85 research outputs found

    Australian dust storm associated with extensive Aspergillus sydowii fungal "Bloom" in coastal waters

    Get PDF
    A massive central Australian dust storm in September 2009 was associated with abundant fungal spores (150,000/m(3)) and hyphae in coastal waters between Brisbane (27 degrees S) and Sydney (34 degrees S). These spores were successfully germinated from formalinpreserved samples, and using molecular sequencing of three different genes (the large subunit rRNA gene [LSU], internal transcribed spacer [ITS], and beta-tubulin gene), they were conclusively identified as Aspergillus sydowii, an organism circumstantially associated with gorgonian coral fan disease in the Caribbean. Surprisingly, no human health or marine ecosystem impacts were associated with this Australian dust storm event. Australian fungal cultures were nontoxic to fish gills and caused a minor reduction in the motility of Alexandrium or Chattonella algal cultures but had their greatest impacts on Symbiodinium dinoflagellate coral symbiont motility, with hyphae being more detrimental than spores. While we have not yet seen any soft coral disease outbreaks on the Australian Great Barrier Reef similar to those observed in the Caribbean and while this particular fungal population was non-or weakly pathogenic, our observations raise the possibility of future marine ecosystem pathogen impacts from similar dust storms harboring more pathogenic strains

    Mucospheres produced by a mixotrophic protist impact ocean carbon cycling

    Get PDF
    Mixotrophic protists (unicellular eukaryotes) that engage in both phototrophy (photosynthesis) and phago-heterotrophy (engulfment of particles)-are predicted to contribute substantially to energy fluxes and marine biogeochemical cycles. However, their impact remains largely unquantified. Here we describe the sophisticated foraging strategy of a widespread mixotrophic dinoflagellate, involving the production of carbon-rich 'mucospheres' that attract, capture, and immobilise microbial prey facilitating their consumption. We provide a detailed characterisation of this previously undescribed behaviour and reveal that it represents an overlooked, yet quantitatively significant mechanism for oceanic carbon fluxes. Following feeding, the mucospheres laden with surplus prey are discarded and sink, contributing an estimated 0.17-1.24 mg m-2 d-1 of particulate organic carbon, or 0.02-0.15 Gt to the biological pump annually, which represents 0.1-0.7% of the estimated total export from the euphotic zone. These findings demonstrate how the complex foraging behaviour of a single species of mixotrophic protist can disproportionally contribute to the vertical flux of carbon in the ocean

    Distribution and morphology of the diatom genus Olifantiella Riaux-Gobin & Compère in Indonesian and Australian waters, including the description of O. gondwanensis sp. nov.

    Get PDF
    Samples from coastal tropical waters of Central Sulawesi, Bangka Island and Bawean Island in Indonesia and from the Great Barrier Reef at Fitzroy Island in Queensland, Australia were analysed for species composition of diatom assemblages with a focus on Olifantiella. Whereas samples from Fitzroy Island littoral in Australia retrieved only one species of Olifantiella, in Poso Bay, Indonesia, we observed at least six species. All established taxa were documented with light (LM) and scanning electron microscope (SEM) and principal component analysis (PCA) analysis was used to compare the species, based on the basic valve parameters of length, width, length to width ratio and striae density. A new species of the genus Olifantiella, O. gondwanensis is described from Australia. In addition, we showed the distinct nature of O. pilosella var. rhizophorae permitting to species status. Particular attention is placed on girdle bands in this genus

    Ichthyotoxicity of the Dinoflagellate Karlodinium veneficum in Response to Changes in Seawater pH

    Get PDF
    The ichthyotoxic dinoflagellate Karlodinium veneficum has a worldwide distribution and produces highly potent lytic toxins (karlotoxins) that have been associated with massive fish kill events in coastal environments. The capacity of K. veneficum to gain energy from photosynthesis as well as phagotrophy enables cellular maintenance, growth and dispersal under a broad range of environmental conditions. Coastal ecosystems are highly dynamic in light of the prevailing physicochemical conditions, such as seawater carbonate speciation (CO2, HCO3−, and CO32−) and pH. Here, we monitored the growth rate and ichthyotoxicity of K. veneficum in response to a seawater pH gradient. K. veneficum exhibited a significant linear reduction in growth rate with elevated seawater acidity [pH(totalscale) from 8.05 to 7.50]. Ichthyotoxicity was assessed by exposing fish gill cells to K. veneficum extracts and subsequent quantification of gill cell viability via resorufin fluorescence. Extracts of K. veneficum indicated increased toxicity when derived from elevated pH treatments. The variation in growth rate and toxin production per cell in regard to seawater pH implies that (1) future alteration of seawater carbonate speciation, due to anthropogenic ocean acidification, may negatively influence physiological performance and ecosystem interactions of K. veneficum and (2) elevated seawater pH values (>8.0) represent favorable conditions for K. veneficum growth and toxicity. This suggests that prey of K. veneficum may be exposed to increased karlotoxin concentrations at conditions when nutrients are scarce and seawater pH has been elevated due to high photosynthetic activity from prior autotrophic phytoplankton blooms

    A database of marine phytoplankton abundance, biomass and species composition in Australian waters

    Get PDF
    There have been many individual phytoplankton datasets collected across Australia since the mid 1900s, but most are unavailable to the research community. We have searched archives, contacted researchers, and scanned the primary and grey literature to collate 3,621,847 records of marine phytoplankton species from Australian waters from 1844 to the present. Many of these are small datasets collected for local questions, but combined they provide over 170 years of data on phytoplankton communities in Australian waters. Units and taxonomy have been standardised, obviously erroneous data removed, and all metadata included. We have lodged this dataset with the Australian Ocean Data Network (http://portal.aodn.org.au/) allowing public access. The Australian Phytoplankton Database will be invaluable for global change studies, as it allows analysis of ecological indicators of climate change and eutrophication (e.g., changes in distribution; diatom:dinoflagellate ratios). In addition, the standardised conversion of abundance records to biomass provides modellers with quantifiable data to initialise and validate ecosystem models of lower marine trophic levels

    Defining Planktonic Protist Functional Groups on Mechanisms for Energy and Nutrient Acquisition: Incorporation of Diverse Mixotrophic Strategies

    Get PDF
    Arranging organisms into functional groups aids ecological research by grouping organisms (irrespective of phylogenetic origin) that interact with environmental factors in similar ways. Planktonic protists traditionally have been split between photoautotrophic “phytoplankton” and phagotrophic “microzoo-plankton”. However, there is a growing recognition of the importance of mixotrophy in euphotic aquatic systems, where many protists often combine photoautotrophic and phagotrophic modes of nutrition. Such organisms do not align with the traditional dichotomy of phytoplankton and microzooplankton. To reflect this understanding,we propose a new functional grouping of planktonic protists in an eco- physiological context: (i) phagoheterotrophs lacking phototrophic capacity, (ii) photoautotrophs lacking phagotrophic capacity,(iii) constitutive mixotrophs (CMs) as phagotrophs with an inherent capacity for phototrophy, and (iv) non-constitutive mixotrophs (NCMs) that acquire their phototrophic capacity by ingesting specific (SNCM) or general non-specific (GNCM) prey. For the first time, we incorporate these functional groups within a foodweb structure and show, using model outputs, that there is scope for significant changes in trophic dynamics depending on the protist functional type description. Accord- ingly, to better reflect the role of mixotrophy, we recommend that as important tools for explanatory and predictive research, aquatic food-web and biogeochemical models need to redefine the protist groups within their frameworks

    New observations on the Antarctic Asteromphalus darwinii/ hookeri diatom species-complex (Asterolampraceae)

    No full text
    Antarctic diatom populations of Asteromphalus hookeri and related species such as A. hyalinus and A. parvulus exhibit a highly variable number of hyaline rays ranging from 3 broad + 1 narrow (3 + 1) in the smallest valves, with 4 + 1 (27%) and 5 + 1 rays (35%) most common, and 6 + 1, 7 + 1, and rarely 8 + 1 rays only in larger cells. During December 1959 to April 1960 in the southern sector of the Atlantic Ocean, 6% of valves occurred as “double forms” with epitheca and hypotheca of the same cell exhibiting 4 + 1/3 + 1, 5 + 1/4 + 1, 6 + 1/5 + 1 and 7 + 1/6 + 1 ray combinations. Smaller cells (3 + 1, 4 + 1) always exhibited jagged separation lines in the central area, but larger cells (7 + 1, 8 + 1) had mostly smooth lines, and either jagged or smooth separation lines occurred in intermediate 5 + 1 and 6 + 1 forms, respectively. Epitheca and hypotheca of one and the same cell always exhibited jagged or smooth separation lines, but never mixtures. Observations of silica deposition during October to November 2011 around the Kerguelen Island plateau using the PDMPO fluorescent marker suggest that Asteromphalus separation lines play a key role in silica cell wall development. We discuss implications for taxonomy and our understanding of ecophysiology of what we designate as two highly variable and often confused and overlapping diatom taxa, A.darwiniii (jagged separation lines; synonyms A. beaumontii, A. hyalinus, A. leboimei, A. parvulus, A. rossii) and A. hookeri (smooth separation lines; synonym A. antarcticus, A.buchii, ?cuvierii, ?humboldtii)
    corecore