2,882 research outputs found

    Development of a Detector Control System for the ATLAS Pixel Detector

    Get PDF
    The innermost part of the ATLAS experiment will be a pixel detector containing around 1750 individual detector modules. A detector control system (DCS) is required to handle thousands of I/O channels with varying characteristics. The main building blocks of the pixel DCS are the cooling system, the power supplies and the thermal interlock system, responsible for the ultimate safety of the pixel sensors. The ATLAS Embedded Local Monitor Board (ELMB), a multi purpose front end I/O system with a CAN interface, is foreseen for several monitoring and control tasks. The Supervisory, Control And Data Acquisition (SCADA) system will use PVSS, a commercial software product chosen for the CERN LHC experiments. We report on the status of the different building blocks of the ATLAS pixel DCS.Comment: 3 pages, 2 figures, ICALEPCS 200

    Computational Indistinguishability between Quantum States and Its Cryptographic Application

    Full text link
    We introduce a computational problem of distinguishing between two specific quantum states as a new cryptographic problem to design a quantum cryptographic scheme that is "secure" against any polynomial-time quantum adversary. Our problem, QSCDff, is to distinguish between two types of random coset states with a hidden permutation over the symmetric group of finite degree. This naturally generalizes the commonly-used distinction problem between two probability distributions in computational cryptography. As our major contribution, we show that QSCDff has three properties of cryptographic interest: (i) QSCDff has a trapdoor; (ii) the average-case hardness of QSCDff coincides with its worst-case hardness; and (iii) QSCDff is computationally at least as hard as the graph automorphism problem in the worst case. These cryptographic properties enable us to construct a quantum public-key cryptosystem, which is likely to withstand any chosen plaintext attack of a polynomial-time quantum adversary. We further discuss a generalization of QSCDff, called QSCDcyc, and introduce a multi-bit encryption scheme that relies on similar cryptographic properties of QSCDcyc.Comment: 24 pages, 2 figures. We improved presentation, and added more detail proofs and follow-up of recent wor

    Diurnal salivary cortisol concentrations in Parkinson’s disease: increased total secretion and morning cortisol concentrations

    Get PDF
    Background:Parkinson’s disease (PD) is a chronic neurodegenerative disorder. There is limited knowledge about the function of the hypothalamic-pituitary-adrenal axis in PD. The primary aim of this prospective study was to analyze diurnal salivary cortisol concentrations in patients with PD and correlate these with age, gender, body mass index (BMI), duration of PD, and pain. The secondary aim was to compare the results with a healthy reference group. Methods:Fifty-nine PD patients, 35 women and 24 men, aged 50–79 years, were recruited. The reference group comprised healthy individuals matched for age, gender, BMI, and time point for sampling. Salivary cortisol was collected at 8 am, 1 pm, and 8 pm, and 8 am the next day using cotton-based Salivette ¼tubes and analyzed using Spectria¼Cortisol I125. A visual analog scale was used for estimation of pain. Results:The median cortisol concentration was 16.0 (5.8–30.2) nmol/L at 8 am, 5.8 (3.0–16.4) at 1 pm, 2.8 (1.6–8.0) at 8 pm, and 14.0 (7.5–28.7) at 8 am the next day. Total secretion and rate of cortisol secretion during the day (8 am–8 pm) and the concentration of cortisol on the next morning were lower (12.5 nmol/L) in the reference group. No significant correlations with age, gender, BMI, duration of PD, Hoehn and Yahr score, Unified Parkinson’s Disease Rating Scale III score, gait, pain, or cortisol concentrations were found. Conclusion:The neurodegenerative changes in PD does not seem to interfere with the hypothalamic-pituitary-adrenal axis. Salivary cortisol concentrations in PD patients were increased in the morning compared with the reference group, and were not influenced by motor dysfunction, duration of disease, or coexistence of chronic or acute pain

    Almost uniform sampling via quantum walks

    Get PDF
    Many classical randomized algorithms (e.g., approximation algorithms for #P-complete problems) utilize the following random walk algorithm for {\em almost uniform sampling} from a state space SS of cardinality NN: run a symmetric ergodic Markov chain PP on SS for long enough to obtain a random state from within Ï”\epsilon total variation distance of the uniform distribution over SS. The running time of this algorithm, the so-called {\em mixing time} of PP, is O(ή−1(log⁥N+logâĄÏ”âˆ’1))O(\delta^{-1} (\log N + \log \epsilon^{-1})), where ÎŽ\delta is the spectral gap of PP. We present a natural quantum version of this algorithm based on repeated measurements of the {\em quantum walk} Ut=e−iPtU_t = e^{-iPt}. We show that it samples almost uniformly from SS with logarithmic dependence on ϔ−1\epsilon^{-1} just as the classical walk PP does; previously, no such quantum walk algorithm was known. We then outline a framework for analyzing its running time and formulate two plausible conjectures which together would imply that it runs in time O(ή−1/2log⁥NlogâĄÏ”âˆ’1)O(\delta^{-1/2} \log N \log \epsilon^{-1}) when PP is the standard transition matrix of a constant-degree graph. We prove each conjecture for a subclass of Cayley graphs.Comment: 13 pages; v2 added NSF grant info; v3 incorporated feedbac

    Dendritic cell expression of the transcription factor T-bet regulates mast cell progenitor homing to mucosal tissue

    Get PDF
    The transcription factor T-bet was identified in CD4+ T cells, and it controls interferon γ production and T helper type 1 cell differentiation. T-bet is expressed in certain other leukocytes, and we recently showed (Lord, G.M., R.M. Rao, H. Choe, B.M. Sullivan, A.H. Lichtman, F.W. Luscinskas, and L.H. Glimcher. 2005. Blood. 106:3432–3439) that it regulates T cell trafficking. We examined whether T-bet influences homing of mast cell progenitors (MCp) to peripheral tissues. Surprisingly, we found that MCp homing to the lung or small intestine in T-bet−/− mice is reduced. This is reproduced in adhesion studies using bone marrow–derived MCs (BMMCs) from T-bet−/− mice, which showed diminished adhesion to mucosal addresin cellular adhesion molecule–1 (MAdCAM-1) and vascular cell adhesion molecule–1 (VCAM-1), endothelial ligands required for MCp intestinal homing. MCp, their precursors, and BMMCs do not express T-bet, suggesting that T-bet plays an indirect role in homing. However, adoptive transfer experiments revealed that T-bet expression by BM cells is required for MCp homing to the intestine. Furthermore, transfer of WT BM-derived dendritic cells (DCs) to T-bet−/− mice restores normal MCp intestinal homing in vivo and MCp adhesion to MAdCAM-1 and VCAM-1 in vitro. Nonetheless, T-bet−/− mice respond vigorously to intestinal infection with Trichinella spiralis, eliminating a role for T-bet in MC recruitment to sites of infection and their activation and function. Therefore, remarkably, T-bet expression by DCs indirectly controls MCp homing to mucosal tissues

    Exploring out-of-equilibrium quantum magnetism and thermalization in a spin-3 many-body dipolar lattice system

    Get PDF
    Understanding quantum thermalization through entanglement build-up in isolated quantum systems addresses fundamental questions on how unitary dynamics connects to statistical physics. Here, we study the spin dynamics and approach towards local thermal equilibrium of a macroscopic ensemble of S = 3 spins prepared in a pure coherent spin state, tilted compared to the magnetic field, under the effect of magnetic dipole-dipole interactions. The experiment uses a unit filled array of 104 chromium atoms in a three dimensional optical lattice, realizing the spin-3 XXZ Heisenberg model. The buildup of quantum correlation during the dynamics, especially as the angle approaches pi/2, is supported by comparison with an improved numerical quantum phase-space method and further confirmed by the observation that our isolated system thermalizes under its own dynamics, reaching a steady state consistent with the one extracted from a thermal ensemble with a temperature dictated from the system's energy. This indicates a scenario of quantum thermalization which is tied to the growth of entanglement entropy. Although direct experimental measurements of the Renyi entropy in our macroscopic system are unfeasible, the excellent agreement with the theory, which can compute this entropy, does indicate entanglement build-up.Comment: 12 figure

    A First Search for Cosmogenic Neutrinos with the ARIANNA Hexagonal Radio Array

    Full text link
    The ARIANNA experiment seeks to observe the diffuse flux of neutrinos in the 10^8 - 10^10 GeV energy range using a grid of radio detectors at the surface of the Ross Ice Shelf of Antarctica. The detector measures the coherent Cherenkov radiation produced at radio frequencies, from about 100 MHz to 1 GHz, by charged particle showers generated by neutrino interactions in the ice. The ARIANNA Hexagonal Radio Array (HRA) is being constructed as a prototype for the full array. During the 2013-14 austral summer, three HRA stations collected radio data which was wirelessly transmitted off site in nearly real-time. The performance of these stations is described and a simple analysis to search for neutrino signals is presented. The analysis employs a set of three cuts that reject background triggers while preserving 90% of simulated cosmogenic neutrino triggers. No neutrino candidates are found in the data and a model-independent 90% confidence level Neyman upper limit is placed on the all flavor neutrino+antineutrino flux in a sliding decade-wide energy bin. The limit reaches a minimum of 1.9x10^-23 GeV^-1 cm^-2 s^-1 sr^-1 in the 10^8.5 - 10^9.5 GeV energy bin. Simulations of the performance of the full detector are also described. The sensitivity of the full ARIANNA experiment is presented and compared with current neutrino flux models.Comment: 22 pages, 22 figures. Published in Astroparticle Physic
    • 

    corecore