2,234 research outputs found

    Effects of Strong Gravitational Lensing on Millimeter-Wave Galaxy Number Counts

    Full text link
    We study the effects of strong lensing on the observed number counts of mm sources using a ray tracing simulation and two number count models of unlensed sources. We employ a quantitative treatment of maximum attainable magnification factor depending on the physical size of the sources, also accounting for effects of lens halo ellipticity. We calculate predicted number counts and redshift distributions of mm galaxies including the effects of strong lensing and compare with the recent source count measurements of the South Pole Telescope (SPT). The predictions have large uncertainties, especially the details of the mass distribution in lens galaxies and the finite extent of sources, but the SPT observations are in good agreement with predictions. The sources detected by SPT are predicted to largely consist of strongly lensed galaxies at z>2. The typical magnifications of these sources strongly depends on both the assumed unlensed source counts and the flux of the observed sources

    Restrictions on Transversal Encoded Quantum Gate Sets

    Full text link
    Transversal gates play an important role in the theory of fault-tolerant quantum computation due to their simplicity and robustness to noise. By definition, transversal operators do not couple physical subsystems within the same code block. Consequently, such operators do not spread errors within code blocks and are, therefore, fault tolerant. Nonetheless, other methods of ensuring fault tolerance are required, as it is invariably the case that some encoded gates cannot be implemented transversally. This observation has led to a long-standing conjecture that transversal encoded gate sets cannot be universal. Here we show that the ability of a quantum code to detect an arbitrary error on any single physical subsystem is incompatible with the existence of a universal, transversal encoded gate set for the code.Comment: 4 pages, v2: minor change

    Are You Ready? How Health Professionals Can Comprehensively Conceptualize Readiness for Change

    Get PDF
    One important factor influencing the successful implementation of system-wide change is initial readiness. Readiness is defined as the degree to which those involved are individually and collectively primed, motivated, and technically capable of executing the change. We present a conceptual framework that highlights three broad areas to be considered if health-care professionals are to comprehensively evaluate readiness that includes psychological factors (i.e., characteristics of those being asked to change), structural factors (i.e., circumstances under which the change is occurring) as well as the level of analysis (i.e., individual and organizational levels). We also describe more specific dimensions within each of these broad categories that have both empirical and theoretical support, presenting several valid and reliable survey instruments that measure key dimensions of readiness quantitatively

    Parents' responses to prognostic disclosure at diagnosis of a child with a high‐risk brain tumor: Analysis of clinician‐parent interactions and implications for clinical practice

    Get PDF
    Background: Previous studies have found that parents of children with cancer desire more prognostic information than is often given even when prognosis is poor. We explored in audio‐recorded consultations the kinds of information they seek. / Methods: Ethnographic study including observation and audio recording of consultations at diagnosis. Consultations were transcribed and analyzed using an interactionist perspective including tools drawn from conversation and discourse analysis. / Results: Enrolled 21 parents and 12 clinicians in 13 cases of children diagnosed with a high‐risk brain tumor (HRBT) over 20 months at a tertiary pediatric oncology center. Clinicians presented prognostic information in all cases. Through their questions, parents revealed what further information they desired. Clinicians made clear that no one could be absolutely certain what the future held for an individual child. Explicit communication about prognosis did not satisfy parents’ desire for information about their own child. Parents tried to personalize prognostic information and to apply it to their own situation. Parents moved beyond prognostic information presented and drew conclusions, which could change over time. Parents who were present in the same consultations could form different views of their child's prognosis. / Conclusion: Population level prognostic information left parents uncertain about their child's future. The need parents revealed was not for more such information but rather how to use the information given and how to apply it to their child in the face of such uncertainty. Further research is needed on how best to help parents deal with uncertainty and make prognostic information actionable

    Impact of Cluster Physics on the Sunyaev-Zel'dovich Power Spectrum

    Full text link
    We use an analytic model to investigate the theoretical uncertainty on the thermal Sunyaev-Zel'dovich (SZ) power spectrum due to astrophysical uncertainties in the thermal structure of the intracluster medium. Our model accounts for star formation and energy feedback (from supernovae and active galactic nuclei) as well as radially dependent non-thermal pressure support due to random gas motions, the latter calibrated by recent hydrodynamical simulations. We compare the model against X-ray observations of low redshift clusters, finding excellent agreement with observed pressure profiles. Varying the levels of feedback and non-thermal pressure support can significantly change both the amplitude and shape of the thermal SZ power spectrum. Increasing the feedback suppresses power at small angular scales, shifting the peak of the power spectrum to lower ell. On the other hand, increasing the non-thermal pressure support has the opposite effect, significantly reducing power at large angular scales. In general, including non-thermal pressure at the level measured in simulations has a large effect on the power spectrum, reducing the amplitude by 50% at angular scales of a few arcminutes compared to a model without a non-thermal component. Our results demonstrate that measurements of the shape of the power spectrum can reveal useful information on important physical processes in groups and clusters, especially at high-redshift where there exists little observational data. Comparing with the recent South Pole Telescope measurements of the small-scale cosmic microwave background power spectrum, we find our model reduces the tension between the values of sigma_8 measured from the SZ power spectrum and from cluster abundances.Comment: 15 Pages, 9 Figures, updated to match version accepted by Ap

    Annual water residence time effects on thermal structure: a potential lake restoration measure?

    Get PDF
    Innovative methods to combat internal loading issues in eutrophic lakes are urgently needed to speed recovery and restore systems within legislative deadlines. In stratifying lakes, internal phosphorus loading is particularly problematic during the summer stratified period when anoxia persists in the hypolimnion, promoting phosphorus release from the sediment. A novel method to inhibit stratification by reducing residence times is proposed as a way of controlling the length of the hypolimnetic anoxic period, thus reducing the loading of nutrients from the sediments into the water column. However, residence time effects on stratification length in natural lakes are not well understood. We used a systematic modelling approach to investigate the viability of changes to annual water residence time in affecting lake stratification and thermal dynamics in Elterwater, a small stratifying eutrophic lake in the northwest of England. We found that reducing annual water residence times shortened and weakened summer stratification. Based on finer-scale dynamics of lake heat fluxes and water column stability we propose seasonal or sub-seasonal management of water residence time is needed for the method to be most effective at reducing stratification as a means of controlling internal nutrient loading

    Direct and indirect measurement of somatic cell count as indicator of intramammary infection in dairy goats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mastitis is the most important and costly disease in dairy goat production. Subclinical mastitis is common in goats and is mainly caused by contagious bacteria. Several methods to diagnose subclinical mastitis are available. In this study indirect measurement of somatic cell count (SCC) by California Mastitis Test (CMT) and direct measurement of SCC using a portable deLaval cell counter (DCC) are evaluated. Swedish goat farmers would primarily benefit from diagnostic methods that can be used at the farm. The purpose of the study was to evaluate SCC measured by CMT and DCC as possible markers for intramammary infection (IMI) in goats without clinical symptoms of mastitis. Moreover to see how well indirect measurement of SCC (CMT) corresponded to direct measurement of SCC (DCC).</p> <p>Method</p> <p>Udder half milk samples were collected once from dairy goats (n = 111), in five different farms in Northern and Central Sweden. Only clinically healthy animals were included in the study. All goats were in mid to late lactation at sampling. Milk samples were analyzed for SCC by CMT and DCC at the farm, and for bacterial growth at the laboratory.</p> <p>Results</p> <p>Intramammary infection, defined as growth of udder pathogens, was found in 39 (18%) of the milk samples. No growth was found in 180 (81%) samples while 3 (1%) samples were contaminated. The most frequently isolated bacterial species was coagulase negative staphylococci (CNS) (72% of all isolates), followed by <it>Staphylococcus aureus </it>(23% of all isolates). Somatic cell count measured by DCC was strongly (p = 0.000) associated with bacterial growth. There was also a very strong association between CMT and bacterial growth. CMT 1 was associated with freedom of IMI while CMT ≥2 was associated with IMI. Indirect measurement of SCC by CMT was well correlated with SCC measured by DCC.</p> <p>Conclusions</p> <p>According to the results, SCC measured with CMT or DCC can predict udder infection in goats, and CMT can be used as a predictor of the SCC.</p

    Can reductions in water residence time be used to disrupt seasonal stratification and control internal loading in a eutrophic monomictic lake?

    Get PDF
    Anthropogenic eutrophication caused by excess loading of nutrients, especially phosphorus (P), from catchments is a major cause of lake water quality degradation. The release of P from bed sediments to the water column, termed internal loading, can exceed catchment P load in eutrophic lakes, especially those that stratify during warm summer periods. Managing internal P loading is challenging, and although a range of approaches have been implemented, long-term success is often limited, requiring lake-specific solutions. Here, we assess the manipulation of lake residence time to inhibit internal loading in Elterwater, a shallow stratifying lake in the English Lake District, UK. Since 2016, additional inflowing water has been diverted into the inner basin of Elterwater to reduce its water residence time, with the intention of limiting the length of the stratified period and reducing internal loading. Combining eight years of field data in a Before-After-Control-Impact study with process-based hydrodynamic modelling enabled the quantification of the residence time intervention effects on stratification length, water column stability, and concentrations of chlorophyll a and P. Annual water residence time was reduced during the study period by around 40% (4.9 days). Despite this change, the lake continued to stratify and developed hypolimnetic anoxia. As a result, there was little significant change in phosphorus (as total or soluble reactive phosphorus) or chlorophyll a concentrations. Summer stratification length was 2 days shorter and 7% less stable with the intervention. Our results suggest that the change to water residence time in Elterwater was insufficient to induce large enough physical changes to improve water quality. However, the minor physical changes suggest the management measure had some impact and that larger changes in water residence time may have the potential to induce reductions in internal loading. Future assessments of management requirements should combine multi-year observations and physical lake modelling to provide improved understanding of the intervention effect size required to alter the physical structure of the lake, leading to increased hypolimnetic oxygen and reduced potential for internal loading
    corecore