597 research outputs found

    Evidence for the Multiverse in the Standard Model and Beyond

    Full text link
    In any theory it is unnatural if the observed parameters lie very close to special values that determine the existence of complex structures necessary for observers. A naturalness probability, P, is introduced to numerically evaluate the unnaturalness. If P is small in all known theories, there is an observer naturalness problem. In addition to the well-known case of the cosmological constant, we argue that nuclear stability and electroweak symmetry breaking (EWSB) represent significant observer naturalness problems. The naturalness probability associated with nuclear stability is conservatively estimated as P_nuc < 10^{-(3-2)}, and for simple EWSB theories P_EWSB < 10^{-(2-1)}. This pattern of unnaturalness in three different arenas, cosmology, nuclear physics, and EWSB, provides evidence for the multiverse. In the nuclear case the problem is largely solved even with a flat multiverse distribution, and with nontrivial distributions it is possible to understand both the proximity to neutron stability and the values of m_e and m_d - m_u in terms of the electromagnetic contribution to the proton mass. It is reasonable that multiverse distributions are strong functions of Lagrangian parameters due to their dependence on various factors. In any EWSB theory, strongly varying distributions typically lead to a little or large hierarchy, and in certain multiverses the size of the little hierarchy is enhanced by a loop factor. Since the correct theory of EWSB is unknown, our estimate for P_EWSB is theoretical. The LHC will determine P_EWSB more robustly, which may remove or strengthen the observer naturalness problem of EWSB. For each of the three arenas, the discovery of a natural theory would eliminate the evidence for the multiverse; but in the absence of such a theory, the multiverse provides a provisional understanding of the data.Comment: 79 pages, 23 figure

    Landscape Predictions for the Higgs Boson and Top Quark Masses

    Full text link
    If the Standard Model is valid up to scales near the Planck mass, and if the cosmological constant and Higgs mass parameters scan on a landscape of vacua, it is well known that the observed orders of magnitude of these quantities can be understood from environmental selection for large-scale structure and atoms. If in addition the Higgs quartic coupling scans, with a probability distribution peaked at low values, environmental selection for a phase having a scale of electroweak symmetry breaking much less than the Planck scale leads to a most probable Higgs mass of 106 GeV. While fluctuations below this are negligible, the upward fluctuation is 25/p GeV, where p measures the strength of the peaking of the a priori distribution of the quartic coupling. If the top Yukawa coupling also scans, the most probable top quark mass is predicted to lie in the range (174--178) GeV, providing the standard model is valid to at least 10^{17} GeV. The downward fluctuation is 35 GeV/ \sqrt{p}, suggesting that p is sufficiently large to give a very precise Higgs mass prediction. While a high reheat temperature after inflation could raise the most probable value of the Higgs mass to 118 GeV, maintaining the successful top prediction suggests that reheating is limited to about 10^8 GeV, and that the most probable value of the Higgs mass remains at 106 GeV. If all Yukawa couplings scan, then the e,u,d and t masses are understood to be outliers having extreme values induced by the pressures of strong environmental selection, while the s, \mu, c, b, \tau Yukawa couplings span only two orders of magnitude, reflecting an a priori distribution peaked around 10^{-3}. Extensions of these ideas allow order of magnitude predictions for neutrino masses, the baryon asymmetry and important parameters of cosmological inflation.Comment: 41 pages; v4: threshold corrrections for top Yukawa are correcte

    Multiverse Understanding of Cosmological Coincidences

    Full text link
    There is a deep cosmological mystery: although dependent on very different underlying physics, the timescales of structure formation, of galaxy cooling (both radiatively and against the CMB), and of vacuum domination do not differ by many orders of magnitude, but are all comparable to the present age of the universe. By scanning four landscape parameters simultaneously, we show that this quadruple coincidence is resolved. We assume only that the statistical distribution of parameter values in the multiverse grows towards certain catastrophic boundaries we identify, across which there are drastic regime changes. We find order-of-magnitude predictions for the cosmological constant, the primordial density contrast, the temperature at matter-radiation equality, the typical galaxy mass, and the age of the universe, in terms of the fine structure constant and the electron, proton and Planck masses. Our approach permits a systematic evaluation of measure proposals; with the causal patch measure, we find no runaway of the primordial density contrast and the cosmological constant to large values.Comment: 40 pages, 5 figures; discussion of measures extended, version to appear in Phys. Rev.

    The case of veterinary interprofessional practice: From one health to a world of its own

    Get PDF
    BACKGROUND: Research regarding the veterinary professions' involvement in interprofessional practice and education (IPE), either with health care professionals as part of One Health, or specifically within the veterinary health care team, is sparse. PURPOSE: To investigate veterinary interprofessional working and learning in veterinary practices; then ultimately to make recommendations for IPE. METHOD: Two case studies in typical but contrasting practices were conducted. The study consisted of three sequential and complementary weeks: 1) observing the whole team, 2) shadowing selected focus individuals from each profession and 3) interviewing focus individuals regarding teamwork. Triangulation was achieved by synthesis of emergent themes from observational field notes and interview transcripts. DISCUSSION: Facilitators to interprofessional practices included hierarchy, trust and value, different perspectives, formal infrastructure and professionalization. Challenges included hierarchy, spatial and temporal work patterns, professional motivations, and error and blame. CONCLUSION: The veterinary and human health care fields face similar interprofessional challenges. Real life observations, as described here, can provide important insight relevant to the design of IPE initiatives

    Metric-affine f(R) theories of gravity

    Full text link
    General Relativity assumes that spacetime is fully described by the metric alone. An alternative is the so called Palatini formalism where the metric and the connections are taken as independent quantities. The metric-affine theory of gravity has attracted considerable attention recently, since it was shown that within this framework some cosmological models, based on some generalized gravitational actions, can account for the current accelerated expansion of the universe. However we think that metric-affine gravity deserves much more attention than that related to cosmological applications and so we consider here metric-affine gravity theories in which the gravitational action is a general function of the scalar curvature while the matter action is allowed to depend also on the connection which is not {\em a priori} symmetric. This general treatment will allow us to address several open issues such as: the relation between metric-affine f(R)f(R) gravity and General Relativity (in vacuum as well as in the presence of matter), the implications of the dependence (or independence) of the matter action on the connections, the origin and role of torsion and the viability of the minimal-coupling principle.Comment: typos corrected, replaced to match published versio

    Looking backward, looking forward: the city region of the mid-21st century

    Full text link
    Emerging as a serious tool of analysis in the United States around 1950, the city region concept was increasingly applied in a European context after 1980. Since 2000, it has evolved further with recognition of the polycentric mega-city region, first recognised in Eastern Asia but now seen as an emerging urban form both in Europe and the United States. The paper speculates on the main changes that may impact on the growth and development of such complex urban regions in the first half of the 21st century, concluding that achieving the goal of polycentric urban development may prove more complex than at first it may seem

    Taming the Runaway Problem of Inflationary Landscapes

    Full text link
    A wide variety of vacua, and their cosmological realization, may provide an explanation for the apparently anthropic choices of some parameters of particle physics and cosmology. If the probability on various parameters is weighted by volume, a flat potential for slow-roll inflation is also naturally understood, since the flatter the potential the larger the volume of the sub-universe. However, such inflationary landscapes have a serious problem, predicting an environment that makes it exponentially hard for observers to exist and giving an exponentially small probability for a moderate universe like ours. A general solution to this problem is proposed, and is illustrated in the context of inflaton decay and leptogenesis, leading to an upper bound on the reheating temperature in our sub-universe. In a particular scenario of chaotic inflation and non-thermal leptogenesis, predictions can be made for the size of CP violating phases, the rate of neutrinoless double beta decay and, in the case of theories with gauge-mediated weak scale supersymmetry, for the fundamental scale of supersymmetry breaking.Comment: 31 pages, including 3 figure

    Baryogenesis from Primordial Blackholes after Electroweak Phase Transition

    Get PDF
    Incorporating a realistic model for accretion of ultra-relativistic particles by primordial blackholes (PBHs), we study the evolution of an Einstein-de Sitter universe consisting of PBHs embedded in a thermal bath from the epoch 1033\sim 10^{-33} sec to 5×109\sim 5\times 10^{-9} sec. In this paper we use Barrow et al's ansatz to model blackhole evaporation in which the modified Hawking temperature goes to zero in the limit of the blackhole attaining a relic state with mass mpl\sim m_{pl}. Both single mass PBH case as well as the case in which blackhole masses are distributed in the range 8×1023×1058\times 10^2 - 3\times 10^5 gm have been considered in our analysis. Blackholes with mass larger than 105\sim 10^5 gm appear to survive beyond the electroweak phase transition and, therefore, successfully manage to create baryon excess via XXˉX-\bar X emissions, averting the baryon number wash-out due to sphalerons. In this scenario, we find that the contribution to the baryon-to-entropy ratio by PBHs of initial mass mm is given by ϵζ(m/1gm)1\sim \epsilon \zeta (m/1 {gm})^{-1}, where ϵ\epsilon and ζ\zeta are the CP-violating parameter and the initial mass fraction of the PBHs, respectively. For ϵ\epsilon larger than 104\sim 10^{-4}, the observed matter-antimatter asymmetry in the universe can be attributed to the evaporation of PBHs.Comment: Latex2e file with seven figures included as postscript file

    Royal and Lordly Residence in Scotland c 1050 to c 1250: an Historiographical Review and Critical Revision

    Get PDF
    Academic study of eleventh to thirteenth century high status residence in Scotland has been largely bypassed by the English debates over origin, function and symbolism. Archaeologists have also been slow to engage with three decades of historical revision of traditional socio-economic, cultural and political models upon which their interpretations of royal and lordly residence have drawn. Scottish castle-studies of the pre-1250 era continue to be framed by a ‘military architecture’ historiographical tradition and a view of the castle as an alien artefact imposed on the land by foreign adventurers and a ‘modernising’ monarchy and native Gaelic nobility. Knowledge and understanding of pre-twelfth century native high status sites is rudimentary and derived primarily from often inappropriate analogy with English examples. Discussion of native responses to the imported castle-building culture is founded upon retrospective projection of inappropriate later medieval social and economic models and anachronistic perceptions of military colonialism. Cultural and socio-economic difference is rarely recognised in archaeological modelling and cultural determinism has distorted perceptions of structural form, social status and material values. A programme of interdisciplinary studies focused on specific sites is necessary to provide a corrective to this current situation

    Loop-Generated Bounds on Changes to the Graviton Dispersion Relation

    Get PDF
    We identify the effective theory appropriate to the propagation of massless bulk fields in brane-world scenarios, to show that the dominant low-energy effect of asymmetric warping in the bulk is to modify the dispersion relation of the effective 4-dimensional modes. We show how such changes to the graviton dispersion relation may be bounded through the effects they imply, through loops, for the propagation of standard model particles. We compute these bounds and show that they provide, in some cases, the strongest constraints on nonstandard gravitational dispersions. The bounds obtained in this way are the strongest for the fewest extra dimensions and when the extra-dimensional Planck mass is the smallest. Although the best bounds come for warped 5-D scenarios, for which the 5D Planck Mass is O(TeV), even in 4 dimensions the graviton loop can lead to a bound on the graviton speed which is comparable with other constraints.Comment: 18 pages, LaTeX, 4 figures, uses revte
    corecore