̄t is performed
at most once for each state It. We use a dictionary to store function values of z̄t at

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTATIONALLY EFFICIENT FPTAS FOR STOCHASTIC DPs 327

all previously evaluated points It. Whenever we require an evaluation of z̄t at It, we
first look up if It is present in the dictionary (O(1) time on average), and if so, we
avoid performing the minimization in (2.1).

Second, we do not approximate gt when computing (2.1), i.e., we use K1 = 1 in
Proposition 2.7, as also suggested in the proof of Theorem 9.3 of [19]. gt is typically
available as an O(1) time oracle: setting K1 = 1 avoids several time-consuming
steps.

Third, whenever we compute the minimum of a convex function such that each
function evaluation requires more than O(1) time, we use golden section search [25],
which saves≈ 30% function evaluations compared to binary search. In particular, this
is done at each evaluation of z̄t in Algorithm 2, and each application of ApxSet rou-
tines, which require finding the minimum of a function. Note that our implementation
of an exact DP approach also uses golden section search to evaluate the optimal value
function at each stage depending on the subsequent stage. This exploits convexity
over the action space.

Fourth, in our Python implemention we use standard lists instead of skip lists to
store E and B in ApxSetConvex as discussed in section 4.1. Note that Python lists
are essentially dynamically allocated arrays with O(1) access time and O(n) insertion,
rather than linked lists. In our tests, E and B typically contain less than 20 elements,
and we found Python lists to be more efficient in this scenario. In this case the
O(log2 log |D|) factor in the running time of Theorem 4.2 increases to O(log |D|).

4.3. Floating point arithmetics. Our implementation uses floating point arith-
metics for the sake of speed. Most modern platforms provide both floating point (fixed
precision) arithmetics and rational (arbitrary precision) arithmetics. The latter is con-
siderably slower because it is not implemented in hardware, but it does not incur into
numerical errors and can handle arbitrarily large numbers. Only by using arbitrary
precision can one guarantee to find the optimal solution of a problem instance: fixed
precision computations suffer from accumulated errors at every arithmetic operation,
and the errors may compound. Approaches to deal with this type of error are typi-
cally not discussed in the dynamic programming literature. However, they have been
studied in other branches of optimization; see, for example, [1, 8, 9, 40].

In this section we describe how our floating point implementation guarantees
that the final result satisfies the desired approximation guarantee. We make the
following assumptions: (i) All the functions involved in the problem (including the
linear interpolation between function points) are evaluated at integer points only.
(ii) All integer numbers appearing in the problem are contained in [−253, . . . , 253],
and all integers in this interval can be represented exactly as floating point numbers.
(iii) Each addition, multiplication, or division introduces at most an additional εm
relative error, where εm is the machine epsilon. (iv) εm � 1 so that any term that is
order of ε2m can be considered zero.

Assumption (i) is verified by our algorithms. Assumptions (ii) and (iii) hold for
standard double precision floating point arithmetics [23]. Note that large rounding
errors in this context are mostly due to subtraction, which may produce catastrophic
cancellation if carelessly performed.

We now proceed to bound the error introduced by the calculations required by the
FPTAS. An iteration of Algorithm 2 comprises three key operations: the computation
of the value function z̄t at the current stage (see (2.1)), the computation of a K-
approximation set for z̄t, and the evaluation of the convex extension ẑt. At each
stage, the relative errors introduced by the floating point operations is on top of the
approximation error inherited from the subsequent stage.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

328 NIR HALMAN, GIACOMO NANNICINI, AND JAMES ORLIN

By employing Kahan’s summation algorithm [24], one can show that computing
z̄t (2.1) at a point introduces at most 5εm relative error. The error introduced by
computing the linear interpolation of ϕ between x1, x2 at point x is bounded by

4εm. This is because the differences occurring in the formula ϕ(x1)(x2−x)+ϕ(x2)(x−x1)
x2−x1

are among integer values, hence they can be computed exactly. Finally, the error
introduced by the computation of the K-approximation set is bounded by 9εm because
it requires the multiplication of two values obtained by linear interpolation.

Putting everything together, when using floating point arithmetic we can achieve
an approximation factor of K with a call to ApxSetConvex(ϕ,D,K) by replac-
ing K with K/(1 + 18εm) on line 8 of ApxSetConvex. With this modification,
if ẑt+1 is a K1 approximation of zt+1 and K2 is the approximation factor used by
ApxSetConvex at stage t, then ẑt is a guaranteed K1K2 approximation of zt.

Another observation is in order. We assumed that the functions and the linear
interpolations are always evaluated at integer points. To verify this assumption, we
round the points computed following Proposition 4.1 up and down as suggested in
section 4.1. However, because the computations are subject to error, if the x-axis
coordinate of the point to be rounded is very close to an integer, it may not be clear
how to round the point up and down. Note that care has to be taken in this respect
because otherwise the computation of the error bounds may be affected by mistakes.

Proposition 4.1 requires the computation of the intersection between two lines,
each of which is defined by two points, say, (x1, y1), (x2, y2) and (x3, y3), (x4, y4). The
x-axis coordinate of the intersection is given by

(4.2)
(y4(x2 − x1)(x3 − x4) + y2x1(x3 − x4))− (y1(x2 − x1)(x3 − x4) + y1x1(x3 − x4))

(y2(x3 − x4) + y4(x2 − x1))− (y1(x3 − x4) + y3(x2 − x1))
.

Because of the subtraction at the numerator and denominator, we cannot bound the
relative error introduced by this computation independently of the operands. We can
rewrite the expression above as a−b

c−d , where each number is positive and affected by
a relative error of at most 5εm. To bound the error of (4.2), we impose an upper
limit ρ on the condition number of the sums a − b and c − d. (Recall that the

condition number of a sum x+ y is |x|+|y|
|x+y| .) After preliminary computational testing,

we chose ρ :=
√
1/εm. If the condition number of the operands does not satisfy the

limit, we abort the computation of γE and compute a more conservative error bound
with smaller numerical error: y3/Line((x1, y1), (x2, y2), x3 − 1) for a nondecreasing
function. If the limit is satisfied, it can be shown that the relative error of (4.2) is
bounded by 11

√
εm. Then we do the following. Let xe be the value of (4.2), and let

I = [xe/(1 + 11
√
εm), xe(1 + 11

√
εm)]. If xe ∈ Z, that is the only point we need to

check. If I ∩ Z = ∅, we can safely round xe up and down and we proceed as usual.
If I ∩ Z = �xe�, the actual intersection point could be < �xe�, hence we check the
error at �xe�− 1, �xe�, �xe�. This guarantees correctness of the error bounds given by
γE . Similarly, if I ∩ Z = �xe� we check the error at �xe�, �xe�, �xe� + 1. Finally, if
|I ∩ Z| > 1 we again resort to the conservative bound.

To ensure that we do not exceed the approximation factor allowed, we set the
rounding mode for the floating point unit to the appropriate direction for all key
calculations. In particular, we round up (i.e., we overestimate) the errors committed
by the algorithm, and we round down (i.e., we underestimate) the maximum allowed
approximation factor at each iteration. The computational overhead for these safe
computations as opposed to potentially unsafe ones is negligible.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTATIONALLY EFFICIENT FPTAS FOR STOCHASTIC DPs 329

Algorithm 5. Implementation of the FPTAS for convex DP.

1: K ← (1 + ε)
1

T+1

2: WT+1 ← ApxSetConvex(gT+1,ST+1,K)
3: Let K ′

T+1 be the maximum value of γE recorded by ApxSetConvex

4: Let ẑT+1 be the convex extension of gT+1 induced by WT+1

5: for t = T, . . . , 1 do
6: Define z̄t as in (2.1) with ĝt set equal to gt
7: Kt ← KT+2−t

∏T+1
j=t+1 K′

j

.

8: Wt ← ApxSetConvex(z̄t,St,Kt)
9: Let K ′

t be the maximum value of γE recorded by ApxSetConvex

10: Let ẑt be the convex extension of z̄t induced by Wt

11: return ẑ1(I1)

4.4. Adaptive selection strategy of the approximation factor. At each
stage of the DP, we adaptively compute an approximation factor Kt that guarantees
the approximation factor (1 + ε) for the value function at stage 1 taking into account
the errors in the floating point computations.

We now describe the selection of the approximation factor at each stage in more
detail. IfKt is the approximation factor used at stage t = 1, . . . , T+1, then the FPTAS
returns a solution within

∏T+1
t=1 Kt of optimality (recall that the error introduced by

the floating point computations is taken into account by replacing K with K/(1 +

18εm) in ApxSetConvex). Hence we want
∏T+1

t=1 Kt ≤ 1+ε. The work [19] suggests
using Kt = 1 + ε

2(T+1) at each stage, because of the inequality (1 + x/n)n ≤ 1 + 2x

valid for 0 ≤ x ≤ 1. However, this bound is very loose for small n.

We used the following strategy. Let α = (1 + ε)
1

T+1 . At each stage, we keep
track of the maximum approximation error K ′

t recorded during the application of
ApxSetConvex. This corresponds to the largest recorded value of γE and is an
a posteriori guarantee on the actual approximation factor achieved. When ApxSet

or ApxSetSlope is employed to compute approximation sets, we use the largest
recorded ratio of ϕ(y)/ϕ(x) and ϕ(y)/(ϕ(x) + σϕ(x)(y − x)), respectively, on line 4
of the two algorithms as K ′

t. Note that K ′
t ≤ Kt. Then for t = T + 1, . . . , 1 we set

Kt :=
αT+2−t

∏T+1
j=t+1 K′

j

. The total approximation factor achieved at stage 1 is
∏T+1

t=1 K ′
t, and

we have

K1 =
αT+1∏T+1
j=2 K ′

j

, therefore

T+1∏
t=1

K ′
t = K ′

1

T+1∏
j=2

K ′
j = K ′

1

αT+1

K1
≤ αT+1 = 1 + ε,

as desired. We summarize the FPTAS for convex DPs in Algorithm 5.

5. Handling multidimensional state or action spaces. The methodology
discussed in this paper relies heavily on the properties of discrete convex functions.
For an extensive treatment of this topic, we refer to [29]. A fairly broad class of
discrete convex functions is that of Miller; see [27]. It is known [19, Thm. 10.10] that
a multivariate discrete convex function in the sense of Miller does not necessarily admit
a succinct representation, i.e., it may not be possible to compute a K-approximation
that requires storing a polylogarithmic number of points in the domain of the function.
Thus, we cannot approximate a multivariate optimal value function, even if it is Miller
discrete convex. Another well-known class of discrete convex functions is that of L�-
convex functions [29], which is a natural candidate to study the applicability of our

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

330 NIR HALMAN, GIACOMO NANNICINI, AND JAMES ORLIN

method in a multivariate setting (see [7, Lem. 7, 8]). Unfortunately, we are not
aware of any algorithm to compute K-approximation sets for multivariate L�-convex
functions “one dimension at a time”; hence it is possible that the FPTAS does not
extend to this setting.

Despite these negative results, our approach can be extended to multivariate state
and action in some special cases. We discuss some of them below.

An easy case is that in which the problem is separable: St ⊂ Zk,At ⊂ Zk ∀t, the
transition function ft(I, x, d) : St ⊗At ×Dt → St+1 can be expressed as ft(I, x, d) =

(f1
t (I1, x1, d), . . . , f

k
t (Ik, xk, d)), and gt(I, x, d) =

∑k
i=1 g

i
t(Ii, xi, d). In this case, the

min and the expectation in (2.1) can be split into k separate problems, allowing the
solution of the problem as k unidimensional DPs. Thus, the FPTAS can be applied
provided the conditions of Definition 2.2 are satisfied by each git, f

i
t . This corresponds

to the case in which the functions gt are convex separable [29, (6.31)].
A more practically relevant case occurs when additional components of the state

vector are bounded by UB, where UB is polynomial in the input size. Then, the
problem admits an FPTAS by applying the proposed approximation scheme separately
for each possible value of the additional state vector components. One typical example
is that of an MDP (see, e.g., [34, Chap. 3]), where the one-step transition matrix is
given explicitly. We provide a computational assessment of this case in section 6.6. If
the transition probabilities are given implicitly, e.g., as an oracle, then this approach
is no longer polynomial-time in general [19, sect. 10.3].

A further interesting case to which our method applies is given by the setting
of [33], where the state is a scalar but the action is a vector, possibly very large,
and the optimal action at a given state can be computed by solving an LP. A rig-
orous treatment of this case is outside the scope of this paper. Below, we skip all
proofs but sketch the main ideas to show that the method discussed in this paper
has potential beyond the scope of this work. Assume that the action space At(It)
is given by {xt : Atxt = bt(It), xt ≤ ut(It), xt ≥ 0}, where At is a matrix, ut is a
vector of upper bounds, and bt is a vector of right-hand-side values that are linear
in the current state It. Assume further that the state transition can be expressed as
It+1 = It + aSxt + bS(Dt),

(
At

aS

)
is totally unimodular (TU), ut(It), bt(It) are integer

for all It, and the one-period cost function is linear in xt and It+1, i.e., gt(It, xt, Dt) =
cxxt + cIIt+1 + c(Dt). These assumptions are verified if the optimal action and state
transition can be computed solving a network flow problem, which is the case in some
resource management problems with a central storage (represented by the unidimen-
sional state) employed to support satellite activities. Some examples are given in
[33, 38]. Under these assumptions, a K-approximation of the optimal cost-to-go at
stage t and state It can be computed by solving the following optimization problem:

(5.1)

min cxxt +
∑nt

i=1 pt,i
(
yi + cIIt+1,i + c(dt,i)

)
Atxt = bt(It)

∀i = 1, . . . , nt yi − ẑt+1(It+1,i) ≥ 0
∀i = 1, . . . , nt It+1,i − aSxt = It + bS(dt,i)

xt ≤ ut(It)
xt ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
,

where the decision variables are xt, It+1,i, yi, and ẑt+1 is a (piecewise linear) K-
approximation of the value function at stage t + 1. Notice that It+1,i represents
the next state if the realization of Dt is dt,i. Because ẑt+1 is piecewise linear, (5.1)
is an LP that can be shown to have polynomial size. Under suitable assumptions we

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTATIONALLY EFFICIENT FPTAS FOR STOCHASTIC DPs 331

can apply the FPTAS by solving an LP of the form (5.1) instead of (2.1) at every
iteration. Hence, in this case we can deal with a potentially very large action space
in polynomial time. From a practical standpoint, this approach significantly reduces
the number of LPs that have to be solved as compared to an exact approach. A very
similar idea can be applied heuristically to the case where the constraint matrix of
the LP is not TU, and the state space is therefore a continuous interval; it is an open
research question whether we can construct an FPTAS under this setting.

6. Computational experiments. We implemented the FPTAS in Python 3.3.
Better performance could be obtained using a faster language such as C. However, in
this context we are interested in comparing different approaches, and because all the
tested algorithms are implemented in Python, the comparison is fair. The tests were
run on Linux on an Intel Xeon E5-4620 at 2.20 GHz (HyperThreading and TurboBoost
disabled).

6.1. Generation of random instances. We now give an overview of how the
problem instances used in the computational testing phase are generated. More details
are provided in Appendix A. We consider two types of problems: stochastic single-item
inventory control problems and cash management problems, as described in section 1.
In the future we plan to experiment on real-world data. At this stage, we study
random instances with “reasonable” numbers. The biggest advantages of testing on
random instance are the generation of as many instances as necessary to reduce the
sample variance in the results, and the possibility of constructing instances ad hoc in
order to find which characteristics affect performance. This is especially important
when assessing a new methodology.

We consider two types of problems: stochastic single-item inventory control prob-
lems and cash management problems. For each instance we require four parameters:
the number of time periods T , the state space size parameter M , the size of the sup-
port of the random variable N , and the degree of the cost functions d. The state
space size parameter determines the maximum demand in each period for single-item
inventory control instances and the maximum difference between cash deposit and
cash withdrawal for cash management instances. The actual values of these quanti-
ties for each instance are determined randomly, but we ensure that they are between
M/2 and M , so that the difficulty of the instance scales with M . Each instance re-
quires the generation of some costs: procurement, storage, and backlogging costs for
inventory control instances; opportunity, borrowing, and transaction costs for cash
management instances. We use polynomial functions ctx

d to determine these costs,
where ct is a coefficient that is drawn uniformly at random in a suitable set of values
for each stage, and d ∈ {1, 2, 3}. The difficulty of the instances increases with d, as
the numbers involved and Uσ grow. The probabilities for the random variables are
uniformly drawn at random at each stage from a suitable set. The transaction costs
for cash management instances are fixed at 0.01 per dollar.

The random instances are labeled Inventory(T,M,N, d) and Cash(T,M,
N, d) to indicate the values of the parameters.

6.2. Overview of the computational evaluation. We generated 20 ran-
dom Inventory and Cash instances for each possible combination of the follow-
ing values: T ∈ {5, 10, 20, 50},M ∈ {100, 1000, 10000}, N ∈ {1, 2, 5, 10, 20, 50}, d ∈
{1, 2, 3}. This yielded a total of 8640 problem instances. We applied to each of them
the following algorithms: an exact DP algorithm (label Exact), and the FPTAS
for ε ∈ {0.001, 0.01, 0.1} as described in Algorithm 5 using one of the subroutines

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

332 NIR HALMAN, GIACOMO NANNICINI, AND JAMES ORLIN

Table 1

Relationship between the value of N and average CPU time. For each algorithm and problem
class, we report the minimum recorded Pearson correlation coefficient (denoted ρ) and the 95%
sample quantile of the maximum relative error of a linear regression (denoted MRE0.95).

Exact ApxSet ApxSetSlope ApxSetConvex

Problem ρ MRE0.95 ρ MRE0.95 ρ MRE0.95 ρ MRE0.95

Inventory 0.9996 0.11% 0.9988 0.41% 0.9985 7.57% 0.9981 5.90%
Cash 0.9944 4.32% 0.9913 0.41% 0.9927 5.42% 0.9971 2.42%

ApxSet, ApxSetSlope, or ApxSetConvex. This allows us to verify whether the
modifications proposed in this paper are beneficial. We remark that our implemen-
tation of Exact runs in O(T |S| log |A|) time exploiting convexity and using golden
section search; see section 4.2.

For each group of instances generated with the same parameters, we look at the
sample mean of the running time for each algorithm. Because the sample standard
deviation is typically low, comparing average values is meaningful. When the sample
means are very close, we rely on additional statistical tests.

The maximum CPU time for each instance was set to 1000 seconds. In Ap-
pendix B we report the number of solved problem instances for each algorithm and
approximation factor. In the following, an instance is considered “solved” by an al-
gorithm if the algorithm is able to compute (an approximation of) the initial-stage
value function before the time limit.

6.3. Support of the random variables and running time. In this section
we analyze the relationship between the running time of the algorithms and the size
of the support of the random variables N . The pseudocode of the algorithm suggests
that the running time should be linear in N . Here we confirm this conjecture, which
simplifies the analysis in the rest of this paper.

For every combination of T , M , d, ε and solution algorithm (Exact, ApxSet,

ApxSetSlope, ApxSetConvex), we compute the Pearson correlation coefficient
between the six tested values of N and the corresponding average CPU time. We
perform this computation only if the instances are solved before the time limit for at
least four values of N ; otherwise the corresponding combination of T , M , d, ε and
solution algorithm is ignored.

The results show a striking linear relationship between N and the running time.
In Table 1 we report, for each algorithm and problem class, the minimum recorded
correlation coefficient. The results strongly support our conjecture.

It could be argued that the correlation coefficient is misleading because it im-
plicitly assumes homoscedasticity of the random variables representing the average
CPU time for a group of instance. As a safety check, for every combination of T ,
M , d, ε and solution algorithm we perform linear regression between average CPU
time and N , minimizing the sum of the squared relative errors. This corresponds to
a maximum likelihood approach if we assume that the variances of the average CPU
times are proportional to the square of the mean. As can be seen in Table 1, the 95%
sample quantile of the maximum relative error is typically very small. (We report the
95% sample quantile to eliminate some outliers due to instances solved in fractions of
a second.) Visual inspection of the linear regression plots confirms the almost perfect
positive correlation across all algorithms.

We remark that while a linear dependency of the running time with T could also
be expected, that is not the case because of the way we generated the instances: the
size of the state space at stage t is proportional to t, hence larger T yields larger state

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTATIONALLY EFFICIENT FPTAS FOR STOCHASTIC DPs 333

spaces. If the size of the state space were constant at each stage, we expect that CPU
times would exhibit linear dependency on T .

6.4. Analysis of solution times. We now report average CPU times over our
test set to compare the different algorithms. Following the discussion of section 6.3,
we only report results for N = 10: we verified that different values of N do not
change the relative ranking of the algorithms, and by linearity of the running times
with respect to N , the ranking should hold for all values of N in the tested range. Our
results suggest that it should hold even beyond the tested range. Results are reported
in Figure 1. For each group of instances we do not report values for algorithms that
fail to return a solution on 10 or more out of 20 instances within the allotted time.

It should be noted that the relative standard deviations of the CPU times are typ-
ically small: the 95% quantile of the relative standard deviations of the CPU times is
0.19, while the 75% quantile is 0.07. Therefore, comparing the relative performance of
the algorithms based on average CPU times is meaningful. In the following, whenever
we claim that “an algorithm A is faster than an algorithm B on a group of instances
X ,” it means that in addition to a comparison of the average CPU times, the state-
ment is confirmed by a Wilcoxon signed rank test at the 95% significance level where
each observation is represented by the CPU time on a single instance of group X .

We summarize the results. The FPTAS with ApxSet is typically slower than
Exact except for some very large instances, whereas ApxSetSlope and
ApxSetConvex are always faster than Exact. Surprisingly, they are faster than
Exact by more than a factor of 2 even on the smallest instances in our test set:
T = 5,M = 100, N = 10, d = 1 (on Inventory, 0.57 seconds for Exact versus 0.23
seconds for ApxSetConvex with ε = 0.1%; on Cash, 8.81 seconds for Exact versus
0.86 for ApxSetConvex with ε = 0.1%). The graphs show that ApxSetSlope and
ApxSetConvex are consistently faster than an exact solution approach across all
instance sizes: the CPU time savings are small but significant for problems solved in
≈ 1 second and become increasingly larger as the difficulty of the instances grows. It
is clear that ApxSetSlope and ApxSetConvex scale much better than Exact and
ApxSet with the problem size. We record CPU time savings of at least three orders
of magnitude, and the graphs show that the savings would become larger on larger
problems. ApxSetSlope and ApxSetConvex solve many problems that Exact

and ApxSet are not able to solve before the time limit; see also Appendix B. The
pictures show that ApxSetConvex is always faster than ApxSetSlope for fixed ε,
and it is often faster even while using a smaller ε.

In Figure 2 we report average CPU times for increasing value of N for instances
Inventory(20, 1000, N, d) with N ∈ {1, 2, 5, 10, 20, 50}, d ∈ {1, 2}. The graph sug-
gests that the ranking of the three versions of the FPTAS should not change for
larger values of N , i.e., we expect ApxSetConvex to be faster than ApxSetSlope,
which is in turn faster than ApxSet. The trend shown in Figure 2 indicates that
we can expect ApxSetConvex with ε = 1% to become faster than ApxSetSlope

with ε = 10% for large N . The same conclusion can be drawn from other groups of
instances.

We note in Figures 1(d) and 1(f) that the average CPU time taken by ApxSet-

Slope and ApxSetConvex is essentially the same on Cash problems with d = 2, 3
regardless of the value of ε. This can be explained because when d = 2, 3, the cost
at each stage is dominated by the opportunity and borrowing costs, while trans-
action costs (that do not scale with d) can almost be neglected. For this reason,
the difference in the cost-to-go between adjacent states (i.e., resource levels) is very
small: the action allows increase or reduction of the resource level paying a very small

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

334 NIR HALMAN, GIACOMO NANNICINI, AND JAMES ORLIN

 0.01

 0.1

 1

 10

 100

 1000

5,100

5,1000

5,10000

10,100

10,1000

10,10000

20,100

20,1000

20,10000

50,100

50,1000

50,10000

A
ve

ra
ge

 C
P

U
 ti

m
e

[s
ec

]

Instance parameters

Exact
ApxSet 0.1%

ApxSet 1%
ApxSet 10%

ApxSetSlope 0.1%
ApxSetSlope 1%

ApxSetSlope 10%
ApxSetConvex 0.1%

ApxSetConvex 1%
ApxSetConvex 10%

(a) Inventory(T,M, 10, 1)

 0.1

 1

 10

 100

 1000

5,100

5,1000

5,10000

10,100

10,1000

10,10000

20,100

20,1000

20,10000

50,100

50,1000

50,10000

A
ve

ra
ge

 C
P

U
 ti

m
e

[s
ec

]

Instance parameters

Exact
ApxSet 0.1%

ApxSet 1%
ApxSet 10%

ApxSetSlope 0.1%
ApxSetSlope 1%

ApxSetSlope 10%
ApxSetConvex 0.1%

ApxSetConvex 1%
ApxSetConvex 10%

(b) Cash(T,M, 10, 1)

 0.1

 1

 10

 100

 1000

5,100

5,1000

5,10000

10,100

10,1000

10,10000

20,100

20,1000

20,10000

50,100

50,1000

50,10000

A
ve

ra
ge

 C
P

U
 ti

m
e

[s
ec

]

Instance parameters

Exact
ApxSet 0.1%

ApxSet 1%
ApxSet 10%

ApxSetSlope 0.1%
ApxSetSlope 1%

ApxSetSlope 10%
ApxSetConvex 0.1%

ApxSetConvex 1%
ApxSetConvex 10%

(c) Inventory(T,M, 10, 2)

 0.1

 1

 10

 100

 1000

5,100

5,1000

5,10000

10,100

10,1000

10,10000

20,100

20,1000

20,10000

50,100

50,1000

50,10000

A
ve

ra
ge

 C
P

U
 ti

m
e

[s
ec

]

Instance parameters

Exact
ApxSet 0.1%

ApxSet 1%
ApxSet 10%

ApxSetSlope 0.1%
ApxSetSlope 1%

ApxSetSlope 10%
ApxSetConvex 0.1%

ApxSetConvex 1%
ApxSetConvex 10%

(d) Cash(T,M, 10, 2)

 1

 10

 100

 1000

5,100

5,1000

5,10000

10,100

10,1000

10,10000

20,100

20,1000

20,10000

50,100

50,1000

50,10000

A
ve

ra
ge

 C
P

U
 ti

m
e

[s
ec

]

Instance parameters

Exact
ApxSet 0.1%

ApxSet 1%
ApxSet 10%

ApxSetSlope 0.1%
ApxSetSlope 1%

ApxSetSlope 10%
ApxSetConvex 0.1%

ApxSetConvex 1%
ApxSetConvex 10%

(e) Inventory(T,M, 10, 3)

 0.1

 1

 10

 100

 1000

5,100

5,1000

5,10000

10,100

10,1000

10,10000

20,100

20,1000

20,10000

50,100

50,1000

50,10000

A
ve

ra
ge

 C
P

U
 ti

m
e

[s
ec

]

Instance parameters

Exact
ApxSet 0.1%

ApxSet 1%
ApxSet 10%

ApxSetSlope 0.1%
ApxSetSlope 1%

ApxSetSlope 10%
ApxSetConvex 0.1%

ApxSetConvex 1%
ApxSetConvex 10%

(f) Cash(T,M, 10, 3)

Fig. 1. Average CPU time on Inventory and Cash. On the x-axis we identify the group of
instances with the label T,M . The y-axis is on a logarithmic scale.

transaction cost. It follows that the shape of the optimal value function is a convex
function that has a minimum with a large value and grows slowly when moving away
from the minimum. This is the ideal situation for our approximation algorithm: the
value functions at each stage can be approximated with very few linear pieces regard-
less of ε, as the relative errors are very small. We verified that if transaction costs scale
with d, then Cash instances for d = 2, 3 become more difficult for our algorithms. We
kept transaction costs independent of d to showcase this unusual characteristic of the

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTATIONALLY EFFICIENT FPTAS FOR STOCHASTIC DPs 335

 0.1

 1

 10

 100

 1000

1,1 1,2 1,5 1,10 1,20 1,50 2,1 2,2 2,5 2,10 2,20 2,50

A
ve

ra
ge

 C
P

U
 ti

m
e

[s
ec

]

Instance parameters

Exact
ApxSet 0.1%

ApxSet 1%
ApxSet 10%

ApxSetSlope 0.1%
ApxSetSlope 1%

ApxSetSlope 10%
ApxSetConvex 0.1%

ApxSetConvex 1%
ApxSetConvex 10%

Fig. 2. Average CPU time on Iventory(20, 1000, N, d) instances. On the x-axis we identify
the group of instances with the label d,N . The y-axis is on a logarithmic scale.

algorithms we propose: while typically the difficulty of an instance increases with the
size of the numbers involved (this happens for Exact and ApxSet), it can happen
that larger numbers facilitate the task of finding a good piecewise linear approximation
of the value function, therefore reducing the running time of the FPTAS.

To summarize, our results show that ApxSetConvex is consistently faster than
ApxSetSlope, and they are both significantly faster than ApxSet and Exact.
Exact is often faster than ApxSet except on large instances with large approxi-
mation factors. The proposed algorithms scale much better than an exact algorithm
and the CPU time savings from using the faster version of the FPTAS can be very
significant: more than three orders of magnitude. The success of ApxSetConvex

compared to ApxSetSlope and ApxSet is due to its ability to find good piece-
wise linear approximations of the value function using considerably fewer pieces; see
Appendix B.2.

6.5. Solution quality. Computational results in section 6.4 show thatApxSet-

Convex is the fastest algorithm for equal ε. Because ε is only an upper bound to
the approximation factor, it is still possible that ApxSetConvex is not the fastest
algorithm for equal solution quality. In this section we study whether this is the case
by analyzing the trade-offs between solution quality and speed offered by the three
versions of the FPTAS.

To do so, we fix N = 10 and analyze a number of instances for which we know
the optimal solution. Then, we run the three versions of the FPTAS with 10 values of
ε, equally spaced on a logarithmic scale between 10−4 and 10−1. Finally, we compute
the exact value of the approximate policies, i.e., sequence of actions, returned by the
algorithm (as opposed to the approximate value of the policy returned by the FPTAS),
and compare performance to the optimal policy. We plot the relative distance to the
optimal policy and the corresponding running time on a graph, obtaining one curve
for each version of the FPTAS representing the trade-off between solution quality
and speed. This experiment is carried out for all instances obtained combining T ∈
{5, 10, 20},M ∈ {100, 1000, 10000}, d ∈ {1, 2, 3} for which Exact finds the optimum
before the 1000 second time limit.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

336 NIR HALMAN, GIACOMO NANNICINI, AND JAMES ORLIN

 1

 10

 100

1e-9 1e-8 1e-7 1e-6 1e-5 1e-4 1e-3

C
P

U
 ti

m
e

[s
ec

]

Solution quality

ApxSet
ApxSetSlope

ApxSetConvex

(a) Cash(10, 100, 10, 1)

 1

 10

 100

 1000

1e-9 1e-8 1e-7 1e-6 1e-5 1e-4 1e-3

C
P

U
 ti

m
e

[s
ec

]

Solution quality

ApxSet
ApxSetSlope

ApxSetConvex

(b) Inventory(20, 1000, 10, 1)

Fig. 3. Average solution quality (computed as fapx/f∗ − 1, where fapx is the cost of the
approximate policy, and f∗ the cost of the optimal policy) versus average CPU time. On each curve,
the leftmost point represents the quality of the solution returned for ε = 10−4, and the rightmost
point for ε = 10−1. If such quality is ≤ 10−9, e.g., if it is 0, it is reported as 10−9 on the graph.

The graphs for Cash with T = 10,M = 100, d = 1 and for Inventory with
T = 20,M = 1000, d = 1 are reported in Figure 3. They show very clearly that
ApxSetConvex is faster than ApxSetSlope for equal solution quality, and both
algorithms are much faster than ApxSet. The graphs for the vast majority of the
instances yield similar conclusions and do not contribute further insight.

Overall, we conclude that both ApxSetSlope and ApxSetConvex yield faster
CPU times for equal solution quality than ApxSet, and in the vast majority of cases
ApxSetConvex gives a better trade-off than ApxSetSlope, except on some small
instances with d = 2 where they are comparable. However, ApxSetConvex gives a
better approximation factor guarantee for equal CPU time and seems therefore the
best algorithm.

Finally, we analyze the a posteriori approximation guarantees (APAGs). Remem-
ber that when applying the FPTAS we can compute an APAG, which is an upper
bound on the relative error of the returned policy. In our experiments, ApxSet

and ApxSetSlope yield an APAG that can be considerably smaller than the input
value of ε. For all algorithms, the policies computed by the FPTAS are in relative
terms at least one order of magnitude better than the returned APAG. In particular
ApxSetConvex seems to find much better policies than the computed APAG. While
ApxSetConvex has larger APAG than the other algorithms, our analysis shows that
it typically finds policies of comparable quality to the other algorithms, in less CPU
time. More details can be found in Appendix B.3.

6.6. Markov decision processes. The problems analyzed so far had indepen-
dent random variables at each stage. We now study an MDP, where the random
variable at each stage depends on the state of the DP at the previous stage. We
assume that the one-step transition matrix is given explicitly; see section 5.

We consider a stochastic single-item inventory control problem with a two-
dimensional state variable It = (Rt, Lt), where Rt indicates the resource level, and Lt

indicates the demand level. Lt can be thought of as a discrete demand level such as
“very low,” “low,” and so on. The support and the probabilities of the discrete ran-
dom variable Dt are fully determined given Lt−1. In this case, the FPTAS proceeds
by computing an approximation of the value function for each value of Lt. Let Lt

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTATIONALLY EFFICIENT FPTAS FOR STOCHASTIC DPs 337

be the set of all possible values for Lt. The worst-case running time of the FPTAS
increases by a factor maxt |Lt|, which is still polynomial in the input size [19]. We
show that the running time in practice also increases linearly with Lt.

We remark that the implementation of the FPTAS with a two-dimensional state
variable is inherently slower than the unidimensional version, by a factor ≈ 2.13 in
our experiments. This factor was computed testing the implementation on unidimen-
sional problems cast as two-dimensional. We should note that a more finely tuned
implementation in C could probably reduce this slowdown factor.

Let the number of distinct values that Lt can take at each stage t = 1, . . . , T be
a constant L. We generate instances of the form Inventory(T,M,N,L, d) where
T,M,N, d have the same meaning as before, and L ≤ N indicates the number of
possible demand levels. At each stage t = 1, . . . , T , the support of the random variable
Dt does not change, but the associated probabilities depend on Lt−1 and are generated
using the same random scheme as in section 6.1. As a result, the difficulty of the
instances across different levels of Lt should on average be the same.

We test instances with T ∈ {5, 10, 20},M ∈ {100, 1000, 10000}, N ∈ {5, 10, 20, 50},
d ∈ {1}, L ∈ {1, 5, 10, 20, 50} whenever L ≤ N . At state (Rt, Lt), if the realization of
Dt is the value dt,i with (k − 1)N/L ≤ i ≤ kN/L, we transition to a state (Rt+1, k)
at the subsequent stage. We then compute, for each value of T,M,N , the correla-
tion coefficient between L and the average CPU time for the corresponding group of
instances. The minimum correlation coefficient recorded for ApxSetConvex with
ε ∈ {0.001, 0.01, 0.1} is 0.9992. Similarly to section 6.3, we also fit a linear regression
model that minimizes the sum of the squared relative errors, and we find that the
maximum such relative error is only 4.5%. We conclude that the running time grows
linearly with the value of L: if we know the average CPU time s required by our
FPTAS to solve some instances with L = 1 (i.e., there is only one possible demand
level), then Ls is a very good estimation of the running time for larger L.

6.7. Comparison with a hybrid value-policy iteration scheme. It is nat-
ural to ask how the performance of the proposed FPTAS compares to existing al-
gorithms. The literature on ADP is abundant and proposes many approximation
schemes, as surveyed in section 1.1. In this paper we analyze finite-horizon undis-
counted problems, and we are not aware of any approach that offers approximation
guarantees with respect to the optimal solution with a bound on the running time as
our FPTAS. However, convergent approximation schemes have been proposed. One
such scheme is the SPAR algorithm; see [32, 34]. Note that while the Mutual-SPAR
algorithm used in [32] applies to the problems discussed in this paper, the context
for optimal performance of the algorithm is different: in particular, Mutual-SPAR
assumes a bounded and relatively small-sized state space in the resource level (in [32],
the resource level is bounded by 600) but effectively approximates along other dimen-
sions of the state variable (associated with the state of the stochastic processes). In
the instances tested in this paper, the resource level is very large: up to ≈ 5× 105 for
the largest problems. Ours is clearly a much different setting than [32]. Moreover,
despite our best efforts we could not replicate the dataset used in [32] by following
the procedure described therein and in [31]. We considered another method [35] to
obviate the difficulty of SPAR in dealing with a large state space in the resource
level. The method is called the concave, adaptive value estimation (CAVE) algorithm
[15, 16]. The approach developed in this section is related to CAVE and to [33], as
we discuss below.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

338 NIR HALMAN, GIACOMO NANNICINI, AND JAMES ORLIN

Algorithm 6. VPIter(S, τ): value-policy iteration.

1: Initialize π to a base stock policy with base stock E[Dt] at stage t, t = 1, . . . , T .
2: k ← 1.
3: while time limit τ not hit do
4: while policy π improves do
5: for t = T, . . . , 1 do
6: Sample the value function at stage t at kS(t) equally spaced points using

the available approximation Vt+1 and the current policy π
7: Update the value function approximation Vt

8: Update base stock levels in π using approximations Vt for t = 1, . . . , T
9: k ← 2k

We compare the FPTAS to a hybrid value-policy iteration [34, Ch. 3.6] algorithm
developed ad hoc for the Inventory instances. This algorithm is similar in spirit
to the policy improvement scheme discussed in [4, Chap. 6.4]. It works as follows.
We start with a base policy π and construct an approximation of the (suboptimal)
value function at each stage using this policy, working our way backward from the
terminal stage. Then we iteratively improve the policy π, and if the policy can be
improved no further, we improve the approximation of the value functions. The
value function approximation is a convex piecewise linear function, obtained as the
piecewise linear extension of a given number n of equally spaced sample points within
the state space. To improve the approximation, we increase n. When n ≥ |St|, we
are computing the true value function. The algorithm, which we call VPIter, is
described in Algorithm 6.

We now discuss how VPIter relates to CAVE. CAVE keeps a piecewise linear
concave approximation of the value function (for a maximization problem) and up-
dates its slope over an interval of size δ, where δ starts large and decreases over time.
[34, Chap. 13.3] suggests halving δ whenever the objective function stops improving.
The slope update is performed by gathering samples of the value function and using
a smoothing approach. Note that CAVE does not enjoy a general convergence proof
and according to the authors requires fine-tuning to be successful [34, Chap. 13.3],
but a closely related algorithm is shown to be convergent on problems with scalar
state and linear costs that satisfy some additional technical conditions [33], which are
similar to the problems discussed in the present paper. VPIter keeps a piecewise lin-
ear convex value function approximation by gathering samples of the value function,
and we halve the distance between breakpoints whenever the objective function stops
improving. There are three main differences: first, CAVE follows sample realizations
of the random variables, whereas VPIter evaluates the value function at equally
spaced states; second, CAVE estimates expected values, whereas VPIter computes
them exactly because of the assumption of small uncertainty set; third, VPIter en-
forces a specific policy structure known to be optimal. For these reasons, VPIter

can be seen as an adaptation of CAVE to our specific problem structure.
We look for policies within the set of all base stock (i.e., “order up to”) policies

that are optimal for inventory control problems with V-shaped piecewise linear costs;
see, e.g., [17]. For Inventory instances with d = 1 it can be shown that the proposed
scheme converges to the optimal policy. For instances with d > 1, the scheme may fail
to converge as the optimal policy may not be a base stock policy. Iterations of this
hybrid value-policy iteration scheme are initially very fast, because finding improved
base-stock policies or value function approximations is computationally inexpensive

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTATIONALLY EFFICIENT FPTAS FOR STOCHASTIC DPs 339

Table 2

Solution quality of ApxSetConvex and VPIter for equal CPU time.

ApxSetConvex VPIter # instances
ε q̄ σq q̄ σq Better Total

0.001 0.000% 0.001 0.144% 0.235 3 936
0.01 0.005% 0.010 0.407% 0.547 13 926
0.1 0.064% 0.122 1.555% 1.963 34 852

when the number of sampling points is low. We are interested in analyzing whether
this simple but provably convergent scheme finds better policies than our FPTAS,
given equal CPU time. Comparing the FPTAS to VPIter allows us to establish the
relative performance of the FPTAS not only to an exact solution method, but also to
another approximation scheme based on popular techniques that exploits knowledge
of the structure of the optimal policy. Note that the FPTAS can in general find
policies with different structure, as it uses a lookup table representation.

To compare VPIter with ApxSetConvex, on each instance we set the time
limit for VPIter to 1% more than the time taken by ApxSetConvex on the same
instance. Note that VPIter requires a function S to determine the initial number
of samples. We test three functions: the constant functions S(t) = 3, S(t) = 100 for
all t, and S(t) = log |St|, obtaining three versions of the algorithm. In our analysis
below, ApxSetConvex is always compared to the best version of VPIter for each
instance, i.e., the version that returns the policy with the lowest cost within the time
limit, therefore giving an advantage to VPIter.

In Table 2 we report the average solution quality q̄, computed as in Figure 3,
of ApxSetConvex for three values of ε, and of VPIter with time limit set as
described above. We also report the number of instances where VPIter returns
a better policy than ApxSetConvex, and the total number of instances used for
these statistics (instances where Exact does not terminate before 1000 seconds are
excluded). Table 2 only takes into account Inventory instances with d = 1.

The experiments show that ApxSetConvex consistently returns a solution of
better quality than VPIter. In particular there are extremely few instances in
which VPIter finds a better policy than ApxSetConvex, and on average ApxSet

Convex is better by 0.65%. For the sake of completeness, we report that for Inven-
tory instances with d = 2 (resp., d = 3) VPIter returns solutions that are ≈ 7.4%
(resp., 19.2%) worse than ApxSetConvex on average. We remark that as discussed
above VPIter may not converge to an optimal policy on these instances.

To summarize, the FPTAS we propose compares very favorably to a provably
convergent value-policy iteration algorithm. Not only does it find solutions of better
quality in the same CPU time, but it does so while allowing the user to specify an
approximation factor guarantee.

7. Final remarks. This paper presents an extension of the method ofK-approxi-
mation sets and functions aimed at being a practically viable alternative or comple-
ment to existing approximate dynamic programming approaches. Our contribution
comprises a set of new algorithms and their analysis to improve on the theoretical
guarantees provided by the framework, and the description of a computer implemen-
tation that achieves its goal of being competitive in practice. Our implementation is
open-source and requires the user to input a single algorithmic parameter to control
the trade-off between running time and approximation guarantee.

The proposed methodology has limitations: the necessity of explicitly listing the
support of the random variables as input, and the assumption that state and action

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

340 NIR HALMAN, GIACOMO NANNICINI, AND JAMES ORLIN

spaces are unidimensional. Our future research plans include extensions of the frame-
work to partially relax these restrictions. Despite the restrictions, the proposed FP-
TAS has the merit of handling structured problems with large state and action spaces
efficiently, and we believe that it is a first step in the direction of showing that with
some ingenuity FPTASes can evolve from a powerful theoretical tool to additionally
being a practically useful instrument.

Appendix A. Generation of random instances. In this appendix we give
a detailed description of how the random instances discussed in the computational
experiments are generated.

A.1. Single-item inventory control. An instance of the stochastic single-item
inventory control problem is defined by the number of time periods T , the maximum
demand in each period M , and the number of different possible demands in each
period N . At each time period t, the set Dt of the N demand values is generated
as follows: first we draw the maximum demand wt at stage t uniformly at random
in [�M/2�, . . . ,M], then we draw the remaining N − 1 values in [1, . . . , wt] (without
replacement). This method ensures that none of the instances we generate is too easy
and that the difficulty scales with M . The probabilities with which demands occur
are randomly assigned by generating N integers qi, i = 1, . . . , N in [1, . . . , 10], and

computing the probability of the kth value of the demands as qk/(
∑N

i=1 qi).
We must also define the cost functions, namely, procurement, storage and back-

logging costs. For each of these functions, we select a coefficient c uniformly at random
in [1, . . . , 20] for unit procurement cost, in [1, . . . , 10] for storage costs, in [10, . . . , 50]
for backlogging costs. Then we consider three different types of cost functions: lin-
ear (f(x) = cx), quadratic (f(x) = cx2) and cubic (f(x) = cx3/1000). We label
the inventory control instances Inventory(T,M,N, d), where d is the degree of the
polynomial describing the cost functions, i.e., 1, 2, or 3. We note that we also exper-
imented with piecewise linear cost functions. However, the practical performance of
the algorithms on piecewise linear functions turned out to be very similar to the cost
functions with d = 2, hence we omit results for space reasons.

A.2. Cash management. An instance of the cash flow management problem
is defined by the number of time periods T , the maximum deposit/withdrawal in
each period M , and the number of different possible deposit/withdrawal amounts in
each time period N . At each time period t, the set Dt of the N deposit/withdrawal
amount values is generated as follows: first we draw the difference wt between the
maximum and minimum values in [�M/2�, . . . ,M], then we draw the minimum value
mt in [−�M/2�, . . . ,−�M/2�+M−wt], finally we draw a set St of N−2 values in from
[mt, . . . ,mt+wt] (without replacement) and define Dt := {mt,mt+wt}∪St. Similar
to the inventory control instances, this method ensures that none of the instances we
generate is too easy and that the difficulty scales with M . Probabilities are randomly
assigned to each deposit/withdrawal value using the method described for inventory
control instances.

We must also define two cost functions: the opportunity cost for not investing
money if the cash balance is positive (we can assume that this corresponds to the
average return rate of invested money) and borrowing costs from the bank in case the
cash balance is negative. We use a similar approach to the inventory control problem.
We select a coefficient c uniformly at random in {0.25, 0.5, . . . , 5} for the opportunity
cost and in {2.5, 2.75, . . . , 7.5} for borrowing costs. We remark that in our tests the
difficulty of the instances did not seem to be affected by imposing that borrowing

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTATIONALLY EFFICIENT FPTAS FOR STOCHASTIC DPs 341

costs are larger than opportunity costs. We use the same three types of cost functions
as for inventory control problems. We also allow for nonzero per-dollar buying and
selling costs: each transaction involving buying or selling stocks incurs a cost of 0.01xt,
where xt is the transaction amount. We label the cash flow management instances
Cash(T,M,N, d) following the usual convention.

Appendix B. Additional computational experiments.

B.1. Number of solved instances. In Tables 3 and 4 we report the number of
solved problem instances for each algorithm and approximation factor. An instance
is considered “solved” by an algorithm if the algorithm is able to compute (an ap-
proximation of) the initial-stage value function before the time limit. Results are
aggregated over the six possible values of N .

B.2. Example of value function. As mentioned in the main paper, the success
of ApxSetConvex compared to ApxSetSlope and ApxSet is due to its ability to
find good piecewise linear approximations of the value function using considerably
fewer pieces. As an example, in Figure 4 we show part of the optimal value function
approximation obtained by the three approximation routines on an instance of class
Inventory(10, 1000, 10, 1). While ApxSet obtains a slightly better approximation
overall (lower objective function values), the three approximations perform equally in
the region close to the optimum, and ApxSetConvex uses fewer breakpoints.

Table 3

Total number of solved instances for Inventory problems.

Exact ApxSet ApxSetSlope ApxSetConvex

d T M .001 .01 .1 .001 .01 0.1 .001 .01 .1

1

5
100 120 120 120 120 120 120 120 120 120 120

1000 120 120 120 120 120 120 120 120 120 120
10000 120 120 120 120 120 120 120 120 120 120

10
100 120 120 120 120 120 120 120 120 120 120

1000 120 120 120 120 120 120 120 120 120 120
10000 99 80 100 120 120 120 120 120 120 120

20
100 120 120 120 120 120 120 120 120 120 120

1000 120 100 100 120 120 120 120 120 120 120
10000 41 37 60 100 120 120 120 120 120 120

50
100 120 120 120 120 120 120 120 120 120 120

1000 60 40 40 62 100 120 120 120 120 120
10000 0 0 0 40 100 120 120 120 120 120

2

5
100 120 120 120 120 120 120 120 120 120 120

1000 120 120 120 120 120 120 120 120 120 120
10000 120 120 120 120 120 120 120 120 120 120

10
100 120 120 120 120 120 120 120 120 120 120

1000 120 120 120 120 120 120 120 120 120 120
10000 92 80 81 120 120 120 120 120 120 120

20
100 120 120 120 120 120 120 120 120 120 120

1000 119 100 100 100 120 120 120 120 120 120
10000 40 21 40 80 100 120 120 120 120 120

50
100 120 120 120 120 120 120 120 120 120 120

1000 60 40 40 60 80 100 120 100 120 120
10000 0 0 0 20 60 80 120 80 100 120

3

5
100 120 120 120 120 120 120 120 120 120 120

1000 120 120 120 120 120 120 120 120 120 120
10000 50 50 60 100 100 120 120 120 120 120

10
100 120 120 120 120 120 120 120 120 120 120

1000 80 80 80 80 81 100 120 100 120 120
10000 7 6 20 60 60 100 120 100 120 120

20
100 100 100 100 100 100 100 120 100 120 120

1000 40 40 40 40 40 67 100 80 100 120
10000 0 0 0 20 26 60 80 60 80 100

50
100 54 43 43 44 42 60 66 60 80 100

1000 0 0 0 0 0 20 40 20 40 80
10000 0 0 0 0 0 9 40 0 40 60

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

342 NIR HALMAN, GIACOMO NANNICINI, AND JAMES ORLIN

B.3. A posteriori error analysis. To give a better sense of how the approxi-
mation factor guarantee relates to the quality of the approximate solutions returned
by the algorithms, in Table 5 we compare the two quantities over our test set, for all
problems for which we know the optimal solution. In particular we show the aver-
age approximation factor guarantee ε̄g, which is an a posteriori upper bound on the
approximation error, computed by measuring the maximum approximation errors at
each stage of the FPTAS; the average ratio r̄ between the relative distance of the ap-
proximate policy from the optimum policy and ε̄g; and the sample standard deviation
σr of these ratios. Note that by definition, r̄ is a measure of the average improvement
of the approximate policy over the a posteriori approximation factor guarantee, e.g.,
r̄ = 0.1 means that on average the relative distance of the approximate policy from
the optimum policy is a factor 10 better than the computed approximation factor
guarantee.

Table 5 shows that the error bounds used by ApxSet and ApxSetSlope are not
as tight as the ones used by ApxSetConvex; therefore the first two algorithms yield
an a posteriori approximation factor that can be considerably smaller than the input
value of ε. We also note that r̄ is typically smaller than 0.1, so the policies computed
by the FPTAS are in relative terms at least one order of magnitude better than what
could be expected from the approximation guarantee. In particular, ApxSetConvex

seems to find much better policies than the computed approximation factor. While

Table 4

Total number of solved instances for Cash problems.

Exact ApxSet ApxSetSlope ApxSetConvex

d T M .001 .01 .1 .001 .01 0.1 .001 .01 .1

1

5
100 120 120 120 120 120 120 120 120 120 120

1000 120 120 120 120 120 120 120 120 120 120
10000 60 60 99 120 120 120 120 120 120 120

10
100 120 120 120 120 120 120 120 120 120 120

1000 80 80 81 120 120 120 120 120 120 120
10000 20 20 56 101 120 120 120 120 120 120

20
100 104 102 102 116 119 120 120 120 120 120

1000 40 40 40 80 120 120 120 120 120 120
10000 20 20 20 60 120 120 120 120 120 120

50
100 60 60 60 60 120 120 120 120 120 120

1000 20 20 20 38 120 120 120 120 120 120
10000 20 20 20 20 103 120 120 120 120 120

2

5 100 120 120 120 120 120 120 120 120 120 120
1000 120 120 120 120 120 120 120 120 120 120

10000 60 120 120 120 120 120 120 120 120 120

10
100 120 120 120 120 120 120 120 120 120 120

1000 80 119 120 120 120 120 120 120 120 120
10000 20 120 120 120 120 120 120 120 120 120

20
100 104 101 120 120 120 120 120 120 120 120

1000 40 84 120 120 120 120 120 120 120 120
10000 20 116 120 120 120 120 120 120 120 120

50
100 60 60 60 100 120 120 120 120 120 120

1000 20 40 82 120 120 120 120 120 120 120
10000 20 72 119 120 120 120 120 120 120 120

3

5 100 120 120 120 120 120 120 120 120 120 120
1000 120 120 120 120 120 120 120 120 120 120

10000 55 120 120 120 120 120 120 120 120 120

10
100 120 120 120 120 120 120 120 120 120 120

1000 80 100 120 120 120 120 120 120 120 120
10000 20 120 120 120 120 120 120 120 120 120

20
100 100 100 100 100 120 120 120 120 120 120

1000 40 60 101 120 120 120 120 120 120 120
10000 20 119 120 120 120 120 120 120 120 120

50
100 60 46 45 60 120 120 120 120 120 120

1000 20 21 59 100 120 120 120 120 120 120
10000 20 92 120 120 120 120 120 120 120 120

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTATIONALLY EFFICIENT FPTAS FOR STOCHASTIC DPs 343

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 70000

 75000

 0 500 1000 1500 2000 2500 3000

V
al

ue
 fu

nc
tio

n

Resource level

ApxSet
ApxSetSlope

ApxSetConvex

Fig. 4. Value function approximations for an instance of class Inventory(10, 1000, 10, 1), using
ε = 10% and ApxSet, ApxSetSlope, or ApxSetConvex. The points represent the elements of the
corresponding K-approximation sets.

Table 5

Comparison of approximation factor guarantee and quality of the approximate policy returned
by the algorithms.

ApxSet ApxSetSlope ApxSetConvex

Instance ε ε̄g r̄ σr ε̄g r̄ σr ε̄g r̄ σr

Inventory

0.0010 0.00000 0.07934 0.21654 0.00004 0.06004 0.11212 0.00011 0.05762 0.10421
0.0100 0.00001 0.12960 0.24629 0.00050 0.08170 0.12367 0.00142 0.06824 0.10710
0.1000 0.00031 0.13040 0.22881 0.00507 0.08156 0.11696 0.01473 0.06286 0.09052

Cashmanag

0.0010 0.00000 0.09524 0.29710 0.00001 0.04278 0.16889 0.00007 0.00699 0.02002
0.0100 0.00001 0.07170 0.17359 0.00014 0.02732 0.04574 0.00082 0.00812 0.02060
0.1000 0.00029 0.03421 0.06189 0.00127 0.01614 0.02210 0.00702 0.00696 0.01810

ApxSetConvex has larger ε̄g than the other algorithms, our analysis above and the
smaller value of r̄ show that it typically finds policies of comparable quality to the
other algorithms, in less CPU time.

Appendix C. Proofs.
Proof of Theorem 3.2. ApxSetSlope is presented for a convex nondecreasing

function. It is enough to prove the theorem in this case, and the result for a general
convex function follows by applying ApxSetSlope to the left and to the right of the
minimum.

Let y be the point computed at line 4 of ApxSetSlope, and assume y < Dmax.
Clearly ϕ(y + 1) > Kϕ(x); therefore line 4 will be executed at most O(logK

ϕmax

ϕmin)
times. By convexity, we have

σϕ(y + 1) >
ϕ(y + 1)− ϕ(x)

y + 1− x
>

K(ϕ(x) + σϕ(x)(y + 1− x))− ϕ(x)

y + 1− x
> Kσϕ(x).

It follows that line 4 will be executed at most O(logK
σmax
ϕ

σmin
ϕ

) times. Furthermore,

because ϕ(y)−K(ϕ(x)+σϕ(x)(y−x)) is a monotonically nondecreasing function, its
zeroes can be found in O(log |D|) time by binary search.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

344 NIR HALMAN, GIACOMO NANNICINI, AND JAMES ORLIN

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)
y = ϕ(x)

x

(b1, ϕ(b1))

(b2, ϕ(b2))

LB1 LB2 LB3

(b3, ϕ(b3))

Fig. 5. Example of Proposition 4.1. We assume that the value of ϕ at x1, x2, x3, x4 is known.
The dashed line represents the function ϕ defined as the sum of the LBi functions. Each LBi

function is the maximum of the dotted lines below ϕ over the intervals [x1, x2], [x2, x3], [x3, x4].

It remains to show that W is a K-approximation set. Let ϕ̂ be the convex
extension of ϕ induced by W . Take any point y in D \W , and let x := max{w ∈W :
w ≤ y} and x′ := min{w ∈ W : w ≥ y}. Clearly ϕ(y) ≥ ϕ(x) + σϕ(x)(y − x). Notice

that ϕ̂(y) = ϕ(x) + ϕ(x′)−ϕ(x)
x′−x (y − x) and ϕ(x′)−ϕ(x)

x′−x ≤ K(ϕ(x)+σϕ(x)(x′−x))−ϕ(x)
x′−x =

Kσϕ(x) +
(K−1)ϕ(x)

x′−x by construction, so that

ϕ̂(y)

ϕ(y)
≤ ϕ(x) + ϕ(x′)−ϕ(x)

x′−x (y − x)

ϕ(x) + σϕ(x)(y − x)
≤ ϕ(x) +Kσϕ(x)(y − x) + (K−1)ϕ(x)(y−x)

x′−x

ϕ(x) + σϕ(x)(y − x)

≤ ϕ(x) +Kσϕ(x)(y − x) + (K − 1)ϕ(x)

ϕ(x) + σϕ(x)(y − x)
= K.

Proof of Proposition. 4.1. An example to clarify the definitions is shown in Fig-
ure 5. Clearly ϕ(x) is piecewise linear. Note that by convexity, LBi underestimates
ϕ over [xi, xi+1], hence ϕ(x) ≤ ϕ(x) ∀x.

Observe that
Line((xj ,yj),(xk,yk),·)

ϕ(·) can be defined piecewise, where the pieces are

separated by the points of nondifferentiability of ϕ(·). Within each piece,
Line((xj ,yj),(xk,yk),·)

ϕ(·) is defined as the ratio of two linear functions; therefore there is

no stationary point in the interior of each piece. It follows that the maximum of
Line((xj ,yj),(xk,yk),·)

ϕ(·) is one of the points of nondifferentiability of ϕ(·), except (xj , yj)

and (xk, yk), where two local minima are located by construction. All points of non-
differentiability are contained in xe ∈ [xj , xk] ∩ (E ∪B). Hence,

γE(xj , xk):= max
xe∈xe∈[xj ,xk]∩(E∪B)

{
Line((xj , yj), (xk, yk), xe)

ϕ(xe)

}

≥
∣∣∣∣Line((xj , yj), (xk, yk), w)

ϕ(w)

∣∣∣∣ ∀w ∈ [xj , xk].

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTATIONALLY EFFICIENT FPTAS FOR STOCHASTIC DPs 345

Finally, note that we can trivially bound the numerator and denominator of
γE(xj , xk) to obtain

γE(xj , xk) = max
xe∈Exe∈[xj,xk]∩(E∪B)

{
Line((xj , yj), (xk, yk), xe)

ϕ(xe)

}
≤ ϕ(xk)

ϕ(xj)
.

The proof of Theorem 4.2 requires a few lemmas first. In Lemma C.1 we show
that we can safely ignore all points to the right of max{next(r, E), arg γE(r, x)} on
line 9 of the algorithm. Then, we bound the size of the approximation sets computed
by ApxSetConvex in Lemma C.2. We proceed to bound the time required for the
crucial operations in Lemmas C.3 and C.4. After this step, we can provide a full proof
of Theorem 4.2.

Lemma C.1. Let ϕ : D → Q+ be a convex function defined over a set of integers.
Let E, r and x be defined as in Algorithm 4. Let v ≤ r and xe := argmaxxe∈[r,x]∩(E∪B)

{Line((r,ϕ(r)),(x,ϕ(x)),xe)
ϕ(xe)

}, i.e., the point that yields the largest approximation error in

the definition of γE(r, x). Let E′ := E∩ [Dmin,max{next(r, E), xe}]. Then γE(v, x) =
γE′(v, x).

Proof of Lemma C.1. We show that for every x′
e ∈ E, x′

e > xe, x
′
e > r,

Line((v, ϕ(v)), (x, ϕ(x)), x′
e)

ϕ(x′
e)

≤ Line((v, ϕ(v)), (x, ϕ(x)), xe)

ϕ(xe)
.

By definition of xe,

Line((r, ϕ(r)), (x, ϕ(x)), x′
e)

ϕ(x′
e)

≤ Line((r, ϕ(r)), (x, ϕ(x)), xe)

ϕ(xe)
.

Therefore,

Line((v, ϕ(v)), (x, ϕ(x)), x′
e)

ϕ(x′
e)

=
Line((r, ϕ(r)), (x, ϕ(x)), x′

e)

ϕ(x′
e)

+
Line((v, ϕ(v)), (x,ϕ(x)), x′

e)− Line((r, ϕ(r)), (x, ϕ(x)), x′
e)

ϕ(x′
e)

≤ Line((r, ϕ(r)), (x, ϕ(x)), xe)

ϕ(xe)
+

Line((v, ϕ(v)), (x,ϕ(x)), x′
e)− Line((r, ϕ(r)), (x, ϕ(x)), x′

e)

ϕ(x′
e)

≤ Line((r, ϕ(r)), (x, ϕ(x)), xe)

ϕ(xe)
+

Line((v, ϕ(v)), (x,ϕ(x)), xe)− Line((r, ϕ(r)), (x, ϕ(x)), xe)

ϕ(xe)

=
Line((v, ϕ(v)), (x, ϕ(x)), xe)

ϕ(xe)
,

where the last inequality follows by ϕ(x′
e) ≥ ϕ(xe), the fact that the slope of

Line((v, ϕ(v)), (x, ϕ(x)), ·) is smaller than the slope of Line((r, ϕ(r)), (x, ϕ(x)), ·) by
convexity, and v ≤ r.

It follows that γE(v, x) = γE′(v, x).

Lemma C.2. Let ϕ : D → Q+ be a convex function defined over a set of inte-
gers. Then ApxSetConvex(ϕ,D,K) computes a K-approximation set of ϕ of size

O(logK min{σ
max
ϕ

σmin
ϕ

, ϕmax

ϕmin }) and executes the loop at lines 6–14 O(logK min{σ
max
ϕ

σmin
ϕ

, ϕmax

ϕmin }
log |D|) times.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

346 NIR HALMAN, GIACOMO NANNICINI, AND JAMES ORLIN

Proof of Lemma C.2. ApxSetConvex is presented for a convex nondecreasing
function. It is enough to prove the lemma in this case, and the result for a general
convex function follows by applying ApxSetConvex to the left and to the right of
the minimum.

We introduce the necessary definitions. We call outer loop the loop at line 4 of
ApxSetConvex and inner loop the loop at line 6. At any iteration of the outer loop,
let x be the last point added to W . We keep the notation �, r for the value of the
respective variables at the beginning of an inner loop iteration, i.e., at the beginning
of line 7. We denote by �′, r′ the value of the variables �, r at the end of an inner loop
iteration, i.e., at the end of line 8 (this is the only line of the inner loop where �, r are
modified). We use the notation prevn(x,D), nextn(x,D) to indicate the application
of the previous and next operators n times.

Note that r′ ≤ r. This is because γE does not increase as points are added to E;
hence if line 7 returns point w at some iteration of the inner loop, it will only return
points ≤ w at subsequent iterations. Furthermore, r − � ≥ 2(r′ − �′) unless r′ ≤ �. It
follows that in log |D| iterations either the inner loop terminates and a new point w
is added to W or r′ ≤ � at least once and no point is added to W .

The algorithm searches for the next point to be added to W in the interval
[Dmin, . . . , z], where initially z = Dmax. We show that after O(log |D|) iterations of
the inner loop this interval is reduced to [Dmin, . . . , z′], where Kσϕ(z

′) < σϕ(z), and

at most one point was added to W . This implies K |W | < σmax
ϕ

σmin
ϕ

, from which the first

part of the lemma follows.
(a) We first analyze the case where a point w is added to W in the first 4 log |D|

inner loop iterations of an outer loop iteration. In this case, z = x. Let
z′ = prev(w,D). Then γẼ(z

′, x) > K at some point during the algorithm for

some set Ẽ (otherwise lines 7–8 would give r ≤ z′). Let xe be the point that

yields the maximum for γẼ(z
′, x). Let s1 = ϕ(x)−ϕ(z′)

x−z′ and s2 =
ϕ(xe)−ϕ(z′)

xe−z′ .

We have ϕ(z′)+s1(xe−z′)
ϕ(z′)+s2(xe−z′) = Line((z′, ϕ(z′)), (x, ϕ(x)), xe)/ϕ(xe) = γẼ(z

′, x) >
K. Because ϕ(z′) ≥ 0, it follows by simple algebraic manipulations that

s1/s2 ≥ ϕ(z′)+s1(xe−z′)
ϕ(z′)+s2(xe−z′) > K. Furthermore, it is easy to show σϕ(z

′) ≤ s2

and s1 ≤ σϕ(z). Therefore the search is restricted from [Dmin, . . . , z = x] to
[Dmin, . . . , z′] with Kσϕ(z

′) < σϕ(z).
(b) Then we analyze the case where we perform 4 log |D| successive iterations of

the inner loop without adding any point to W . Because no point is added to
W , we must have r′ ≤ � at least four times. Lines 7–8 imply that there exist
four points z1, z2, z3, z4 such that γEi(zi, x) > K, i = 1, 2, 3, 4, for some sets
Ei. Assume without loss of generality that zi < zi+1, and let xi

e be the points
that yield the maximum in γEi(zi, x). Note that we are not assuming z = x.

Define s1 = ϕ(x)−ϕ(z1)
x−z1 and s2 =

ϕ(x2
e)−ϕ(z1)

x2
e−z1 . We can repeat the argu-

ment of case (a) to show Ks2 < s1. We have z1 < z2 < x2
e; therefore

by construction σϕ(z
1) ≤ s2. We want to show s1 ≤ σϕ(z). Notice that

because x2
e maximizes γE2(z2, x) and by construction of x2

e, we must have

s1 ≤ ϕ(next2(x2
e,E

2))−ϕ(next(x2
e,E

2))
next2(x2

e,E
2)−next(x2

e,E
2) . Therefore, s1 ≤ σϕ(next

2(x2
e, E

2)). If we

can show z ≥ next2(x2
e, E

2), the desired result follows by convexity.
Observe that x1

e ≤ x2
e ≤ x3

e ≤ x4
e because of line 9 (Lemma C.1). Also,

zi ≥ prev(xi
e, E

i) for i = 2, 3, 4. Suppose not. Then γEi(zi, x) > K regardless
of points added to Ei in subsequent iterations (all these points are < zi). This
implies that a point is added to W within the subsequent log |D| iterations of

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTATIONALLY EFFICIENT FPTAS FOR STOCHASTIC DPs 347

the inner loop, which is a contradiction. Thus, prev(x2
e, E

2) ≤ z2 < z3 < z4 <
z, so next2(x2

e, E
2) ≤ z.

This shows that after 4 log |D| successive iterations of the inner loop such
that no point is added to W , the search is restricted from [Dmin, . . . , z] to
[Dmin, . . . , z′ = z1] with Kσϕ(z

′) < σϕ(z).
Combining cases (a) and (b) together shows that a reduction of the search interval

with a factor K reduction of the slope of ϕ takes O(log |D|) iterations of the inner
loop. This concludes the first part of the proof.

Next, we show that after O(log |D|) iterations of the inner loop [Dmin, . . . , z] is
reduced to [Dmin, . . . , z′], where Kϕ(z′) < ϕ(z), and at most one point was added to

W . This implies K |W | < ϕmax

ϕmin , from which the second part of the lemma follows.

Observe that in at most Λ log |D| iterations of the inner loop, one of the following
happens: either a point w is added toW , or no point is added toW and line 12 (z ← r)
is executed. In the first case, let w be the point added to W and let z′ = prev(w,D).
Then γE(z

′, x) > K at some point during the algorithm, and by Proposition 4.1
Kϕ(z′) < ϕ(z). In the second case, let z′ = r; line 11 ensures Kϕ(z′) < ϕ(z). This
concludes the second part of the proof.

It remains to show that W is a K-approximation set. This follows from Proposi-
tion 4.1, Lemma C.1, and the fact that whenever w is added to W , for all points y in
the interval [w, x] we have γE(y, x) ≤ K.

Lemma C.3. Let ϕ : D → Q+ be a convex function defined over a set of in-
tegers, and K > 0. Then |E| is bounded above by 2 log |D| during the execution of
ApxSetConvex(ϕ,D,K).

Proof of Lemma C.3. Observe that points added to E are of the form �(�+ r)/2�;
therefore at any given time points in E inside the interval [Dmin, r] follow a geometric
progression, and there are at most log |D| of them. It remains to show that the number
of points in the interval [next(r, E), Dmax] does not exceed log |D|.

First, notice that we are only interested in the interval [next(r, E), x], because
points > x are eliminated from E on line 16. Moreover, E contains only point
≤ max{next(r, E), arg γE(r, x)} because of line 9. If xe = arg γE(r, x)} ≤ r, we are
done. Otherwise, we observe that, as discussed in the proof of Lemma C.2, subcase
(b), if xe > next(r, E) only log |D| iterations of the inner loop are executed (and log |D|
points are added to E) before the loop exits and line 16 is executed, eliminating points
in the interval [x = r,Dmax]. Notice that when the condition xe > next(r, E) is first
satisfied at a given iteration of the outer loop, E contains no more than log |D| points
as shown above (some of these points could be in the interval [r, x]). At most log |D|
points are added to E, hence |E| ≤ 2 log |D| throughout the algorithm.

Lemma C.4. The value of γE(xj , xk) as defined in Proposition. 4.1 can be com-
puted in O(log |E|) time by binary search if E and B are stored in a sorted array.

Proof of Lemma C.4. By definition, we have

γE(xj , xk) := max
xe∈[xj,xk]∩(E∪B)

{
Line((xj , yj), (xk, yk), xe)

ϕ(xe)

}
.

Clearly this computation can be split into

γ′
E(xj , xk) := max

xe∈[xj,xk]∩E

{
Line((xj , yj), (xk, yk), xe)

ϕ(xe)

}
,

γ′′
E(xj , xk) := max

xe∈[xj,xk]∩B

{
Line((xj , yj), (xk, yk), xe)

ϕ(xe)

}
,

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

348 NIR HALMAN, GIACOMO NANNICINI, AND JAMES ORLIN

taking the maximum of the two values. We show that the two functions can be
maximized by binary search over, respectively, E and B. Define

ϑ(xj , xk, xe) :=
Line((xj , ϕ(xj)), (xk, ϕ(xk)), xe)

ϕ(xe)
.

First part. We have

γ′
E(xj , xk) := max

xe∈[xj,xk]∩E
ϑ(xj , xk, xe).

Recall that by construction ϑ(xj , xk, xe) ≥ 1 for xe ∈ [xj , xk]∩E, and its value is 1 at
the endpoints of the interval. The numerator of ϑ has constant slope, whereas the slope
of the denominator is monotonically nondecreasing because ϕ(xe) = ϕ(xe) ∀xe ∈ E
and ϕ is convex. It follows that ϑ is unimodal over E. Furthermore, the slope of
ϑ is constant only if the slopes of the numerator and denominator are equal, which
can happen only on a (possibly empty) connected subset of E by convexity of ϕ. We
conclude that we can partition E into three, not all empty connected subsets such
that ϑ is strictly increasing on the first one, constant on the second one, and strictly
decreasing on the third one, and the maximum can be found by binary search.

Second part. Recall that |B| ≤ |E|. We have

γ′′
E(xj , xk) := max

xe∈[xj,xk]∩B
ϑ(xj , xk, xe).

We show that the convex extension of the denominator of ϑ overB is a convex function,
so that we can apply the same argument as for γ′

E . Let x1, x4, x7 ∈ B be any three
points with the property x1 < x4 < x7, and define xi−1 := prev(xi, E), xi+1 :=
next(xi, E) for i = 1, 4, 7. We show that

ϕ(x7) ≥ Line((x1, ϕ(x1)), (x4, ϕ(x4)), x7),

which implies the desired result. By definition of ϕ over the breakpoints B and by
convexity of ϕ,

ϕ(x7) ≥ Line((x3, ϕ(x3)), (x6, ϕ(x6)), x7) ≥ Line((x1, ϕ(x1)), (x4, ϕ(x4)), x7).

This concludes the proof.
Proof of Theorem 4.2. The approximation set size and K-approximation proper-

ties of ApxSetConvex follow from Lemma C.2.
By Lemma C.2, ApxSetConvex executes the loop at lines 6–14 O(logK

min{σ
max
ϕ

σmin
ϕ

, ϕmax

ϕmin } log |D|) times. We must show that this loop can be executed in

O(log2 log |D|) time.
Store the sets E and B of Proposition 4.1 separately in two skip lists sorted by

ascending x-coordinate of the points (x, ϕ(x)). E has size O(log |D|) by Lemma C.3;
therefore B has size O(log |D|). Thus, we can insert points in O(log log |D|) time, and
because we always delete sets of adjacent points at the end of the list, every deletion
operation takes O(log log |D|) time. Note that whenever a new point y is added to
E, all points in B except at most four are left unchanged. The points that have to
be recomputed are the two smallest points greater than y and the two largest points
smaller than y. This operation can be done in O(log log |D|) time by searching for
the largest point in B smaller than prev(y, E).

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTATIONALLY EFFICIENT FPTAS FOR STOCHASTIC DPs 349

It remains to show that line 7 can be executed in O(log2 log |D|) time. Lemma C.4
shows that we can find the point xe that maximizes the approximation error bound
(i.e. γE) by binary search over the two skip lists containing E and B separately. Each
search can be carried out in O(log log |D|) time using the skip list structure. Thus,
γE can be evaluated in O(log log |D|) time. Furthermore, γE(·, ·) is monotonically de-
creasing in its first argument; therefore min{y ∈ E : (y > Dmin) and (γE(y, x) ≤ K)}
can be computed by binary search over E, evaluating γE O(log log |D|) times. This
concludes the proof.

We note that without lines 10–13 of ApxSetConvex we could only prove a
slightly weaker result, namely, ApxSetConvex computes a K-approximation set

of ϕ of size O(logK min{σ
max
ϕ

σmin
ϕ

, ϕmax

ϕmin }) in time O(tϕ logK
σmax
ϕ

σmin
ϕ

log |D| log2 log |D|). In

practice, lines 10–13 have little effect except in degenerate situations, but they guar-
antee a better worst-case performance. In our computational tests, there is only a
small fluctuation in the size of the approximation sets and in the CPU times if lines
10–13 are removed, with neither version of the algorithm appearing as the winner.

Acknowledgment. We are grateful to the referees and associate editor for their
comments that helped improved the paper.

REFERENCES

[1] D. L. Applegate, W. Cook, S. Dash, and D. G. Espinoza, Exact solutions to linear pro-
gramming problems, Oper. Res. Lett., 35 (2007), pp. 693–699.

[2] C. Bazgan, H. Hugot, and D. Vanderpooten, Implementing an efficient FPTAS for the
0–1 multiobjective knapsack problem, European J. Oper. Res., 198 (2009), pp. 47–56.

[3] R. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, 1957.
[4] D. P. Bertsekas, Dynamic Programming and Optimal Control, Athena Scientific, Belmont,

MA, 1995.
[5] J. F. Carriere, Valuation of the early-exercise price for options using simulations and non-

parametric regression, Insurance Math. Econom., 19 (1996), pp. 19–30.
[6] W. Chen, Private communication, 2013.
[7] W. Chen, M. Dawande, and G. Janakiraman, Fixed-dimensional stochastic dynamic pro-

grams: An approximation scheme and an inventory application, Oper. Res., 62 (2014),
pp. 81–103.

[8] W. Cook, T. Koch, D. E. Steffy, and K. Wolter, An exact rational mixed-integer pro-
gramming solver, in Proceedings of IPCO, O. Günlük and G. J. Woeginger, eds., Lecture
Notes in Comput. Sci. 6655, Springer-Verlag, Berlin, 2011, pp. 104–116.

[9] G. Cornuéjols, F. Margot, and G. Nannicini, On the safety of Gomory cut generators,
Math. Program. Comput., 5 (2013), pp. 345–395.

[10] D. P. de Farias and B. Van Roy, The linear programming approach to approximate dynamic
programming, Oper. Res., 51 (2003), pp. 850–865.

[11] D. P. de Farias and B. Van Roy, A cost-shaping Linear Program for average-cost approximate
dynamic programming with performance guarantees, Math. Oper. Res., 31 (2006), pp. 597–
620.

[12] V. V. Desai, V. F. Farias, and C. C. Moallemi, Approximate dynamic programming via a
smoothed linear program, Oper. Res., 60 (2012), pp. 655–674.

[13] V. V. Desai, V. F. Farias, and C. C. Moallemi, Pathwise optimization for optimal stopping
problems, Management Sci., 58 (2012), pp. 2292–2308.

[14] S. E. Dreyfus and A. M. Law, The Art and Theory of Dynamic Programming, Academic
Press, New York, 1977.

[15] G. A. Godfrey and W. B. Powell, An Adaptive Approximation Method for Stochastic,
Dynamic Programs, with Applications to Inventory and Distribution Problems, Technical
report SOR-97-10, Department of Civil Engineering and Operations Research, Princeton
University, Princeton, NJ, 1998.

[16] G. A. Godfrey and W. B. Powell, An adaptive, distribution-free algorithm for the newsven-
dor problem with censored demands, with applications to inventory and distribution, Man-
agement Sci., 47 (2001), pp. 1101–1112.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

350 NIR HALMAN, GIACOMO NANNICINI, AND JAMES ORLIN

[17] S. C. Graves, A. H. George R. Kan, and P. H. Zipkin, eds., Logistics of Production and
Inventory, Handbooks Oper. Res. Management Sci. 4, North-Holland, Amsterdam, 1993.

[18] N. Halman, D. Klabjan, C.-L. Li, J. Orlin, and D. Simchi-Levi, Fully polynomial time
approximation schemes for stochastic dynamic programs, in Proceedings of SODA, S.-H.
Teng, ed., SIAM, Philadelphia, 2008, pp. 700–709.

[19] N. Halman, D. Klabjan, C.-L. Li, J. Orlin, and D. Simchi-Levi, Fully polynomial time ap-
proximation schemes for stochastic dynamic programs, SIAM J. Discrete Math., 28 (2014),
pp. 1725–1796.

[20] N. Halman, D. Klabjan, M. Mostagir, J. Orlin, and D. Simchi-Levi, A fully polynomial
time approximation scheme for single-item inventory control with discrete demand, Math.
Oper. Res., 34 (2009), pp. 674–685.

[21] N. Halman, G. Nannicini, and J. Orlin, A computationally efficient FPTAS for convex
stochastic dynamic programs, in Proceedings of ESA, H. Bodlaender and G. Italiano, eds.,
Lecture Notes in Comput. Sci. 8125, Springer, Berlin, 2013, pp. 577–588.

[22] N. Halman, J. B. Orlin, and D. Simchi-Levi, Approximating the nonlinear newsvendor and
single-item stochastic lot-sizing problems when data is given by an oracle, Oper. Res., 60
(2012), pp. 429–446.

[23] IEEE Standard for Floating-Point Arithmetic, 754-2008, IEEE, New York, 2008, pp. 1–70.
[24] W. Kahan, Pracniques: Further remarks on reducing truncation errors, Comm. ACM, 8

(1965).
[25] J. Kiefer, Sequential minimax search for a maximum, Proc. Amer. Math. Soc., 4 (1953),

pp. 502–506.
[26] F. A. Longstaff and E. S. Schwartz, Valuing American options by simulation: A simple

least-squares approach, Rev. Financial Studi., 14 (2001), pp. 113–147.
[27] B. L. Miller, On minimizing nonseparable functions defined on the integers with an inventory

application, SIAM J. Appl. Math., 21 (1971), pp. 166–185.
[28] J. I. Munro, T. Papadakis, and R. Sedgewick, Deterministic skip lists, in Proceedings of

SODA, SIAM, Philadelphia, 1992, pp. 367–375.
[29] K. Murota, Discrete Convex Analysis, SIAM, Philadelphia, 2003.
[30] S. Nadarajah, F. Margot, and N. Secomandi, Improved Least Squares Monte Carlo for

Term Structure Option Valuation with Energy Applications, Technical report 2012-E54,
Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, 2013.

[31] J. M. Nascimento, Approximate Dynamic Programming for Complex Storage Problems, Ph.D.
thesis, Princeton University, Princeton, NJ, 2008.

[32] J. M. Nascimento and W. B. Powell, Dynamic programming models and algorithms for the
mutual fund cash balance problem, Management Sci., 56 (2010), pp. 801–815.

[33] J. M. Nascimento and W. B. Powell, An optimal approximate dynamic programming al-
gorithm for concave, scalar storage problems with vector-valued controls, IEEE Trans.
Automat. Control, 58 (2013), pp. 2995–3010.

[34] W. B. Powell, Approximate Dynamic Programming: Solving the Curses of Dimensionality,
2nd ed., Wiley, New York, 2011.

[35] W. B. Powell, Private communication, 2013.
[36] W. B. Powell, A. Ruszczyński, and H. Topaloglu, Learning algorithms for separable ap-

proximations of discrete stochastic optimization problems, Math. Oper. Res., 29 (2004),
pp. 814–836.

[37] W. Pugh, Skip lists: A probabilistic alternative to balanced trees, Comm. ACM, 33 (1990),
pp. 668–676.

[38] D. Salas and W. B. Powell, Benchmarking a Scalable Approximation Dynamic Programming
Algorithm for Stochastic Control of Multidimensional Energy Storage Problems, Technical
report, Princeton Unversity, Princeton, NJ, 2013.

[39] J. N. Tsitsiklis and B. V. Roy, Regression methods for pricing complex American-style
options, IEEE Trans. Neural Networks, 12 (2001), pp. 694–703.

[40] A. Wächter and L. T. Biegler, On the implementation of a primal-dual interior point filter
line search algorithm for large-scale nonlinear programming, Math. Program., 106 (2006),
pp. 25–57.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

