47 research outputs found

    How Does Featural Salience Affect Semantic Control Processes? A Preliminary Study

    Get PDF
    Patients with multimodal semantic impairment following stroke (referred to here as ‘semantic aphasia’, SA) are highly sensitive to the cognitive control demands of the task being performed and poor at inhibiting strongly associated distracters and focusing on less dominant aspects of meaning. Here, using feature selection tasks, we tested the role played by a semantic measure of featural salience on the control processes in healthy participants (Experiment 1) and SA patients (Experiment 2). Healthy participants showed a worse performance when the distracter feature was highly salient and the target feature was less salient for the concept, i.e., when there was an interference with voluntary selection of the target feature (Experiment 1). Consistent with these results, the SA patients showed a poorer performance than older controls when the target feature was weakly related to the concept (Experiment 2). In line with the feature-based models of the semantic memory, we discuss these preliminary results in term of greater demands of controlled semantic retrieval when the features are weakly related to the concept in the semantic network

    The neural correlates of regulating another person's emotions: an exploratory fMRI study

    Get PDF
    Studies investigating the neurophysiological basis of intrapersonal emotion regulation (control of one's own emotional experience) report that the frontal cortex exerts a modulatory effect on limbic structures such as the amygdala and insula. However, no imaging study to date has examined the neurophysiological processes involved in interpersonal emotion regulation, where the goal is explicitly to regulate another person's emotion. Twenty healthy participants (10 males) underwent fMRI while regulating their own or another person's emotions. Intrapersonal and interpersonal emotion regulation tasks recruited an overlapping network of brain regions including bilateral lateral frontal cortex, pre-supplementary motor area, and left temporo-parietal junction. Activations unique to the interpersonal condition suggest that both affective (emotional simulation) and cognitive (mentalizing) aspects of empathy may be involved in the process of interpersonal emotion regulation. These findings provide an initial insight into the neural correlates of regulating another person's emotions and may be relevant to understanding mental health issues that involve problems with social interaction

    Shared neural processes support semantic control and action understanding

    Get PDF
    Executive-semantic control and action understanding appear to recruit overlapping brain regions but existing evidence from neuroimaging meta-analyses and neuropsychology lacks spatial precision; we therefore manipulated difficulty and feature type (visual vs. action) in a single fMRI study. Harder judgements recruited an executive-semantic network encompassing medial and inferior frontal regions (including LIFG) and posterior temporal cortex (including pMTG). These regions partially overlapped with brain areas involved in action but not visual judgements. In LIFG, the peak responses to action and difficulty were spatially identical across participants, while these responses were overlapping yet spatially distinct in posterior temporal cortex. We propose that the co-activation of LIFG and pMTG allows the flexible retrieval of semantic information, appropriate to the current context; this might be necessary both for semantic control and understanding actions. Feature selection in difficult trials also recruited ventral occipital-temporal areas, not implicated in action understanding

    Shared neural processes support semantic control and action understanding

    Get PDF
    Executive-semantic control and action understanding appear to recruit overlapping brain regions but existing evidence from neuroimaging meta-analyses and neuropsychology lacks spatial precision; we therefore manipulated difficulty and feature type (visual vs. action) in a single fMRI study. Harder judgements recruited an executive-semantic network encompassing medial and inferior frontal regions (including LIFG) and posterior temporal cortex (including pMTG). These regions partially overlapped with brain areas involved in action but not visual judgements. In LIFG, the peak responses to action and difficulty were spatially identical across participants, while these responses were overlapping yet spatially distinct in posterior temporal cortex. We propose that the co-activation of LIFG and pMTG allows the flexible retrieval of semantic information, appropriate to the current context; this might be necessary both for semantic control and understanding actions. Feature selection in difficult trials also recruited ventral occipital-temporal areas, not implicated in action understanding

    Control the source: Source memory for semantic, spatial and self-related items in patients with LIFG lesions.

    Get PDF
    Patients with multimodal semantic deficits following stroke ('semantic aphasia') have largely intact knowledge, yet difficulty controlling conceptual retrieval to suit the circumstances. Although conceptual representations are thought to be largely distinct from episodic representations of recent events, controlled retrieval processes may overlap across semantic and episodic memory domains. We investigated this possibility by examining item familiarity and source memory for recent events in semantic aphasia following infarcts affecting left inferior frontal gyrus. We tested the hypothesis that the nature of impairment in episodic judgements reflects the need for control over retrieval: item familiarity might be relatively intact, given it is driven by strong cues (re-presentation of the item), while source recollection might be more impaired since this task involves resolving competition between several potential sources. This pattern was observed most strongly when the degree of competition between sources was higher, i.e., when non-meaningful sources had similar perceptual features, and existing knowledge was incongruent with the source. In contrast, when (i) spatial location acted as a strong cue for retrieval; (ii) existing knowledge was congruent with episodic memory and (iii) distinctiveness of sources was increased by means of self-referential processing, source memory reached normal levels. These findings confirm the association between deregulated control of semantic and episodic memory in patients with semantic aphasia and delineate circumstances that ameliorate or aggravate these deficits

    Representing Representation : Integration between the Temporal Lobe and the Posterior Cingulate Influences the Content and Form of Spontaneous Thought

    Get PDF
    When not engaged in the moment, we often spontaneously represent people, places and events that are not present in the environment. Although this capacity has been linked to the default mode network (DMN), it remains unclear how interactions between the nodes of this network give rise to particular mental experiences during spontaneous thought. One hypothesis is that the core of the DMN integrates information from medial and lateral temporal lobe memory systems, which represent different aspects of knowledge. Individual differences in the connectivity between temporal lobe regions and the default mode network core would then predict differences in the content and form of people's spontaneous thoughts. This study tested this hypothesis by examining the relationship between seed-based functional connectivity and the contents of spontaneous thought recorded in a laboratory study several days later. Variations in connectivity from both medial and lateral temporal lobe regions was associated with different patterns of spontaneous thought and these effects converged on an overlapping region in the posterior cingulate cortex. We propose that the posterior core of the DMN acts as a representational hub that integrates information represented in medial and lateral temporal lobe and this process is important in determining the content and form of spontaneous thought

    Automatic and Controlled Semantic Retrieval : TMS Reveals Distinct Contributions of Posterior Middle Temporal Gyrus and Angular Gyrus

    Get PDF
    UNLABELLED: Semantic retrieval involves both (1) automatic spreading activation between highly related concepts and (2) executive control processes that tailor this activation to suit the current context or goals. Two structures in left temporoparietal cortex, angular gyrus (AG) and posterior middle temporal gyrus (pMTG), are thought to be crucial to semantic retrieval and are often recruited together during semantic tasks; however, they show strikingly different patterns of functional connectivity at rest (coupling with the "default mode network" and "frontoparietal control system," respectively). Here, transcranial magnetic stimulation (TMS) was used to establish a causal yet dissociable role for these sites in semantic cognition in human volunteers. TMS to AG disrupted thematic judgments particularly when the link between probe and target was strong (e.g., a picture of an Alsatian with a bone), and impaired the identification of objects at a specific but not a superordinate level (for the verbal label "Alsatian" not "animal"). In contrast, TMS to pMTG disrupted thematic judgments for weak but not strong associations (e.g., a picture of an Alsatian with razor wire), and impaired identity matching for both superordinate and specific-level labels. Thus, stimulation to AG interfered with the automatic retrieval of specific concepts from the semantic store while stimulation of pMTG impaired semantic cognition when there was a requirement to flexibly shape conceptual activation in line with the task requirements. These results demonstrate that AG and pMTG make a dissociable contribution to automatic and controlled aspects of semantic retrieval. SIGNIFICANCE STATEMENT: We demonstrate a novel functional dissociation between the angular gyrus (AG) and posterior middle temporal gyrus (pMTG) in conceptual processing. These sites are often coactivated during neuroimaging studies using semantic tasks, but their individual contributions are unclear. Using transcranial magnetic stimulation and tasks designed to assess different aspects of semantics (item identity and thematic matching), we tested two alternative theoretical accounts. Neither site showed the pattern expected for a "thematic hub" (i.e., a site storing associations between concepts) since stimulation disrupted both tasks. Instead, the data indicated that pMTG contributes to the controlled retrieval of conceptual knowledge, while AG is critical for the efficient automatic retrieval of specific semantic information

    When comprehension elicits incomprehension: Deterioration of semantic categorisation in the absence of stimulus repetition

    Get PDF
    Repetition improves retrieval from memory; however, under some circumstances, it can also impair performance. Separate literatures have investigated this phenomenon, including studies showing subjective loss of meaning following “semantic satiation”, slowed naming and categorisation when semantically-related items are repeated, and semantic “access deficits” in aphasia. Such effects have been variously explained in terms of habituation of repeatedly-accessed representations, increased interference from strongly activated competitors, and longer-term weight changes reflecting the suppression of non-targets on earlier trials (i.e., retrieval-induced forgetting). While studies of semantic satiation involve massed repetition of individual items, competition and weight changes at the conceptual level should elicit declining comprehension for non-repeated items: this pattern has been demonstrated for picture naming but effects in categorisation are less clear. We developed a paced serial semantic task (PSST), in which participants identified category members amongst distracters. Performance in healthy young adults deteriorated with ongoing retrieval for non-repeated words belonging to functional categories (e.g., picnic), taxonomic categories (e.g., animal) and feature-based categories (e.g., colour red – “tomato”, “post box”). This decline was greatest at fast presentation speeds (when there was less time to overcome competition/inhibition), and for strongly-associated targets (which may have accrued more inhibition to facilitate earlier target categorisation). Deteriorating performance was also seen across words and pictures, consistent with a conceptual locus. We observed a release from deteriorating categorisation following a switch to a new category, demonstrating that this was not a general effect of time on task. Patients with semantic aphasia, who have deficient semantic control, maintained their performance throughout the categories, unlike younger adults: this finding is hard to reconcile with accounts of declining performance that propose a build-up of competition, since the patients should have had greater difficulty resolving such competition. These results instead suggest that declining performance on our goal-driven categorisation task was linked to the use of a controlled retrieval strategy by healthy young adults. Patients may not have inhibited related non-target knowledge to facilitate initial categorisation like younger volunteers, and consequently they were less vulnerable to declining comprehension in this paradigm. Together, these results demonstrate circumstances which produce declines in continuous categorisation in healthy adults

    Shared processes resolve competition within and between episodic and semantic memory: Evidence from patients with LIFG lesions

    Get PDF
    Semantic cognition is supported by two interactive components: semantic representations and mechanisms that regulate retrieval (cf. ‘semantic control’). Neuropsychological studies have revealed a clear dissociation between semantic and episodic memory. This study explores if the same dissociation holds for control processes that act on episodic and semantic memory, or whether both types of long-term memory are supported by the same executive mechanisms. We addressed this question in a case-series of semantic aphasic patients who had difficulty retrieving both verbal and non-verbal conceptual information in an appropriate fashion following infarcts to left inferior frontal gyrus (LIFG). We observed parallel deficits in semantic and episodic memory: (i) the patients’ difficulties extended beyond verbal materials to include picture tasks in both domains; (ii) both types of retrieval benefitted from cues designed to reduce the need for internal constraint; (iii) there was little impairment of both semantic and episodic tasks when control demands were minimised; (iv) there were similar effects of distractors across tasks. Episodic retrieval was highly susceptible to false memories elicited by semantically-related distractors, and confidence was inappropriately high in these circumstances. Semantic judgements were also prone to contamination from recent events. These findings demonstrate that patients with deregulated semantic cognition have comparable deficits in episodic retrieval. The results are consistent with a role for LIFG in resolving competition within both episodic and semantic memory, and also in biasing cognition towards task-relevant memory stores when episodic and semantic representations do not promote the same response

    Charting the effects of TMS with fMRI : Modulation of cortical recruitment within the distributed network supporting semantic control

    Get PDF
    Semantic memory comprises our knowledge of the meanings of words and objects but only some of this knowledge is relevant at any given time. Thus, semantic control processes are needed to focus retrieval on relevant information. Research on the neural basis of semantic control has strongly implicated left inferior frontal gyrus (LIFG) but recent work suggests that a wider network supports semantic control, including left posterior middle temporal gyrus (pMTG), right inferior frontal gyrus (RIFG) and pre-supplementary motor area (pre-SMA). In the current study, we used repetitive transcranial magnetic stimulation (1 Hz offline TMS) over LIFG, immediately followed by fMRI, to examine modulation of the semantic network. We compared the effect of stimulation on judgements about strongly-associated words (dog-bone) and weaker associations (dog-beach), since previous studies have found that dominant links can be recovered largely automatically with little engagement of LIFG, while more distant connections require greater control. Even though behavioural performance was maintained in response to TMS, LIFG stimulation increased the effect of semantic control demands in pMTG and pre-SMA, relative to stimulation of a control site (occipital pole). These changes were accompanied by reduced recruitment of both the stimulated region (LIFG) and its right hemisphere homologue (RIFG), particularly for strong associations with low control requirements. Thus repetitive TMS to LIFG modulated the contribution of distributed regions to semantic judgements in two distinct ways
    corecore