9,415 research outputs found
Macronuclear DNA in Stentor coeruleus: a first approach to its characterization
The macronuclei of Stentor coeruleus were isolated on a discontinuous sucrose gradient and their DNA was purified by conventional methods. The GC content was 32 mole%. The DNA banded as a single peak on analytical ultracentrifugation at 1·691 g/cm3. The molecular weight of the DNA was 5 × 106 to 4 × 107 daltons. Genome size determined by DNA-DNA reassociation kinetics was 6 × 1010 daltons. The macronuclear genome was mostly simple, about 85% being made of non-repetitive sequence
Friction Drag on a Particle Moving in a Nematic Liquid Crystal
The flow of a liquid crystal around a particle does not only depend on its
shape and the viscosity coefficients but also on the direction of the
molecules. We studied the resulting drag force on a sphere moving in a nematic
liquid crystal (MBBA) in a low Reynold's number approach for a fixed director
field (low Ericksen number regime) using the computational artificial
compressibility method. Taking the necessary disclination loop around the
sphere into account, the value of the drag force anisotropy
(F_\perp/F_\parallel=1.50) for an exactly computed field is in good agreement
with experiments (~1.5) done by conductivity diffusion measurements. We also
present data for weak anchoring of the molecules on the particle surface and of
trial fields, which show to be sufficiently good for most applications.
Furthermore, the behaviour of the friction close to the transition point
nematic isotropic and for a rod-like and a disc-like liquid crystal will be
given.Comment: 23 pages RevTeX, including 3 PS figures, 1 PS table and 1 PS-LaTeX
figure; Accepted for publication in Phys. Rev.
Integrated Circuit Design in US High-Energy Physics
This whitepaper summarizes the status, plans, and challenges in the area of
integrated circuit design in the United States for future High Energy Physics
(HEP) experiments. It has been submitted to CPAD (Coordinating Panel for
Advanced Detectors) and the HEP Community Summer Study 2013(Snowmass on the
Mississippi) held in Minnesota July 29 to August 6, 2013. A workshop titled: US
Workshop on IC Design for High Energy Physics, HEPIC2013 was held May 30 to
June 1, 2013 at Lawrence Berkeley National Laboratory (LBNL). A draft of the
whitepaper was distributed to the attendees before the workshop, the content
was discussed at the meeting, and this document is the resulting final product.
The scope of the whitepaper includes the following topics: Needs for IC
technologies to enable future experiments in the three HEP frontiers Energy,
Cosmic and Intensity Frontiers; Challenges in the different technology and
circuit design areas and the related R&D needs; Motivation for using different
fabrication technologies; Outlook of future technologies including 2.5D and 3D;
Survey of ICs used in current experiments and ICs targeted for approved or
proposed experiments; IC design at US institutes and recommendations for
collaboration in the future
The specificity and patterns of staining in human cells and tissues of p16INK4a antibodies demonstrate variant antigen binding
The validity of the identification and classification of human cancer using antibodies to detect biomarker proteins depends upon antibody specificity. Antibodies that bind to the tumour-suppressor protein p16INK4a are widely used for cancer diagnosis and research. In this study we examined the specificity of four commercially available anti-p16INK4a antibodies in four immunological applications. The antibodies H-156 and JC8 detected the same 16 kDa protein in western blot and immunoprecipitation tests, whereas the antibody F-12 did not detect any protein in western blot analysis or capture a protein that could be recognised by the H-156 antibody. In immunocytochemistry tests, the antibodies JC8 and H-156 detected a predominately cytoplasmic localised antigen, whose signal was depleted in p16INK4a siRNA experiments. F-12, in contrast, detected a predominately nuclear located antigen and there was no noticeable reduction in this signal after siRNA knockdown. Furthermore in immunohistochemistry tests, F-12 generated a different pattern of staining compared to the JC8 and E6H4 antibodies. These results demonstrate that three out of four commercially available p16INK4a antibodies are specific to, and indicate a mainly cytoplasmic localisation for, the p16INK4a protein. The F-12 antibody, which has been widely used in previous studies, gave different results to the other antibodies and did not demonstrate specificity to human p16INK4a. This work emphasizes the importance of the validation of commercial antibodies, aside to the previously reported use, for the full verification of immunoreaction specificity
Aperiodic dynamical decoupling sequences in presence of pulse errors
Dynamical decoupling (DD) is a promising tool for preserving the quantum
states of qubits. However, small imperfections in the control pulses can
seriously affect the fidelity of decoupling, and qualitatively change the
evolution of the controlled system at long times. Using both analytical and
numerical tools, we theoretically investigate the effect of the pulse errors
accumulation for two aperiodic DD sequences, the Uhrig's DD UDD) protocol [G.
S. Uhrig, Phys. Rev. Lett. {\bf 98}, 100504 (2007)], and the Quadratic DD (QDD)
protocol [J. R. West, B. H. Fong and D. A. Lidar, Phys. Rev. Lett {\bf 104},
130501 (2010)]. We consider the implementation of these sequences using the
electron spins of phosphorus donors in silicon, where DD sequences are applied
to suppress dephasing of the donor spins. The dependence of the decoupling
fidelity on different initial states of the spins is the focus of our study. We
investigate in detail the initial drop in the DD fidelity, and its long-term
saturation. We also demonstrate that by applying the control pulses along
different directions, the performance of QDD protocols can be noticeably
improved, and explain the reason of such an improvement. Our results can be
useful for future implementations of the aperiodic decoupling protocols, and
for better understanding of the impact of errors on quantum control of spins.Comment: updated reference
Debris disks around Sun-like stars
We have observed nearly 200 FGK stars at 24 and 70 microns with the Spitzer
Space Telescope. We identify excess infrared emission, including a number of
cases where the observed flux is more than 10 times brighter than the predicted
photospheric flux, and interpret these signatures as evidence of debris disks
in those systems. We combine this sample of FGK stars with similar published
results to produce a sample of more than 350 main sequence AFGKM stars. The
incidence of debris disks is 4.2% (+2.0/-1.1) at 24 microns for a sample of 213
Sun-like (FG) stars and 16.4% (+2.8/-2.9) at 70 microns for 225 Sun-like (FG)
stars. We find that the excess rates for A, F, G, and K stars are statistically
indistinguishable, but with a suggestion of decreasing excess rate toward the
later spectral types; this may be an age effect. The lack of strong trend among
FGK stars of comparable ages is surprising, given the factor of 50 change in
stellar luminosity across this spectral range. We also find that the incidence
of debris disks declines very slowly beyond ages of 1 billion years.Comment: ApJ, in pres
Dynamical tunneling in molecules: Quantum routes to energy flow
Dynamical tunneling, introduced in the molecular context, is more than two
decades old and refers to phenomena that are classically forbidden but allowed
by quantum mechanics. On the other hand the phenomenon of intramolecular
vibrational energy redistribution (IVR) has occupied a central place in the
field of chemical physics for a much longer period of time. Although the two
phenomena seem to be unrelated several studies indicate that dynamical
tunneling, in terms of its mechanism and timescales, can have important
implications for IVR. Examples include the observation of local mode doublets,
clustering of rotational energy levels, and extremely narrow vibrational
features in high resolution molecular spectra. Both the phenomena are strongly
influenced by the nature of the underlying classical phase space. This work
reviews the current state of understanding of dynamical tunneling from the
phase space perspective and the consequences for intramolecular vibrational
energy flow in polyatomic molecules.Comment: 37 pages and 23 figures (low resolution); Int. Rev. Phys. Chem.
(Review to appear in Oct. 2007
A New Limit on the Neutrinoless DBD of 130Te
We report the present results of CUORICINO a cryogenic experiment on
neutrinoless double beta decay (DBD) of 130Te consisting of an array of 62
crystals of TeO2 with a total active mass of 40.7 kg. The array is framed
inside of a dilution refrigerator, heavily shielded against environmental
radioactivity and high-energy neutrons, and operated at a temperature of ~8 mK
in the Gran Sasso Underground Laboratory. Temperature pulses induced by
particle interacting in the crystals are recorded and measured by means of
Neutron Transmutation Doped thermistors. The gain of each bolometer is
stabilized with voltage pulses developed by a high stability pulse generator
across heater resistors put in thermal contact with the absorber.
The calibration is performed by means of two thoriated wires routinely
inserted in the set-up. No evidence for a peak indicating neutrinoless DBD of
130Te is detected and a 90% C.L. lower limit of 1.8E24 years is set for the
lifetime of this process. Taking largely into account the uncertainties in the
theoretical values of nuclear matrix elements, this implies an upper boud on
the effective mass of the electron neutrino ranging from 0.2 to 1.1 eV. This
sensitivity is similar to those of the 76Ge experiments.Comment: 4 pages, 2 figure
On the problem of interactions in quantum theory
The structure of representations describing systems of free particles in the
theory with the invariance group SO(1,4) is investigated. The property of the
particles to be free means as usual that the representation describing a
many-particle system is the tensor product of the corresponding single-particle
representations (i.e. no interaction is introduced). It is shown that the mass
operator contains only continuous spectrum in the interval
and such representations are unitarily equivalent to ones describing
interactions (gravitational, electromagnetic etc.). This means that there are
no bound states in the theory and the Hilbert space of the many-particle system
contains a subspace of states with the following property: the action of free
representation operators on these states is manifested in the form of different
interactions. Possible consequences of the results are discussed.Comment: 35 pages, Late
Electron spin dynamics in quantum dots and related nanostructures due to hyperfine interaction with nuclei
We review and summarize recent theoretical and experimental work on electron
spin dynamics in quantum dots and related nanostructures due to hyperfine
interaction with surrounding nuclear spins. This topic is of particular
interest with respect to several proposals for quantum information processing
in solid state systems. Specifically, we investigate the hyperfine interaction
of an electron spin confined in a quantum dot in an s-type conduction band with
the nuclear spins in the dot. This interaction is proportional to the square
modulus of the electron wave function at the location of each nucleus leading
to an inhomogeneous coupling, i.e. nuclei in different locations are coupled
with different strength. In the case of an initially fully polarized nuclear
spin system an exact analytical solution for the spin dynamics can be found.
For not completely polarized nuclei, approximation-free results can only be
obtained numerically in sufficiently small systems. We compare these exact
results with findings from several approximation strategies.Comment: 26 pages, 9 figures. Topical Review to appear in J. Phys.: Condens.
Matte
- …