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a b s t r a c t 

We consider a fairly general model of “take-or-leave” decision-making. Given a number of items of a 

particular weight, the decision-maker either takes (accepts) an item or leaves (rejects) it. We design fully 

polynomial-time approximation schemes (FPTASs) for optimization of a non-separable non-linear function 

which depends on which items are taken and which are left. The weights of the taken items are subject 

to nested constraints. There is a noticeable lack of approximation results on integer programming prob- 

lems with non-separable functions. Most of the known positive results address special forms of quadratic 

functions, and in order to obtain the corresponding approximation algorithms and schemes considerable 

technical difficulties have to be overcome. We demonstrate how for the problem under consideration 

and its modifications FPTASs can be designed by using (i) the geometric rounding techniques, and (ii) 

methods of K -approximation sets and functions. While the latter approach leads to a faster scheme, the 

running times of both algorithms compare favorably with known analogues for less general problems. 

© 2018 The Authors. Published by Elsevier B.V. 
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. Introduction 

One of the most popular types of decision in business decision-

aking is related to accepting or rejecting a certain activity. In

his paper, informally we call this types of decisions “take-or-leave”

ecisions. This, for example, happens in make-or-buy situations,

hen a particular product could be either manufactured internally

r bought from outside. More meaningful examples are contained

elow. 

We address Boolean programming problems, in which it is re-

uired to either minimize or maximize a non-linear function that

acilitates the leave-or-take decision making. Suppose we are given

 set N = { 1 , 2 , . . . , n } of items, so that each item j is associated

ith a positive integer αj , which we call its weight. For a vec-

or x = ( x 1 , x 2 , . . . , x n ) consisting of n Boolean components, such a

eave-or-take function can be written as 

 ( x ) = 

n ∑ 

j=1 

f j 

( 

j ∑ 

i =1 

αi x i 

) 

x j + 

n ∑ 

j=1 

g j 

( 

j ∑ 

i =1 

αi ( 1 − x i ) 

) 

(1 − x j ) . (1)
∗ Corresponding author. 

E-mail addresses: halman@huji.ac.il (N. Halman), hans.kellerer@uni-graz.at (H. 

ellerer), V.Strusevich@greenwich.ac.uk (V.A. Strusevich). 
1 The first author was partially supported by Israel Science Foundation, Grant 

99/17. 
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Here we assume that x j = 1 if item j is taken, and x j = 0 if item

 is left. The functions f j represent the cost or penalty for taking

tems; they are non-decreasing non-negative functions that depend

n total accumulated weight of the taken items i , 1 ≤ i ≤ j . On the

ther hand, the functions g j represent the cost or penalty for leav-

ng items; they are non-decreasing non-negative functions that de-

end on total accumulated weight of all left items i , 1 ≤ i ≤ j . Ad-

ressing the issues of approximability of function Z ( x ) further in

his paper we make assumptions on computability of the functions

 j and g j , 1 ≤ j ≤ n . Besides, further in this section we present sev-

ral examples of problems from various application areas which

educe to minimizing function Z ( x ) of the form (1) subject to ad-

itional linear constraints. 

We start with the examples that involve a knapsack constraint

n 
 

j=1 

α j x j ≤ A. (2) 

Notice that the presented examples are given here for illustra-

ion only; in fact the results contained in the paper concern opti-

ization of (1) under more general constraints than (2). 
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1.1. Safe helicopter pickup 

In the offshore petroleum industry, employees are transported

by helicopters to and from offshore installations. Assume that set

N is a set of installations, and αj people who have to be picked

up from an installation j . We have a helicopter H 1 of total capacity

A and another helicopter H 2 of sufficient capacity. In a safe he-

licopter transportation model, the risk of visiting an installation

j is measured by a function that depends on the type of aircraft

used and on the number of people on board the aircraft that take

off at installation j and land at the next installation of the route;

see Qian, Strusevich, Gribkovskaia, and Halskau (2015) and Rustogi

and Strusevich (2013) for detailed descriptions of the model and

approaches to its solution for simple risk-measuring functions. If

installation j is visited by helicopter H 1, then x j = 1 ; otherwise,

x j = 0 . For helicopter H 1, the risk is measured by a function f j , and

for helicopter H 2 function g j is used. In either case, the argument

of each of these functions is the total number of people that take

off at installation j . It is required to decide which installation is

visited by which aircraft so as to minimize total risk. 

1.2. Two-chamber holding 

Assume that set N is a set of orders, so that they arrive one or-

der per time period and order j consists of αj items to be put on

hold. The holding facility consists of two chambers, one of capacity

A and the other of sufficient capacity. The functions f j and g j mea-

sure the holding costs in the respective chamber, that depends on

the total number of items currently on hold in that chamber. The

purpose is to decide to which chamber to place an order so that

total holding cost is minimized. 

1.3. Production with dirt accumulation 

The quality of equipment often deteriorates as it is used due to

accumulation of unwanted by-products. This is, for example, ob-

served when a floor sanding machine operates and saw dust is ac-

cumulated. Formally, assume that set N is a set of jobs to be pro-

cessed on a single machine. Processing job j accumulates αj units

of dirt. No more than A units of dirt can be accumulated; after that

cleaning is required. The cleaning operation takes constant time.

The actual processing time of job j is defined either by function f j 
if the job is processed in the first group, before the cleaning, or by

function g j , if the job is processed in the second group, after the

cleaning. In either case, the function depends on the amount of

dirt generated by all previously scheduled jobs of the group. The

difference in these functions can be explained by the fact that a

cleaning operation does not necessarily return the machine to the

initial “as good as new” state. The purpose is to split the jobs into

two groups so as to minimize the makespan, i.e., the maximum

completion time of all jobs. 

We next elaborate on the hardness of minimizing function

(1) under knapsack constraints and the need for its approximation.

Clearly, the problem of minimizing function (1) subject to a knap-

sack constraint is no easier that the famous linear knapsack prob-

lem and is therefore at least NP-hard in the ordinary sense; see

Kellerer, Pferschy, and Pisinger (2004) . This is why in this paper we

study a possibility of developing approximation schemes for the

problems of optimizing (1) subject to linear constraints. Consider

the function of n Boolean variables 

S(x ) = 

∑ 

1 ≤i< j≤n 

αi β j x i x j + 

∑ 

1 ≤i< j≤n 

αi β j (1 − x i )(1 − x j ) 

+ 

n ∑ 

j=1 

μ j x j + 

n ∑ 

j=1 

ν j (1 − x j ) + �, (3)
hich has been a popular object of study. The function is called

ymmetric quadratic function, because both the quadratic and the

inear parts of the objective function are separated into two terms,

ne depending on the variables x j , and the other depending on

he variables (1 − x j ) . Following Kellerer and Strusevich (2010a,b) ,

e call the problem of minimizing the objective (3) subject to the

inear knapsack constraint (2) the Symmetric Quadratic Knapsack

roblem. That problem is known to be an underlying mathemati-

al model for many scheduling problems; see the focused surveys

ellerer and Strusevich (2012, 2016) . Notice that the non-separable

uadratic terms in (3) are special cases of the corresponding non-

inear terms in (1) . 

In turn, the symmetric quadratic function is a variant of the

ell-studied non-separable quadratic function known as the half-

roduct. The latter function has been introduced by Badics and

oros (1998) and can be written as 

 ( x ) = 

n ∑ 

1 ≤i< j≤n 

αi β j x i x j −
n ∑ 

j=1 

γ j x j . (4)

There are numerous publications on the design and analysis

f problems of optimizing function (4) and its variants, with and

ithout an additive constant, as well as with and without linear

onstraints; see surveys Kellerer and Strusevich (2012, 2016) . The

ey issue of these studies has been design and analysis of fully

olynomial-time approximation schemes. 

For a collection of decision variables x , consider a problem of

inimizing a function ϕ( x ) that takes positive values. Recall that

 polynomial-time algorithm that finds a feasible solution x H such

hat ϕ( x H ) is at most ρ ≥ 1 times the optimal value ϕ( x ∗) is called

 ρ−approximation algorithm; the value of ρ is called a worst-case

atio bound. A family of ρ−approximation algorithms is called a

ully polynomial-time approximation scheme (FPTAS) if ρ = 1 + ε for

ny ε > 0 and the running time is polynomial with respect to both

he length of the problem input and 1/ ε. If a function ϕ( x ) takes

oth positive and negative values, then an FPTAS delivers a feasible

olution x H such that ϕ(x H ) − ϕ(x ∗) ≤ ε | ϕ(x ∗) | . The latter defini-

ion is applicable to the problem of minimizing the half-product

unction (4) . 

The main problem studied in this paper can be formulated as

ollows. 

Minimize Z = 

n ∑ 

j=1 

f j 

( 

j ∑ 

i =1 

αi x i 

) 

x j + 

n ∑ 

j=1 

g j 

( 

j ∑ 

i =1 

αi ( 1 −x i ) 

) 

(1 −x j ) 

ubject to 

k ∑ 

j=1 

α j x j ≤ d k , 1 ≤ k ≤ n, 

x j ∈ { 0 , 1 } , j = 1 , 2 , . . . , n. (5)

The set of constraints for this problem is not just a single lin-

ar knapsack constraint of the form (2) but a set of n nested linear

onstraints with the right-hand sides forming a non-decreasing se-

uence d 1 ≤ d 2 ≤ ��� ≤ d n . As above, here for each j , 1 ≤ j ≤ n , func-

ions f j and g j are non-negative non-decreasing functions of a pos-

tive argument. 

Nested restrictions with a triangle matrix of constraints are of-

en use in mathematical programming. For instance, in non-linear

esource allocation problems with submodular constraints there is

lass of problems called (Nested) which is represented by the tri-

ngle matrix; see Hochbaum and Hong (1995) . 

Below, we illustrate the relevance of the problem (5) by linking

t to several problems. 

.4. Single-item lot-sizing problem 

The single-item lot-sizing problem is among the most popu-

ar problems of combinatorial optimization; see the recent survey
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y Brahimi, Absi, Dauzère-Pérès, and Nordli (2017) . The classical

ot-sizing problem involves minimizing the sum of the production

osts and the holding costs of items of a single product over a

iven number of periods to satisfy the demand. Typically, there are

wo sets of decision variables that for each period represent the

umber of the produced items and the number of the held items.

hese variables are in general non-negative integers. Among the

esults obtained for the general lot-sizing problem are fully poly-

omial approximation schemes, see e.g., Chubanov, Kovalyov, and

esch (20 06, 20 08) and Halman, Orlin, and Simchi-Levi (2012 , end

f Section 6.1). 

Since in our model we are concerned with the Boolean

ariables, below we follow Hardin, Nemhauser, and Savelsbergh

2007) and describe a model with 0 − 1 decision variables. Given n

eriods, define a variable y i such that y i = 1 if no production takes

lace in period i , 1 ≤ i ≤ n ; otherwise y i = 0 and that means that

uring period i exactly c i items are produced. Let d i denote the de-

and for period i , 1 ≤ i ≤ n . Introduce 

 j = 

j ∑ 

i =1 

c i , D j = 

j ∑ 

i =1 

d i , 1 ≤ j ≤ n, 

here C j is the number of items that could be produced in periods

 , 2 , . . . , j and D j is the aggregated demand in these periods. To

atisfy the demand, the inequalities 

j 
 

i =1 

c i ( 1 − y i ) ≥ D j 

ust hold for all j , 1 ≤ j ≤ n . They can be rewritten as nested con-

traints 

j 
 

i =1 

c i y i ≤ C j − D j , 1 ≤ j ≤ n. 

Let f j be the cost function of producing c j items in period j ,

hile h j be the cost function of all held items, i.e., those items

hat have been manufactured by period j on top of the demand

 j , 1 ≤ j ≤ n . Notice that in the model studied in Hardin et al.

2007) the production cost function is linear and no holding cost

s taken into consideration. 

The resulting problem can be formulated as 

Minimize Z = 

n ∑ 

j=1 

f j 
(
c j 

(
1 − y j 

))
+ 

n ∑ 

j=1 

h j 

( 

C j − D j −
j ∑ 

i =1 

c i y i 

) 

ubject to 

j ∑ 

i =1 

c i y i ≤ C j − D j , 1 ≤ j ≤ n, 

y i ∈ { 0 , 1 } , i = 1 , 2 , . . . , n. (6) 

.5. Single machine scheduling with rejection 

Assume that set N is a set of jobs to be processed on a sin-

le machine, owned by the decision-maker. Each job j ∈ N has the

rocessing time p j and the deadline d j by which it must be com-

leted. The jobs are supposed to be numbered in non-decreasing

rder of their deadlines. The decision-maker may either accept a

ob to process internally or reject a job, e.g., by subcontracting

t. In the former case, define the decision variable x j = 1 ; other-

ise, x j = 0 . The cost of processing of each accepted job j is de-

ned by f j ( C j ), where C j = 

∑ j 
i =1 

p j x j is its completion time. The

ther jobs are given to be processed to the subcontractor, and the

ost of handling the rejected job is defined by function g j . In the

implest case, g j can be just a positive number β j that represents

he rejection penalty of job j ; see, e.g., Shabtay, Gaspar, and Kaspi

2013) and Kellerer and Strusevich (2013) for examples of schedul-

ng problems with simple rejection penalties. In a more general
ase g j is a non-decreasing function that depends on the process-

ng of all rejected jobs i , 1 ≤ i ≤ j ≤ n . 

Minimize Z = 

n ∑ 

j=1 

f j 

( 

j ∑ 

i =1 

p i x i 

) 

x j + 

n ∑ 

j=1 

g j 

( 

j ∑ 

i =1 

p i ( 1 −x i ) 

) 

(1 −x j ) 

ubject to 

k ∑ 

j=1 

p j x j ≤ d k , 1 ≤ k ≤ n, 

x j ∈ { 0 , 1 } , j = 1 , 2 , . . . , n. (7) 

It can be seen that problems (6) and (7) share many features

ith the problem (5) , the main problem of this study. 

The main outcome of this paper is that we demonstrate that

nder some reasonable additional conditions on functions f j and

 j , which, e.g., hold when the functions are polynomials of a fixed

egree, the problem (5) admits an FPTAS. 

The remainder of this paper is organized as follows. In

ection 2 , we briefly review general principles and known ap-

roaches to the design of FPTASs for the problems of integer non-

inear programming. In Section 3 , we show that problem (5) is

olvable by a pseudopolynomial-time dynamic programming algo-

ithm and such an algorithm can be easily converted into an FP-

AS by using a popular geometric rounding technique. An alterna-

ive approach to designing an FPTAS for problem (5) is presented

n Section 4 . Here we show that the powerful technique of K -

pproximation sets and functions developed by Halman, Klabjan,

i, Orlin, and Simchi-Levi (2014) can be adapted to converting an-

ther dynamic programming algorithm to an FPTAS. While the sec-

nd FPTAS is faster, the running time of each scheme, although not

trongly polynomial, is still computationally acceptable, and the

roofs of their correctness are relatively simple. In Section 5 , we

iscuss various extensions to the basic model, i.e., handling more

eneral cost functions and nested knapsack constraints. Moreover,

e show that very similar principles can be applied to develop-

ng an FPTAS for the maximization counterpart of problem (5) .

ection 6 contains concluding remarks. 

. Approaches to FPTAS design 

In this section, we review most influential results on designing

pproximation schemes for solving problems of non-linear Boolean

rogramming. 

Since the pioneering works by Ibarra and Kim (1975) , Sahni

1977) and Lawler (1979) , the development of fully polynomial-

ime approximation schemes for various combinatorial optimiza-

ion problems has become a major direction of research. From the

oint of view of accuracy of the found solution, an FPTAS is the

est approximation result one may expect for an NP-hard prob-

em. An FPTAS provides a piece of evidence that the problem under

onsideration allows finding a solution arbitrarily close to the opti-

um. Still, many researchers consider an FPTAS to be an algorithm

f a limited practical value due to its fairly large time and space

equirements. On the other hand, for many problems, e.g., various

ersions of the linear knapsack problems, there are approximation

chemes that show a good computational behavior for instances of

ractical interest. Examples include an FPTAS for the linear knap-

ack problem with the running time of O (n log ( 1 ε ) + 

( log (1 /ε)) 2 

ε 3 
) by

ellerer and Pferschy (1999, 2004) and an FPTAS for the subset-

um problem with the running time of O (n + 

log (1 /ε) 

ε 2 
) and the

pace requirement of O (n + 

1 
ε ) by Kellerer, Mansini, Pferschy, and

peranza (2003) . References to the papers that report positive re-

ults on computational experiments with FPTASs are contained in

he survey Kovalyov and Kubiak (2012) . 

Virtually all known FPTASs are obtained by converting a

ynamic programming (DP) algorithm available for solving the
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problem under consideration. Typically, such a DP algorithm re-

quires a pseudopolynomial running time and using various algo-

rithmic techniques (e.g., trimming of the state space, rounding of

the input data or the output values, etc.) the time is appropriately

reduced, while the accuracy is (insignificantly) lost. 

Multiple attempts have been made to identify general princi-

ples and techniques for developing an FPTAS. Below we briefly and

informally review several papers which we see as the most influ-

ential ones regarding the design of FPTASs, and at the same time

most relevant to our study. 

Woeginger (20 0 0) provides a series of conditions on a DP al-

gorithm such that the algorithm converts into a FPTAS. A problem

that admits such a DP algorithm is called DP-benevolent , and each

DP-benevolent problem is proved to admit an FPTAS. The paper de-

scribes several subclasses of the DP-benevolent problems for which

an FPTAS can be developed within a simpler framework than in

the general case. Multiple examples of DP-benevolent problems are

given and many previously known results are shown to be con-

sequences of the DP-benevolence of the corresponding problems.

On the other hand, Woeginger (20 0 0) demonstrates that several

versions of the linear knapsack problem do not exhibit the DP-

benevolence and in fact do not admit an FPTAS unless P = NP . 

Among examples given in Woeginger (20 0 0) is the problem of

minimizing the completion time variance on a single machine. The

problem is not known to exhibit the DP-benevolence, and although

it admits an FPTAS, the scheme is developed based on different

principles. It is interesting to point out that the problem of mini-

mizing the completion time variance can be reformulated in terms

of minimizing the half-product function (4) ; see Badics and Boros

(1998) . Thus, the problem of minimizing the half-product is not

known to be DP-benevolent, although it admits an FPTAS with a

running time of O ( n 2 / ε) given by Erel and Ghosh (2008) . The same

holds for various versions of the latter problem, for example, for

minimizing a so-called positive half-product function 

P ( x ) = 

n ∑ 

1 ≤i< j≤n 

αi β j x i x j + 

n ∑ 

j=1 

μ j x j + 

n ∑ 

j=1 

ν j 

(
1 − x j 

)
+ �, (8)

with positive coefficients introduced by Janiak, Kovalyov, Kubiak,

and Werner (2005) . The best known FPTAS for minimizing a con-

vex positive half-product is due to Kellerer and Strusevich (2013) .

See Kellerer and Strusevich (2012, 2016) for reviews of similar re-

sults. We note that it is not clear whether minimizing (1) under

knapsack constraints exhibits DP-benevolence. 

Kovalyov and Kubiak (2012) study the class PT opt of problems

for which an objective function is defined over partitions of a finite

set of items into a given number of subsets. They formulate four

quite natural and fairly easily verifiable conditions which guarantee

that if these conditions hold for a problem of class PT opt , then such

a problem admits an FPTAS. 

Among problems that admit an FPTAS due to the condi-

tions established in Kovalyov and Kubiak (2012) are two prob-

lems related to minimizing a version of the half-product objec-

tive (4) subject to a linear knapsack constraint. One of these

functions is a positive half-product function (8) , and the other

is a non-separable quadratic function similar to (3) with the co-

efficients in the two quadratic terms being not the same. For

both functions, all coefficients are positive and an appropriate

sum U of these coefficients serves as an upper bound. The

FPTAS obtained in Kovalyov and Kubiak (2012) for minimizing

function (8) require O (log 3 ( U )log (max {log U , n , 1/ ε } n 3 / ε 2 )) time,

while that for minimizing a generalization of function (3) takes

O (log 4 ( U )log (max {log U , n , 1/ ε } n 5 / ε 4 )) time. 

The results presented in Kovalyov and Kubiak (2012) are quite

relevant to this paper, since function (1) can be seen as defined

over partitions of a set of n items into two subsets (taken and left
tems). However, even if the objective (1) satisfies all required con-

itions, it is unlikely that the resulting FPTAS will have the running

ime faster than O (log 4 ( U )log (max {log U , n , 1/ ε } n 5 / ε 4 )), even if the

ested constraints are simplified to a single knapsack constraint. 

Notice that the problem of minimizing a convex function of

he form (8) under the knapsack constraint (2) admits an FPTAS

hat requires O ( n 2 / ε) time; see Kellerer and Strusevich (2013) . Be-

ides, the problem of minimizing the symmetric quadratic func-

ion (3) under the same constraint (2) admits an FPTAS that can

e implemented in O ( n 4 max {log n , 1/ ε2 }) time, as shown by Xu

2012) who extends the technique developed in Kellerer and Stru-

evich (2010a,b) . Notice that the running times of these FPTASs are

trongly polynomial and they are developed by totally different ap-

roaches than those outlined by Woeginger (20 0 0) and Kovalyov

nd Kubiak (2012) . 

For minimizing a (quasi-)concave function of Boolean variables

nder linear constraints, several authors explore the fact that a

quasi-)concave function of continuous variables achieves its min-

mum at an extremal point of a polytope. If a (quasi-)concave ob-

ective function is of a low rank k , i.e., depends on k input vectors,

hen for its minimization over a polytope several FPTASs are avail-

ble; see Goyal and Ravi (2013) and Mittal and Schulz (2013) . A

pecial case of such a function of rank 2 is the product of two lin-

ar functions, which has multiple applications in combinatorial op-

imization; see Kern and Woeginger (2007) and Goyal, Genc-Kaya,

nd Ravi (2011) for FPTASs for minimization of such an objective.

he running time of all mentioned approximation schemes is not

trongly polynomial. 

Halman et al. (2014) develop a powerful framework for convert-

ng DP algorithms for FPTASs for a wide range of problems of de-

erministic and stochastic optimization, provided that the objective

unction is separable. Their approach is based on establishing two

ovel sets of computational rules, which the authors call the cal-

ulus of K -approximation functions and K -approximation sets. This

pproach is illustrated on ten problems, for almost all of them no

PTAS has been previously known. Among the problems which are

specially relevant to this study is a generalized non-linear knap-

ack problem 

Maximize 

n ∑ 

j=1 

π j 

(
x j 

)

ubject to 

n ∑ 

j=1 

v j 
(
x j 

)
≤ B, 

l j ≤ x j ≤ u j , x j ∈ Z 

+ , j = 1 , 2 , . . . , n. (9)

o maximize a separable non-linear objective function subject to

 non-linear knapsack constraint. The decision variables are non-

egative integers that have individual upper and lower bounds.

roblem (9) has been known to admit an FPTAS, provided either

he functions π j are concave and the functions v j are convex (see

ochbaum, 1995 ) or these functions are monotone (see Kovalyov,

996 ). It is shown in Halman et al. (2014) that problem (9) admits

n FPTAS provided that functions π j and v j are non-decreasing and

he length of any of their values under the binary encoding is poly-

omially bounded by the length of the problem’s input. They also

onsider the minimization counterpart of this problem. These two

roblems are among the most general problems of integer pro-

ramming with a single constraint that are known to admit an FP-

AS, provided that the objective function is separable. 

While the framework of Halman et al. (2014) cannot be applied

as is” to problem (5) due to the non-separability of the objec-

ive function, we show in Section 4 how to apply their technique

f K -approximation sets and functions in order to design an FP-

AS for it. That section also contains a brief review of the general

ramework based on the technique of K -approximation sets and
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unctions. Moreover, the approach can further be adapted to han-

ling more general problems than problem (5) . 

In the forthcoming sections, we show that the DP algorithms

vailable for problem (5) and its maximization counterpart can be

onverted into FPTASs. This is done in a surprisingly simple way,

nd the analysis of the performance of these schemes is rather el-

mentary. Moreover, the running time of our FPTASs, although not

trongly polynomial, can be seen as computationally acceptable. 

. Minimization problem: FPTAS by geometric rounding 

In this section, we describe a version of a dynamic program-

ing (DP) algorithm for solving problem (5) . Then we show that

nder certain conditions the DP algorithm can be converted into

n approximation scheme that behaves as an FPTAS. 

In the DP algorithms below, the decision variables x j are

canned in the order of their numbering and are given either the

alue of 1 (an item is taken) or 0 (an item is left). 

Define 

 k = 

k ∑ 

j=1 

α j , k = 1 , 2 , . . . , n. (10)

nd suppose that the values x 1 , x 2 , . . . , x k have been assigned. One

ersion of our DP algorithm deals with partial solutions associated

ith states of the form 

( k, Z k , y k ) , 

here 

k is the number of the assigned variables; 

Z k is the current value of the objective function; 

y k := 

∑ k 
j=1 α j x j is the state variable, whose value is the total

weight of the taken items. 

Let us call the states of the form ( k , Z k , y k ), i.e., states whose

tate variable is y k , the primal states, and let the DP algorithm that

anipulates the primal states be called the primal algorithm. The

rimal DP algorithm is used further in this paper as a basis for

esigning an FPTAS for the maximization counterpart of problem

5) . Its formal description is given in Section 5.4 . 

For obtaining an FPTAS for problem (5) , in which the objective

as to be minimized, it is convenient to use another form of the DP

lgorithm that manipulates the states of the dual form (k, Z k , ̂  y k ) ,

here k and Z k have the same meaning as above, while the state

ariable is ˆ y k = A k − y k . It is clear that ˆ y k is the total weight of the

onsidered items that have not been taken. 

We refer to the DP algorithm for solving problem (5) that ma-

ipulates dual states of the form (k, Z k , ̂  y k ) as dual algorithm. Its

ormal statement is given below. 

Algorithm DDP 

Step 1. Start with the initial state (0 , Z 0 , ̂  y 0 ) = (0 , 0 , 0) . Com-

pute the values A k , k = 1 , 2 , . . . , n, by (10) . 

Step 2. For all k from 0 to n − 1 do 

Make transitions from each stored state of the form (
k, Z k , ̂  y k 

)
, (11) 

into the states of the form (
k + 1 , Z k +1 , ̂  y k +1 

)
(12) 

by assigning the next variable x k +1 . 

(a) Define x k +1 = 1 , provided that it is feasible to take item

k + 1 , i.e., if the ( k + 1 ) -th nested constraint A k +1 − ˆ y k ≤
d k +1 holds. If feasible, the assignment x k +1 = 1 changes a

state of the form (11) to a state of the form (12) , where ( )

ˆ y k +1 = 

ˆ y k ; Z k +1 = Z k + f k +1 A k +1 − ˆ y k +1 , (13)  
(b) Define x k +1 = 0 , which is always feasible. This assign-

ment changes a state of the form (11) into the state of

the form (12) such that 

ˆ y k +1 = 

ˆ y k + αk +1 ; Z k +1 = Z k + g k +1 

(
ˆ y k +1 

)
. (14)

Step 3. Output the optimal value of the function that corre-

sponds to the smallest value of Z n among all found states

of the form (n, Z n , ̂  y n ) . 

To develop an FPTAS for problem (5) we need certain assump-

ions regarding computability and properties of functions f j and g j :

• each function f j and g j , 1 ≤ j ≤ n , can be computed in constant

time; 
• there exists a constant r ≥ 1 such that for each j , 1 ≤ j ≤ n , and

for any positive u 

g j ( ux ) ≤ u 

r g j ( x ) . (15) 

Notice that these assumptions hold, e.g., if the functions f j and

 j are polynomials of a fixed degree that does not exceed r in the

ase of the functions g j . Notice that if (15) holds as the equal-

ty then the corresponding function is homogeneous. Moreover, in-

quality (15) with r = 1 represents the relation known as the de-

reasing returns to scale. 

The role of the assumption (15) is discussed further in this sec-

ion, after the presentation of the FPTAS and the proof of its cor-

ectness. Since the argument of functions g j is the total weight of

he non-taken items, it is natural to base the FPTAS on conversion

f Algorithm DDP which uses variables ˆ y k , 1 ≤ k ≤ n , as state vari-

bles. 

Additionally, throughout the paper we assume that for a given

ositive ε a power of 1 + ε can be computed in constant time. 

In the description and the analysis of the FPTAS the following

pper bound 

 

UB = 

n ∑ 

j=1 

f j 
(
d j 

)
+ 

n ∑ 

j=1 

g j 
(
A j 

)
(16) 

s used. The algorithm below splits the range of ˆ y -values and the

ange of Z -values into subintervals with the endpoints that form

eometric sequences. 

Algorithm EpsMin1 

Step 1. Compute Z UB by (16) and A k , 1 ≤ k ≤ n , by (10) . For a

given positive ε, introduce the intervals, whose endpoints

form geometric sequences. For the ˆ y − values, introduce the

intervals 

[0 , 0] , 

[ 
1 , ( 1 + ε ) 

1 
rn 

] 
, 

[ 
( 1 + ε ) 

1 
rn , ( 1 + ε ) 

2 
rn 

] 
, . . . , 

[ 
( 1 + ε ) 

u −1 
rn , A n 

]
where u is the largest integer such that 

⌈ 

( 1 + ε ) 
u −1 
rn 

⌉ 

≤ A n .

Call these intervals I � , � = 0 , 1 , . . . , u. For the Z−values, in-

troduce the intervals 

[0 , 0] , 

[ 
1 , ( 1 + ε ) 

1 
n 

] 
, 

[ 
( 1 + ε ) 

1 
n , ( 1 + ε ) 

2 
n 

] 
, [ 

( 1 + ε ) 
2 
n , ( 1 + ε ) 

3 
n 

] 
, . . . 

[ 
( 1 + ε ) 

v −1 
n , Z UB 

] 
, 

where v is the largest integer such that 

⌈ 

( 1 + ε ) 
v −1 

n 

⌉ 

≤ Z UB .

Call these intervals J t , t = 0 , 1 , . . . , v . 
Step 2. Store the initial state (0,0,0). For each k, 0 ≤ k ≤ n − 1 ,

do the following: 

According to Algorithm DDP move from a stored dual state

(k, Z k , ̂  y k ) to at most two feasible dual states of the form

(k + 1 , Z k +1 , ̂  y k +1 ) , where Z k +1 ≤ Z UB , using the relations

(13) and (14) . If the number of generated states (k +
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1 , Z k +1 , ̂  y k +1 ) with the Z -values in the same interval J t and

with the ˆ y -values in the same interval I � exceeds one, then

keep only one of these states, that with the largest ˆ y -value. 

Step 3. Among all values Z n found in Step 2 identify the small-

est one. Starting from a state associated with this value of

Z n , perform backtracking to find the corresponding decision

variables x j , j = 1 , . . . , n . Compute the value of the objective

function with the found x j ’s, call this value Z ε and accept it

as an approximate value of the objective function. 

We now analyze the performance of Algorithm EpsMin1. 

Lemma 1. Assume that the dynamic programming Algorithm DDP is

applied to problem (5) that satisfies (15) and finds a chain of dual

states 

(0 , 0 , 0) , (1 , Z ∗1 , ̂  y ∗1 ) , . . . , (n, Z ∗n , ̂  y ∗n ) 

leading to the optimal value Z ∗ = Z ∗n . Then for each k , 1 ≤ k ≤ n , Algo-

rithm EpsMin1 finds a state 
(
k, Z k , ̂  y k 

)
such that 

ˆ y ∗k ≤ ˆ y k ≤ ( 1 + ε ) 
k 
rn ˆ y ∗k (17)

and 

Z k ≤ ( 1 + ε ) 
k 
n Z ∗k . (18)

Proof. The proof is by induction. To establish the basis of induc-

tion for k = 1 , notice the following. If x ∗
1 

= 1 then take ˆ y 1 = 0 , Z 1 =
Z ∗1 = f 1 ( α1 ) , while if x ∗1 = 0 then take ˆ y 1 = ˆ y ∗1 = α1 , Z 1 = g 1 ( α1 ) .

The conditions (17) and (18) hold for k = 1 . 

Assume that the lemma holds for all k , 1 ≤ k ≤ q < n . In the opti-

mal chain of dual states, in accordance with (13) and (14) we have

that for k = q a state (q + 1 , Z ∗
q +1 

, ̂  y ∗
q +1 

) is computed, where 

ˆ y ∗q +1 = 

ˆ y ∗q + αq +1 

(
1 − x ∗q +1 

)
. 

This state is obviously feasible, i.e., A q +1 − ˆ y ∗
q +1 

≤ d q +1 . 

Take a stored state (q, Z q , ̂  y q ) and consider a state (q + 1 ,
˜ Z q +1 , ̃  y q +1 ) obtained from it by the transformation 

˜ y q +1 = 

ˆ y q + αq +1 

(
1 − x ∗q +1 

)
. 

It follows from (17) applied with k = q that 

˜ y q +1 ≥ ˆ y ∗q + αq +1 

(
1 − x ∗q +1 

)
= 

ˆ y ∗q +1 , (19)

i.e., A q +1 − ˜ y q +1 ≤ A q +1 − ˆ y ∗
q +1 

≤ d q +1 . This implies that state (q + 1 ,

˜ Z q +1 , ̃  y q +1 ) is feasible and will be contained among states com-

puted in Step 2. 

We also deduce from (17) applied with k = q that 

˜ y q +1 ≤ ( 1 + ε ) 
q 
rn ˆ y ∗q + αq +1 

(
1 − x ∗q +1 

)
≤ ( 1 + ε ) 

q 
rn 

(
ˆ y ∗q + αq +1 

(
1 − x ∗q +1 

))
= ( 1 + ε ) 

q 
rn ˆ y ∗q +1 . (20)

If x ∗q +1 = 1 , then it follows from (19) and (18) for k = q as well

as from the monotonicity of function f q +1 that 

˜ Z q +1 = Z q + f q +1 

(
A q +1 − ˜ y q +1 

)
≤ ( 1 + ε ) 

q 
n Z ∗q + f q +1 

(
A q +1 − ˆ y ∗q +1 

)
≤ ( 1 + ε ) 

q 
n 

(
Z ∗q + f q +1 

(
A q +1 − ˆ y ∗q +1 

))
= ( 1 + ε ) 

q 
n Z ∗q +1 . (21)

If x ∗q +1 = 0 , then it follows from (20) and (18) for k = q as well

as from the monotonicity and the main property (15) of function

g q +1 that 

˜ Z q +1 = Z q + g q +1 

(
˜ y q +1 

)
≤ ( 1 + ε ) 

q 
n Z ∗q + g q +1 

(
( 1 + ε ) 

q 
rn ˆ y ∗q +1 

)
≤ ( 1 + ε ) 

q 
n Z ∗q + ( 1 + ε ) 

q 
n g q +1 

(
ˆ y ∗q +1 

)
= ( 1 + ε ) 

q 
n Z ∗q +1 . (22)

Thus, in any case, 

˜ Z q +1 ≤ ( 1 + ε ) 
q 
n Z ∗q +1 . (23)
If state 
(
q + 1 , ̃  Z q +1 , ̃  y q +1 

)
is kept as a state 

(
q + 1 , Z q +1 , ̂  y q +1 

)
,

.e., if we define ˆ y q +1 := ˜ y q +1 and Z q +1 = 

˜ Z q +1 , then (17) and ( 18 )

old for k = q + 1 . 

If state 
(
q + 1 , ̃  Z q +1 , ̃  y q +1 , 

)
is not kept, then there exists a feasi-

le state 
(
q, Z q +1 , ̂  y q +1 

)
such that both values ˜ Z q +1 and Z q +1 belong

o the same interval J t , while both values ˆ y q +1 and ˜ y q +1 belong to

he same interval I � and ˆ y q +1 > ˜ y q +1 . Since ˆ y ∗
q +1 

≤ ˜ y q +1 , we have

hat ˆ y ∗q +1 ≤ ˆ y q +1 as required by (17) . Besides, it follows that if two

ˆ  -values belong to the same interval I � , then their ratio never ex-

eeds the ratio of its endpoints equal to ( 1 + ε ) 
1 
rn , and we derive

rom (20) that 

ˆ 
 q +1 ≤ ( 1 + ε ) 

1 
rn ˜ y q +1 ≤ ( 1 + ε ) 

q +1 
rn ˆ y ∗q +1 . 

Similarly, the ratio between the values ˜ Z q +1 and Z q +1 does not

xceed the length of the interval J t , so that due to (23) we have

hat 

 q +1 ≤ ( 1 + ε ) 
1 
n ˜ Z q +1 ≤ ( 1 + ε ) 

q +1 
n Z ∗q +1 . 

ence, (18) holds for k = q + 1 . �

heorem 1. For problem (5) that satisfies (15) , Algorithm EpsMin1 is

n FPTAS that requires O 

(
n 3 
ε 2 

log A n log Z UB 
)

time. 

roof. By Lemma 1 Algorithm EpsMin1 outputs a state (n, Z n , ̂  y n ) ,

nd due to property (18) for k = n we have that 

 n ≤ ( 1 + ε ) 
n 
n Z ∗n = ( 1 + ε ) Z ∗n . 

Thus, the algorithm delivers the required quality of approx-

mation. Let us estimate its running time. Computing Z UB in

tep 1 takes O ( n ) time. Since r is a constant, the numbers of

sed intervals can be estimated as u = O 

(
n log 1+ ε A n 

)
and v =

 

(
n log 1+ ε Z UB 

)
. In each of n iterations the number of kept states

oes not exceed u v , and at most 2 u v new states are created

f which at most u v are kept. The overall running time is

 ( n + nu v ) = O 

(
n 3 log 1+ ε A n log 1+ ε Z UB 

)
. Since for any positive b

he equality log 1+ ε b = O 

(
1 
ε log b 

)
holds, we obtain the running

ime of O 

(
n 3 

ε 2 
log A n log Z UB 

)
, which is polynomial (but not strongly

olynomial) with respect to the length of the problem’s input. �

There are several reasons why the assumption (15) turns out

o be essential. First, the constant r helps us to define the inter-

als for the ˆ y -variables and to make sure that their number, u , is

ppropriately bounded; see the proof of Theorem 1 . Second, one

f the crucial points in the proof of Lemma 1 is to demonstrate

hat ˜ Z q +1 ≤ ( 1 + ε ) 
q 
n Z ∗q +1 . Since ˜ y q +1 ≥ ˆ y ∗q +1 , to derive the chain of

nequalities (21) we need no assumptions on the behavior of func-

ion f j , except its monotonicity. On the other hand, to derive the

hain of inequalities (22) , we need to rely on (15) . 

Notice that the running time stated in Theorem 1 holds, pro-

ided that computing each function f j and g j takes constant time.

he algorithm still behaves as an FPTAS if we assume that such

omputation requires polylogarithmic time. The latter assumption

s widely used in the analysis of the FPTASs for problems of non-

inear optimization, see, e.g., Halman et al. (2014) . 

. Minimization problem: FPTAS by K -approximation sets and 

unctions 

In this section, we give another FPTAS for problem (5) , which is

aster with respect to each of the terms n and ε, and is based on

he technique of finding K -approximation sets and functions briefly

iscussed in Section 2 . We first formulate a DP algorithm, then re-

iew the K -approximation sets and functions technique, and finally

esign and analyze an FPTAS. 
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.1. A DP formulation 

Let y , 0 ≤ y ≤ d n , denote a possible value of the total weight of

ll taken items; we refer to this value as the available space . The

mproved DP algorithm presented below manipulates states of the

orm 

( k, z k ( y ) , a k ( y ) , b k ( y ) ) , 

here for 0 ≤ k ≤ n and 0 ≤ y ≤ d n , the state variables are as follows:

• k , is the number of considered items, for which the “take-or-

leave” decisions have been made; 
• z k ( y ), 0 ≤ k ≤ n , is the optimal value of the objective (5) , pro-

vided that only items 1 , . . . , k have been considered and the

available space is min { y , d k }; 
• a k ( y ) ≤ y is the actual used space, i.e., the total weight of the

taken items in the optimal solution associated with z k ( y ); 
• b k ( y ) ≤ A k is the total weight of the left items in the optimal

solution associated with z k ( y ); as above, A k is defined by (10) . 

The improved DP algorithm can be stated as follows. 

Algorithm DPab 

Step 1. Start with the initial states (0, z 0 ( y ), a 0 ( y ), b 0 ( y )),

0 ≤ y ≤ d n , defined by 

z 0 (y ) = a 0 (y ) = b 0 (y ) = 0 , y = 0 , . . . , d n . 

Step 2. For all k from 1 to n find the states ( k , z k ( y ), a k ( y ), b k ( y )),

as follows: 

(a) Compute 

z ′ ( y ) = f k (a k −1 (y ) + αk ) + z k −1 (y − αk ) , αk ≤ y ≤ d k ;
z ′′ ( y ) = g k (b k −1 (y ) + αk ) + z k −1 (y ) , 0 ≤ y ≤ d k . 

(b) For each y , 0 ≤ y ≤ d k , compute 

z k ( y ) = 

{ 

z ′′ ( y ) , if 0 ≤ y < αk 

min { z ′ ( y ) , z ′′ ( y ) } , if αk ≤ y ≤ d k 
z k (d k ) , if d k < y ≤ d n 

. 

(c) For each y , 0 ≤ y ≤ d k , compute 

a k ( y ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

a k −1 (y ) , if 0 ≤ y < αk 

a k −1 (y ) , if αk ≤ y ≤ d k and z k ( y ) = z ′′ ( y ) 
a k −1 (y ) + αk , if αk ≤ y ≤ d k and z k ( y ) = z ′ ( y ) 
a k (d k ) , if d k < y ≤ d n 

. 

(d) For each y , 0 ≤ y ≤ d k , compute 

b k ( y ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

b k −1 (y ) + αk , if 0 ≤ y < αk 

b k −1 (y ) + αk , if αk ≤ y ≤ d k and z k ( y ) = z ′′ ( y ) 
b k −1 (y ) , if αk ≤ y ≤ d k and z k ( y ) = z ′ ( y ) 
b k (d k ) , if d k < y ≤ d n 

. 

Step 3. Output z n ( d n ) as the optimal value of the function. The

actual take-or-leave decisions (i.e., the values of the decision

variables) can be found by backtracking. 

Note that each function z k ( y ) is monotone non-increasing, since

s y grows the problem becomes less constrained, i.e., the more

pace is available for items to be taken, the less we are forced

o make the “leave” decisions. Using similar arguments, note that

ach function a k ( y ) is monotone non-decreasing, since the more

pace y is available to accommodate the taken items, the more

tems we may take. Furthermore, note that each function b k ( y )

s monotone non-increasing: by a symmetric argument, the more

pace y is available to accommodate the taken items, the less items

e may actually leave. Note also that our DP formulation is uni-

ariate and involves three univariate and monotone functions. The

ime and space needed to solve the recurrences is O ( nd n ), i.e.,

seudopolynomial in the input size. 
.2. Overview of K -approximation sets and functions 

In this section, we provide an overview of the technique of K -

pproximation sets and functions. In the next section, we adapt the

iscussed tools to constructing an FPTAS for our problem. 

For a function ϕ : { A, . . . , B } → R that is not identi-

ally zero, denote ϕmin := min A ≤ x ≤ B {| ϕ( x )|: ϕ( x ) � = 0}, and
max := max A ≤ x ≤ B {| ϕ( x )|}. 

Halman, Klabjan, Mostagir, Orlin, and Simchi-Levi (2009) have

ntroduced the technique of K -approximation sets and functions,

nd used it to develop an FPTAS for a certain stochastic inven-

ory control problem. Halman et al. (2014) have applied this tool

o develop a framework for transforming rather general classes of

tochastic DPs into FPTASs including (i) non-decreasing (respec-

ively, non-increasing) DPs with the single-period cost functions

hat are non-decreasing (respectively, non-increasing) in the state

ariable and (ii) convex DPs with the single-period cost functions

hat have a certain convex structure and the transition function is

ffine. 

This technique has been used to yield FPTASs to various op-

imization problems, see Halman et al. (2014) and the references

herein. Notice that for many of these problems no FPTAS was pre-

iously known. 

We now present formal definitions related to K -approximation

et and functions. Let K ≥ 1, α, ˜ α ≥ 0 be arbitrary real numbers

nd let ϕ, ˜ ϕ : { A, . . . , B } → R 

+ be arbitrary functions. We say that

˜ is a K-approximation value of α if α ≤ ˜ α ≤ Kα. We say that ˜ ϕ is

 K-approximation function of ϕ if ϕ(x ) ≤ ˜ ϕ (x ) ≤ Kϕ(x ) (i.e., ˜ ϕ (x )

s a K -approximation value of ϕ( x )) for all x = A, . . . , B . Below, we

ometime omit the word “value” (respectively, “function”) from the

erm “K -approximation value” (or respectively, “K -approximation

unction”) whenever it is clear from the context. 

The following property of K -approximation functions is ex-

racted from Halman et al. (2014 , Prop. 5.1), which provides a set of

eneral computational rules of K -approximation functions. Its va-

idity follows directly from the definition of K -approximation func-

ions. 

roperty 1. (Calculus of K-approximation functions) ( Halman et al.,

014 , Prop. 5.1) For i = 1 , 2 let K i ≥ 1, let ϕ i , ˜ ϕ i : { A, . . . , B } → R 

+ and

et ˜ ϕ i be a K i -approximation of ϕi . Let ψ 1 : { A 

′ , . . . , B ′ } → { A, . . . , B } be

n arbitrary function and α, β ∈ R 

+ be arbitrary positive real num-

ers. The following properties hold: 

Linearity of approximation: α + β ˜ ϕ 1 is a K 1 -approximation func-

tion of α + βϕ 1 . 

Summation of approximation: ˜ ϕ 1 + ˜ ϕ 2 is a max { K 1 , K 2 } -

approximation function of ϕ 1 + ϕ 2 . 

Composition of approximation: ˜ ϕ 1 (ψ 1 ) is a K 1 -approximation

function of ϕ( ψ 1 ) . 

Minimization of approximation: min { ̃  ϕ 1 , ˜ ϕ 2 } is a max { K 1 , K 2 } -

approximation of min { ϕ1 , ϕ2 } . 

Maximization of approximation: max { ̃  ϕ 1 , ˜ ϕ 2 } is a max { K 1 , K 2 } -

approximation of max { ϕ1 , ϕ2 } . 

Approximation of approximation: If ϕ 2 = ˜ ϕ 1 then ˜ ϕ 2 is a K 1 K 2 -

approximation of ϕ1 . 

Since the problem studied in this paper has a monotone struc-

ure over intervals of integer numbers, to simplify the discussion,

e concentrate on Halman et al. ’s definitions for K -approximation

ets and functions specialized to monotone functions over inter-

als of integer numbers. We next turn to defining K -approximation

ets. The idea behind such approximation sets is to keep a small

i.e., of a polynomially bounded size) set of points in the domain

f a function, ensuring that step interpolation between the func-

ion’s values on this set guarantees rigorous error bounds. 
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Definition 1 (Halman et al., 2014, Def. 4.4) . Let ϕ : { A, . . . , B } → R

be a monotone function. For any subset W ⊆ { A, . . . , B } satisfying

A , B ∈ W , the approximation of ϕ induced by W is the function 

ˆ ϕ (x ) = 

{
ϕ( min y ∈ W 

{ y ≥ x } ) , if ϕ is a non-decreasing function
ϕ( max y ∈ W 

{ y ≤ x } ) , if ϕ is a non-increasing function

Definition 2 (Halman et al., 2014, Def. 4.2 and Prop. 4.5) . Let

K ≥ 1 and let ϕ : { A, . . . , B } → R 

+ be a monotone function. Let W ⊆
{ A, . . . , B } be a subset satisfying A , B ∈ W . We say that W is a K-

approximation set of ϕ if the approximation of ϕ induced by W is

a K -approximation function of ϕ. 

In all algorithms discussed in this section, we assume that for

an input function ϕ an oracle is available which for any x returns

the value ϕ( x ) in t ϕ time. The statement below asserts that for a

monotone function ϕ a K -approximation set of a polynomial size

can be found in polynomial time. 

Proposition 1. ( Halman et al., 2014 , Prp. 4.6) Let ϕ : { A, . . . , B } →
R 

+ be a monotone function, for which an oracle with a query time

of t ϕ is available. Then for every K > 1 , it is possible to com-

pute a K-approximation set of ϕ of size O ( log K 
ϕ max 

ϕ min ) in O 

(
t ϕ (1 +

log K 
ϕ max 

ϕ min ) log (B − A ) 
)

time. 

A procedure for constructing a K -approximation function for

any monotone function ϕ : { A, . . . , B } → R 

+ is stated as Func-

tion Compress . 

Function Compress 

Inputs: ϕ, { A, . . . , B } , K, where ϕ : { A, . . . , B } → R 

+ is a monotone

function represented by an appropriate oracle 

Returns: a monotone K -approximation of ϕ

Step 1. Obtain a K -approximation set W of ϕ over the domain

of { A, . . . , B } . 
Step 2. Return ˜ ϕ , the approximation of ϕ induced by W as an

array { ( x, ˜ ϕ ( x ) ) | x ∈ W } sorted in increasing order of x . 

As demonstrated by Halman et al. (2014 , Prop. 4.5), K -

approximations of a function ϕ can be found even if the function

itself is not available, but there exists an oracle that computes val-

ues of some function ϕ̄ that is an approximation function of ϕ.

Below we present a statement, adapted from Halman et al. (2014 ,

Prop. 4.5), that applies to finding approximations of a monotone

function ϕ by calling Function Compress . 

Proposition 2. Let K 1 , K 2 ≥ 1 be real numbers and let

ϕ : { A, . . . , B } → R 

+ be a monotone function. Let ϕ̄ be a mono-

tone K 2 -approximation function of ϕ. Then Function COM-

PRESS ( ̄ϕ , { A, . . . , B } , K 1 ) returns in O 

(
t ϕ (1 + log K 1 

ϕ max 

ϕ min ) log (B − A ) 
)

time a monotone step function ˜ ϕ with O ( log K 1 
ϕ max 

ϕ min ) steps

that K 1 K 2 -approximates ϕ, and of which the query time is

 ˜ ϕ = O ( log log K 1 
ϕ max 

ϕ min ) . 

In Proposition 2 , the estimates of computation times and ap-

proximation quality follow from the discussion above and an ap-

plication of the calculus of approximation (the approximation of

approximation rule). 

4.3. FPTAS design and analysis 

We now develop and analyze an FPTAS for problem (5) . For our

FPTAS to work, we need certain assumptions regarding properties

of the non-decreasing functions f j and g j . The first assumption is

identical to the one used in Section 3 , i.e., there exists a constant

r ≥ 1 such that for any positive u inequality (15) holds. The second
ssumption is that the following similar inequality 

f j (ux ) ≤ u 

r f j (x ) (24)

olds for each j , 1 ≤ j ≤ n , and for any positive u . Assumption

15) (respectively, (24) ) tells us that if ˜ x is a K -approximation

alue of x then g j ( ̃  x ) (respectively, f j ( ̃  x ) ) is a K 

r -approximation

f g j ( x ) (respectively, of f j ( x )). Notice that the assumption (24) is

sed for convenience in the beginning of our reasoning and is later

ropped. 

Our FPTAS is based on Algorithm DPab given in Section 4.1 . In

very iteration k , we obtain ˜ z k (·) , ˜ a k (·) and 

˜ b k (·) that are approx-

mation functions of the true functions z k ( · ), a k ( · ) and b k ( · ), re-

pectively. Each of these approximate functions is obtained by call-

ng Function Compress with the relevant input. The input functions

¯ k ( ·) , ā k ( ·) and b̄ k ( ·) used in these calls are represented by the

orresponding oracles built in line with Algorithm DPab, and are,

n turn, approximation functions of the true functions z k ( · ), a k ( · )

nd b k ( · ), respectively. Due to the calls of Compress in Step 3(b)

nd 3(c), with each iteration the quality of approximation of each

˜  k (·) and 

˜ b k (·) deteriorates by a factor of K compared to ˜ a k −1 (·)
nd 

˜ b k −1 (·) , respectively. The approximation of ˜ z k (·) deteriorates

y a factor of K 

r+1 due to the call of Compress in Step 3(a) cou-

led with the fact that when computing each function f k ( · ) and

 k ( · ) with an argument that is a K -approximation value of the true

rgument, the calculated value is a K 

r -approximation value of the

rue value; see the discussion in the previous paragraph. 

Formally, the approximation scheme can be stated as follows. 

Algorithm EpsMin2 

Step 1. Compute Z UB by (16) . For a given positive ε, compute

K = ( 1 + ε ) 
1 

r ( n −1 ) + n . 
Step 2. Start with the initial states 

(
0 , ̃  z 0 ( y ) , ̃  a 0 ( y ) , ̃  b 0 ( y ) 

)
,

where each function is represented as a two-component ar-

ray compatible with the structure of the output of Function

Compress , i.e., by ((0, 0), ( d n , 0)). 

Step 3. For all k from 1 to n , do 

(a) Determine function ˜ z k (·) returned by calling Function

Compress ( ̄z k ( ·) , { 0 , . . . , d n } , K ) , provided that for comput-

ing values of the input function z̄ k ( ·) the following oracle

is used: 

z̄ k ( y ) = 

{ 

z ′′ ( y ) , if 0 ≤ y < αk 

min { z ′ ( y ) , z ′′ ( y ) } , if αk ≤ y ≤ d k 
z̄ k (d k ) , if d k < y ≤ d n 

, 

where 

z ′ ( y ) = f k ( ̃  a k −1 (y ) + αk ) + ̃

 z k −1 (y − αk ) ;
z ′′ ( y ) = g k ( ̃ b k −1 (y ) + αk ) + ̃

 z k −1 (y ) . 

(b) Determine function ˜ a k (·) returned by calling Function

Compress ( ̄a k ( ·) , { 0 , . . . , d n } , K ) , provided that for comput-

ing values of the input function ā k ( ·) the following oracle

is used: 

ā k ( y ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

˜ a k −1 (y ) , if 0 ≤ y < αk 

˜ a k −1 (y ) , if αk ≤ y ≤ d k and z̄ k ( y ) = z ′′ ( y ) 
˜ a k −1 (y ) + αk , if αk ≤ y ≤ d k and z̄ k ( y ) = z ′ ( y ) 
ā k (d k ) , if d k < y ≤ d n 

.

(c) Determine function 

˜ b k (·) returned by calling Function

Compress 

(
b̄ k ( ·) , { 0 , . . . , d n } , K 

)
, provided that for comput-

ing values of the input function b̄ k ( ·) the following oracle

is used: 

b̄ k ( y ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

˜ b k −1 (y ) + αk , if 0 ≤ y < αk 

˜ b k −1 (y ) + αk , if αk ≤ y ≤ d k and z̄ k ( y ) = z ′′ ( y ) 
˜ b k −1 (y ) , if αk ≤ y ≤ d k and z̄ k ( y ) = z ′ ( y ) 

.

b k (d k ) , if d k < y ≤ d n 
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Step 4. Output ˜ z n (d n ) as an approximate value of the small-

est value z n ( d n ) of the original objective. The actual take-or-

leave decisions (i.e., the values of the decision variables) can

be found by backtracking. 

We now analyze the performance of Algorithm EpsMin2. 

emma 2. If applied to problem (5) that satisfies (15) and (24) , Algo-

ithm EpsMin2 for each j , 0 ≤ j ≤ n , computes functions such that 

• ˜ z j (·) is a K 

r max { j−1 , 0 } + j -approximation of z j ( · ); 

• ˜ a j (·) and ˜ b j (·) is a K 

j -approximation of a j ( · ) and of b j ( · ), re-

spectively. 

roof. We notice first that z̄ k (·) , ā k (·) , ̄b k (·) are all monotone func-

ions for each k , 0 ≤ k ≤ n . Therefore, all calls to Compress are well

efined and we may use Proposition 2 in our analysis. 

For some q , 1 < q < n , assume that the lemma holds for each j ,

 ≤ j ≤ q − 1 < n . In particular, we assume that 

• ˜ z q −1 (·) is a K 

r(q −2)+ q −1 -approximation of z q −1 (·) ; 
• ˜ a q −1 (·) and 

˜ b q −1 (·) is a K 

q −1 -approximation of a q −1 (·) and of

b q −1 (·) , respectively. 

We want to prove that 
• ˜ z q (·) is a K 

r(q −1)+ q -approximation of z q ( · ); 

• ˜ a q (·) and 

˜ b q (·) is a K 

q -approximation of a q ( · ) and of b q ( · ),

respectively. 

Running Step 3(b) of Algorithm EpsMin2 for k = q, we get

y the induction hypothesis and the calculus of approxima-

ion (the linearity of approximation rule) that ā q (·) is a K 

q −1 -

pproximation of a q ( · ). Looking at the output of Function Com-

ress 

(
ā q ( ·) , { 0 , . . . , d n } , K 

)
, we deduce from Proposition 2 ap-

lied with K 1 = K and K 2 = K 

q −1 , that ˜ a q (·) is a K 

q -approximation

f a q ( · ), as required. Similarly, considering Step 3(c) of Algo-

ithm EpsMin2, we deduce that ˜ b q (·) is a K 

q -approximation of

 q ( · ). 

We now turn to evaluating the approximation ratio of ˜ z q (·) .
y the induction hypothesis and the calculus of approximation

the linearity of approximation rule), we get that ˜ b q −1 (y ) + α j 

s a K 

q −1 -approximation of b q −1 (y ) + α j . Therefore, it follows

rom (15) that g q ( ̃ b q −1 (y ) + α j ) is a K 

r(q −1) -approximation of

 q (b q −1 (y ) + α j ) . Using the induction hypothesis for ˜ z q −1 and the

alculus of approximation (the summation of approximation rule),

e get that g q ( ̃ b q −1 (y ) + α j ) + ̃  z q −1 (y ) is a K 

max { r (q −1) ,r (q −2)+ q −1 } -
pproximation and, therefore, is a K 

r(q −1)+ q −1 -approximation of

 q (b q −1 (y ) + α j ) + z q −1 (y ) . Similarly, using (24) , the composition

f approximation rule and the summation of approximation rule,

e obtain that f q ( ̃  a q −1 (y ) + α j ) + ̃  z q −1 (y − α j ) is a K 

r(q −1)+ q −1 -

pproximation of f q (a q −1 (y ) + α j ) + z q −1 (y − α j ) . Using once more

he calculus of approximation (the minimization of approximation

ule) we derive that z̄ q (y ) is a K 

r(q −1)+ q −1 -approximation of z q ( y ).

ooking at the output of Function Compress 

(
z̄ q ( ·) , { 0 , . . . , d n } , K 

)
,

e deduce from Proposition 2 applied with K 1 = K and K 2 =
 

r(q −1)+ q −1 , that ˜ z q (·) is a K 

r(q −1)+ q -approximation of z q ( · ), as

equired. �

heorem 2. For problem (5) that satisfies (15) and (24) , Algo-

ithm EpsMin2 is an FPTAS that computes a (1 + ε) -approximation

alue of z n ( d n ) in 

 

(
n 

2 ( log Z UB + log A n ) log d n 

ε 

(
log 

n log Z UB 

ε 
+ log 

n log A n 

ε 

))
time . 

roof. Lemma 2 implies that ˜ z n ( d n ) is a K 

r(n −1)+ n -approximation

alue of the optimal value z n ( d n ) of the objective function. For K

efined as in Step 1 of Algorithm EpsMin2, we obtain that ˜ z n ( d n ) ≤
( 1 + ε ) z n ( d n ) , which provides the desired accuracy. 
Now, we turn to analyzing the running time of the algorithm.

teps 1 and 2 require constant time. Note that Step 2 defines ora-

les to retrieve the zero values ˜ z 0 (y ) , ̃  a 0 (y ) and 

˜ b 0 (y ) for y values

hat are required in computation in Step 3 for k = 1 . 

For any k , 1 ≤ k ≤ n , the largest value that function ˜ z k (y )

ay achieve is Z UB and its domain is { 0 , . . . , d n } . Thus,

roposition 2 implies that the running time of Step 3(a) for

 fixed k is O 

(
t z̄ k log K Z 

UB log d n 
)
. Using the oracle defined for

unction z̄ k ( ·) , we have that t z̄ k = O (t ˜ z k −1 
+ t ˜ a k −1 

+ t ˜ b k −1 
) . It fol-

ows from Proposition 2 applied with K 1 = K that t ˜ a k −1 
= t ˜ b k −1 

=
 ( log log K A n ) , since the largest value that each function ˜ a q (·) and

˜ 
 q (·) may achieve is A n , i.e., the sum of the weights of all items.

imilarly, t ˜ z k −1 
= O ( log log K Z 

UB ) , so that 

 z̄ k = O ( log log K Z 
UB + log log K A n ) . (25)

The running time of Step 3(b) for a fixed k is

 

(
t ā k log K A n log d n 

)
, and the structure of the corresponding

racle implies that 

 ā k = O (t z̄ k + t ˜ a k −1 
) = O ( log log K Z 

UB + log log K A n ) . (26)

By symmetry, the running time of Step 3(c) for a fixed k is

 

(
t 
b̄ k 

log K A n log d n 
)
, where t 

b̄ k 
= O (t ā k ) . 

We enter Step 4 having found the array representation

f function ˜ z n (·) . By Proposition 2 it takes O ( log log K Z 
UB ) =

 

(
log n log Z UB 

ε 

)
time to compute ˜ z n (y ) for any value y (i.e., the de-

endency on n is only logarithmic). In order to build the feasi-

le solution that ˜ z n (x ) approximates, we need to perform back-

racking to discover the various values of the n leave-or-take de-

isions and then re-evaluate z n , exactly as is done in Step 3 of Al-

orithm EpsMin1. This additionally takes O ( n ) time. 

Thus, the running time of Algorithm EpsMin2 is determined

y the total time complexity of Step 3 over all iterations,

hich is O (n 
(
log K Z 

UB + log K A n 

)
log d n 

(
log log K Z 

UB + log log K A n 

)
) .

oving to the base 2 logarithms, using the equation log K =
og r(n −1)+ n √ 

1 + ε = O ( ε rn ) and taking into account that r is constant,

he claimed running time follows. �

As reflected in its name, Algorithm DPab computes both values

 k ( y ) and b k ( y ). Notice that the value a k ( y ) is closely related to y k ,

ntroduced in Section Section 3 , since both of them represent the

otal weight of the taken items after items 1 , . . . , k have been con-

idered; the difference is that there is a space limit y in the case

f a k ( y ). Similarly, b k ( y ) is closely related to ˆ y k . 

. Extensions 

In this section, we extend the approach described earlier in

his paper to designing an FPTAS for the same problem without

ssuming that both conditions (15) and (24) hold (Section 5.1 ),

nd for problems that are generalizations or variations of problem

5) ( Sections 5.2 –5.4 ). 

It turns out that the method of K -approximation sets and func-

ions is flexible enough, so that only minor adjustments are re-

uired to handle these variations. As a rule, we only state the

hanges that are needed in the corresponding DP algorithm, while

ts conversion to an FPTAS can be done quite similarly to Algo-

ithm EpsMin2. In Sections 5.2 –5.4 it is assumed that both condi-

ions (15) and (24) hold; if required, one of them can be removed

s described in Section 5.1 . 

.1. Only one of the conditions (15) and (24) holds 

If we want to design an FPTAS for problem (5) for which the

ondition (24) is dropped, we need to compute the quantities a k ( y )

ot directly as done in Algorithm DPab, but express them in terms
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of b k ( y ). This observation leads to the following modified DP algo-

rithm, which we call Algorithm DPb, since it computes values b k ( y )

only. 

Algorithm DPb 

Step 1. Start with the initial states (0, z 0 ( y ), b 0 ( y )), 0 ≤ y ≤ d n ,

defined by 

z 0 (y ) = b 0 (y ) = 0 , y = 0 , . . . , d n . 

Step 2. For all k from 1 to n find the states ( k , z k ( y ), b k ( y )), as

follows: 

(a) Compute 

z ′ ( y ) = f k (A k − b k −1 (y )) + z k −1 (y − αk ) , αk ≤ y ≤ d k ;
z ′′ ( y ) = g k (b k −1 (y ) + αk ) + z k −1 (y ) , 0 ≤ y ≤ d k . 

(b) For each y , 0 ≤ y ≤ d k , compute 

z k ( y ) = 

{ 

z ′′ ( y ) , if 0 ≤ y < αk 

min { z ′ ( y ) , z ′′ ( y ) } , if αk ≤ y ≤ d k 
z k (d k ) , if d k < y ≤ d n 

. 

(c) For each y , 0 ≤ y ≤ d k , compute 

b k ( y ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

b k −1 (y ) + αk , if 0 ≤ y < αk 

b k −1 (y ) + αk , if αk ≤ y ≤ d k and z k ( y ) = z ′′ ( y ) 
b k −1 (y ) , if αk ≤ y ≤ d k and z k ( y ) = z ′ ( y ) 
b k (d k ) , if d k < y ≤ d n 

.

Step 3. Output z n ( d n ) as the optimal value of the function. The

actual take-or-leave decisions (i.e., the values of the decision

variables) can be found by backtracking. 

Algorithm EpsMin2 should be modified accordingly, i.e., in Step

1 we also need to compute the values A k , k = 1 , 2 , . . . , n, by (10) ,

in Step 2 ˜ a 0 (y ) has to be removed, Step 3(b) has to be removed all

together and the formula for z ′ ( y ) in Step 3(a) has to become 

z ′ ( y ) = f k (A k − ˜ b k −1 (y )) + ̃

 z k −1 (y − αk ) , αk ≤ y ≤ d k . 

The analysis of the accuracy of the resulting scheme is similar

to that in the proof of Lemma 2 . However, we should be aware that

the fact that ˜ b q −1 (y ) is a K 

q −1 -approximation of b q −1 (y ) does not

imply that A q − ˜ b q −1 (y ) is a K 

q −1 -approximation of A q − b q −1 (y ) .

Nevertheless, it follows that A q − ˜ b q −1 (y ) ≤ A q − b q −1 (y ) , so that

the right value is appropriately approximated. 

In Step 4 of the modified scheme, finding the value of ˜ z n (y )

will take time that is linear in n , not logarithmic in n , as in the

proof of Theorem 2 . The reason is that while the value of the re-

sulting ˜ z n (d n ) is assured to be bounded by (1 + ε) times the opti-

mal value Z ∗n , it may be below it. Therefore, once an approximated

value ˜ z n ( d n ) is found, we must perform backtracking in order to

identify “take-or-leave” decisions that lead to a feasible solution

corresponding to ˜ z n (d n ) and then calculate the exact value of this

feasible solution using the previously-identified “take-or-leave” de-

cisions. 

If we want to design an FPTAS for problem (5) for which the

condition (15) is dropped, we need to compute the quantities b k ( y )

not directly as done in Algorithm DPab, but express them in terms

of a k ( y ). This observation leads to a modified DP algorithm, which

we call Algorithm DPa, since it computes values a k ( y ) only. For the

sake of brevity, we will not state the algorithms but instead out-

line the changes needed to be performed in Algorithm DPab and

EpsMin2. In Algorithm DPab we delete all references to function

b k ( · ). In Step 2(a) the formula for z ′ ′ ( y ) has to become 

z ′′ (y ) = g k (A k − a k −1 (y )) + z k −1 (y ) , 0 ≤ y ≤ d k . 

We also drop Step 2(d) all together. Algorithm EpsMin2 should

be modified accordingly, i.e., in Step 1 we also need to compute
he values A k , k = 1 , 2 , . . . , n, by (10) , in Step 2 ˜ b 0 (y ) has to be re-

oved, Step 3(c) has to be removed all together and the formula

or z ′ ′ ( y ) in Step 3(a) has to become 

 

′′ ( y ) = g k (A k − ˜ a k −1 (y )) + ̃

 z k −1 (y ) , 0 ≤ y ≤ d k . 

Thus, the performed modifications do not alter neither the ac-

uracy of the approximation scheme, nor its running time, and the

ollowing statement holds. 

heorem 3. For problem (5) that satisfies only one of the conditions

15) and (24) , there exists an FPTAS that takes 

 

(
n 

2 ( log Z UB + log A n ) log d n 

ε 

(
log 

n log Z UB 

ε 
+ log 

n log A n 

ε 

))
time . 

We note that all three algorithms DPab, DPa, and DPb are pri-

al DP algorithms with respect to the state variable y that repre-

ents an available space y . 

.2. Generalized objective function 

Consider the problem that differs from problem (5) in the addi-

ional terms 
∑ n 

j=1 ϕ j (x j ) + 

∑ n 
j=1 ψ j (1 − x j ) added to the objective

unction, where all ϕj and ψ j are non-negative and non-decreasing

unctions of the binary variables x j . To modify Algorithm DPab to

ttend this change, we only need to replace the computation in

tep 2(a) by the following 

Step 2(a ′ ) . Compute 

z ′ ( y ) = f k (a k −1 (y ) + αk ) + z k −1 (y − αk ) + ϕ j (1) + ψ j (0) , 

αk ≤ y ≤ d k ;
z ′′ ( y ) = g k (b k −1 (y ) + αk ) + z k −1 (y ) + ϕ j (0) + ψ j (1) , 

0 ≤ y ≤ d k . 

The Steps 2(b)–(d) remain the same, provided that z ′ ( y ) and

 

′ ′ ( y ) are those computed in Step 2(a ′ ) above. The boundary condi-

ion remains the same as in Step 1 of Algorithm DPab. 

.3. Generalized nested constraints 

Similarly, we can handle an extension of problem (5) in which

ifferent coefficients αj and β j are involved in the lines of con-

traints and the objective function, respectively. The extended

roblem can stated as 

Minimize Z(x ) = 

n ∑ 

j=1 

f j 

( 

j ∑ 

i =1 

βi x i 

) 

x j + 

n ∑ 

j=1 

g j 

( 

j ∑ 

i =1 

βi (1 −x i ) 

) 

(1 −x j )

ubject to 

k ∑ 

j=1 

α j x j ≤ d k , 1 ≤ k ≤ n, 

x j ∈ { 0 , 1 } , j = 1 , . . . , n, 

imilarly to the above, to obtain an updated DP algorithm for solv-

ng this problem, we only need to replace the computation in Step

(a) by the following 

Step 2(a ′ ′ ) . Compute 

z ′ ( y ) = f k (a k −1 (y ) + βk ) + z k −1 (y − αk ) , αk ≤ y ≤ d k ;
z ′′ ( y ) = g k (b k −1 (y ) + βk ) + z k −1 (y ) , 0 ≤ y ≤ d k . 

The Steps 2(b)–(d) remain the same, provided that z ′ ( y ) and

 

′ ′ ( y ) are those computed in Step 2(a ′ ′ ) above. The boundary con-

ition remains the same. 
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.4. Maximization problem 

In this section, we show that principles similar to those pre-

ented earlier in this paper can be used to develop an FPTAS for

he maximization variant of problem (5) , i.e., the problem 

Maximize Z = 

n ∑ 

j=1 

f j 

( 

j ∑ 

i =1 

αi x i 

) 

x j + 

n ∑ 

j=1 

g j 

( 

j ∑ 

i =1 

αi ( 1 −x i ) 

) 

(1 −x j ) 

ubject to 

k ∑ 

j=1 

α j x j ≤ d k , 1 ≤ k ≤ n, 

x j ∈ { 0 , 1 } , j = 1 , 2 , . . . , n. (27) 

Recall that for the maximization problem, the definition of an

PTAS has to be adjusted. For a vector of decision variables x , con-

ider a problem of maximizing a function ϕ( x ) that takes positive

alues. An FPTAS finds a feasible solution x H such that for a small

ositive ε the inequality ϕ 

(
x H 

)
≥ ( 1 − ε ) ϕ ( x ∗) holds, and the re-

uired running time is polynomial with respect to the length of

he problem’s input and 1/ ε. 

Notice that in combinatorial optimization the approximability

ssues are not symmetric if one switches from a minimization

roblem to its maximization counterpart. First, it is possible that

he minimization problem is polynomially solvable, while its max-

mization analogue is NP-hard. The best known example of this

ype is the min-cut vs the max-cut problem. Another example is

he problem of minimizing of the half-product function (4) with

o additional constraints, which is NP-hard ( Badics & Boros, 1998 ),

hile its maximization counterpart is solvable in O ( n 3 ) time, as

hown in Kellerer, Sarto Basso, and Strusevich (2017) . 

Second, it is possible that the minimization problem admits an

pproximation algorithm or even an FPTAS, while the maximiza-

ion version is not approximable. Such examples can be found even

ithin the range of problems of immediate interest to this pa-

er. The problem of minimizing the half-product function (4) sub-

ect to the knapsack constraint (2) admits an FPTAS that requires

 ( n 2 / ε) time ( Sarto Basso & Strusevich, 2017 ), while its maximiza-

ion counterpart does not admit a constant ratio approximation al-

orithm unless P � = NP , as proved in Kellerer et al. (2017) . 

Still, in the case under consideration an FPTAS for problem

27) is fairly easy to derive from the same principles as either Al-

orithm EpsMin1 or Algorithm EpsMin2. 

.4.1. Geometric rounding approach 

We will apply the same principles as Algorithm EpsMin1. This is

one by converting a primal version of the DP algorithm, which is

resented below. Such an algorithm uses state variables y k , which

enote the total weight of taken items j , 1 ≤ j ≤ k . 

Although the primal DP algorithm is very similar to Algo-

ithm DDP presented in Section 3 , to avoid ambiguity we provide

ts formal description below. 

Algorithm PDP 

Step 1. Start with the initial state (0 , Z 0 , y 0 ) = (0 , 0 , 0) . Com-

pute the values A k , k = 1 , 2 , . . . , n, by (10) . 

Step 2. For all k from 0 to n − 1 do 

Make transitions from each stored primal state of the form

( k , Z k , y k ) into the states of the form 

(
k + 1 , Z k +1 , y k +1 

)
by

assigning the next variable x k +1 . 

(a) Define x k +1 = 1 , provided that it is feasible to take item

k + 1 , i.e., if the ( k + 1 ) -th nested constraint y k + αk +1 ≤
d k +1 holds. If feasible, the assignment x k +1 = 1 creates

a state of the form 

(
k + 1 , Z k +1 , y k +1 

)
, where y k +1 = y k +

αk +1 ; Z k +1 = Z k + f k +1 

(
y k +1 

)
. 
(b) Define x k +1 = 0 , which is always feasible. This assign-

ment creates a state of the form 

(
k + 1 , Z k +1 , y k +1 

)
, where

y k +1 = y k ; Z k +1 = Z k + g k +1 

(
A k +1 − y k +1 

)
. 

Step 3. Output the optimal value of the function that corre-

sponds to the largest value of Z n among all found states of

the form ( n , Z n , y n ). 

Similarly to Section 3 , in order to convert this DP algorithm to

n FPTAS, we assume that each function f j and g j , 1 ≤ j ≤ n , can be

omputed in constant time. Additionally, we assume that the con-

ition (24) holds. 

An FPTAS for problem (27) uses similar principles as Algo-

ithm EpsMin1. We refer to the resulting scheme as Algorithm Eps-

ax. Its Step 1 is identical to the one of Algorithm EpsMin1 with

he exception of changing the single occurrence of ˆ y to y . The re-

aining two steps are: 

Step 2. Store the initial state (0,0,0). For each k, 0 ≤ k ≤ n − 1 ,

do the following: 

According to Algorithm PDP move from a stored primal state

( k , Z k , y k ) to at most two primal states of the form (k +
1 , Z k +1 , y k +1 ) , where Z k +1 ≤ Z UB . If the number of generated

states (k + 1 , Z k +1 , y k +1 ) with the Z -values in the same inter-

val J t and with the y -values in the same interval I � exceeds

one, then keep only one of these states, that with the small-

est y -value. 

Step 3. Among all values Z n found in Step 2 identify the largest

one. With this value of Z n , perform the backtracking to find

the corresponding decision variables x j , j = 1 , . . . , n . Com-

pute the value of the objective function with the found x j ’s,

call this value Z ε and accept it as an approximate value of

the objective function. 

The following statement holds for the output of Algorithm Eps-

ax. 

emma 3. Assume that the dynamic programming Algorithm PDP is

pplied to problem (27) and finds a chain of primal states 

(0 , 0 , 0) , (1 , Z ∗1 , y 
∗
1 ) , . . . , (n, Z ∗n , y 

∗
n ) 

eading to the optimal value Z ∗ = Z ∗n . Then for each k , 1 ≤ k ≤ n , Algo-

ithm EpsMax finds a state ( k , Z k , y k ) such that 

 k ≤ y ∗k ≤ ( 1 + ε ) 
k 
rn y k (28) 

nd 

( 1 + ε ) 
k 
n Z k ≥ Z ∗k . (29) 

The proof of Lemma 3 is symmetric to that of Lemma 1 and

s therefore omitted. The running time of Algorithm EpsMax is the

ame as that of Algorithm EpsMin1. To verify the accuracy of Al-

orithm EpsMax, notice that it outputs a feasible state ( n , Z n , y n )

uch that (29) holds for k = n, i.e., 

( 1 + ε ) Z n ≥ Z ∗n , 

hich implies that 

 n > 

(
1 − ε 2 

)
Z n ≥ ( 1 − ε ) Z ∗n , 

s required by the definition of an FPTAS for a maximization prob-

em. 

.4.2. K -approximation sets and functions approach 

The technique of K -approximation sets and functions also ap-

lies to maximization problems. However, for the maximization

roblems the definitions presented in Section 4.2 have to be ad-

usted, as described, i.e., in Section 10.1 of Halman et al. (2014) . 

For the minimization problems, we have considered the one-

ided approximation, where for every K ≥ 1 we construct a function
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˜ z that K -approximates z , i.e., z(x ) ≤ ˜ z (x ) ≤ Kz(x ) , for every x . It is

convenient to say that ˜ z is a K -approximation of z from above . For

the maximization problems, we would like to construct an approx-

imation function ˜ z so that the error remains one-sided but is on

the other side. In other words, ˜ z is said to be a K -approximation of

z from below if z 
K ≤ ˜ z ≤ z. Clearly, if ˜ z K -approximates z from above,

then 

˜ z 
K K -approximates z from below. Similarly, if ˜ z K -approximates

z from below, then K ̃  z K -approximates z from above. 

In the following, we describe the changes needed in Algo-

rithms DPab and EpsMin2 in order to approximate the maximiza-

tion problem (27) . In Step 2(b) of Algorithm DPab we change

the single occurrence of “min” to “max”. We notice that thus

each function z k ( y ) becomes monotone non-decreasing (as op-

posed to non-increasing in the minimization problem (5) ), since

as y grows the problem becomes less constrained, i.e., the more

space is available for items to be taken, the less we are forced

to make the “leave” decision. We also notice that each function

a k ( y ) is monotone non-decreasing and each function b k ( y ) is mono-

tone non-increasing, exactly as in the minimization problem (5) .

Since all functions z k ( y ), a k ( y ), b k ( y ) are monotone, we can still

apply the K -approximation sets and functions technique outlined

in Section 4.2 . The changes required in Algorithm EpsMin2 are

the following. In Step 3(a) we change the single occurrence of

“min” to “max”. In Step 4 we output ˜ z n (d n ) 
1+ ε (instead of ˜ z n (d n ) ). The

proof of Lemma 2 remains the same with the exception of using

the maximization of approximation rule (as opposed to minimiza-

tion of approximation rule). The proof of Theorem 2 remains the

same. 

6. Conclusion 

We consider the problem of Boolean programming with a non-

separable non-linear objective function that reflects the take-or-

leave decisions to be made regarding n available items. We present

several examples of practical situations in which such a problem

arises. We report two approaches to developing an FPTAS based

on converting a DP algorithm by the use of the geometric round-

ing technique and by adapting the K -approximation sets and func-

tions technique. The running times of the resulting approximation

schemes compare favorably with known analogues for less general

problems. 

The FPTAS given in Section 3 uses a dual DP formulation

and is based only on geometric rounding. The FPTAS given in

Section 4 uses a primal DP formulation and the technique of K -

approximation sets and functions. While the latter FPTAS uses less

elementary methods, it runs faster with respect to both the num-

ber of items n and the relative error ε, and can be relatively easily

adjusted to cope with more general problems, as demonstrated in

Section 5 . 

It is remains to be seen whether the approaches developed in

Woeginger (20 0 0) and Kovalyov and Kubiak (2012) can lead to

faster FPTASs than the best ones presented in this paper. 

Notice that both approaches require additional assumptions on

the rate of growth of either functions f k or g k . It is interesting to

point out, that despite the difference in the applied approaches,

the same conditions given either by (24) or by (15) are introduced.

Although theses assumptions reduce an applicability range of the

studied models, still they are satisfied by the polynomial functions,

which is a quite representative class of objectives; see, e.g., the sur-

vey Hochbaum (2007) . It is an interesting research goal to design

an FPTAS for problem (5) , provided that functions f k and g k are

general monotone non-decreasing (i.e., without assuming (24) or

(15) ) or to establish that such a general version of the problem

does not admit an FPTAS. 
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