51 research outputs found

    A comparative study of the yellow dent and purple flint maize kernel components by Raman spectroscopy and chemometrics

    No full text
    In this investigation the potential of micro-Raman spectroscopy, coupled to a simple, standard chemometric method (principal component analysis, PCA), as a fast, cheap, field method to investigate maize kernel components (endosperm, germ and peel) is demonstrated. Particular emphasis was given to the determination of the relative protein and amylose/amylopectin contents in maize endosperm of yellow dent and purple flint corn species, the two major maize varieties produced in Turkey. It is shown that the studied yellow dent corn type has a comparatively larger content of protein (3.4%) and a higher amylopectin/amylose ratio in the endosperm than the studied purple flint variety (a 11% decrease of amylopectin was found in going from the studied yellow dent to the purple flint corn), while the germs of the two species differ mostly by the presence of a slightly larger amount of starch in the case of the yellow dent corn, the oil composition of both species being identical within the resolution of the used method of analysis. The spectra of the maize peels reveal essentially the presence of cellulose and lignin in similar amounts in the two types of corn. (C) 2019 Elsevier B.V. All rights reserved

    Measurement of K*(892)(+/-) production in inelastic pp collisions at the LHC

    Get PDF
    The first results on K⁎(892)± resonance production in inelastic pp collisions at LHC energies of s=5.02, 8, and 13 TeV are presented. The K⁎(892)± has been reconstructed via its hadronic decay channel K⁎(892)→±KS0+π± with the ALICE detector. Measurements of transverse momentum distributions, pT-integrated yields, and mean transverse momenta for charged K⁎(892) are found to be consistent with previous ALICE measurements for neutral K⁎(892) within uncertainties. For pT>1 GeV/c the K⁎(892)± transverse momentum spectra become harder with increasing centre-of-mass energy from 5.02 to 13 TeV, similar to what previously observed for charged kaons and pions. For pT<1 GeV/c the K⁎(892)± yield does not evolve significantly and the abundance of K⁎(892)± relative to K is rather independent of the collision energy. The transverse momentum spectra, measured for K⁎(892)± at midrapidity in the interval 0 < pT<15 GeV/c, are not well described by predictions of different versions of PYTHIA 6, PYTHIA 8 and EPOS-LHC event generators. These generators reproduce the measured pT-integrated K⁎±/K ratios and describe well the momentum dependence for pT<2 GeV/c

    Production of K(892)0^{*}(892)^{0} and ϕ(1020)\phi(1020) in pp and Pb-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    The production of K(892)0^{*}(892)^{0} and ϕ(1020)\phi(1020) mesons in proton-proton (pp) and lead-lead (Pb-Pb) collisions at sNN=5.02\sqrt{s_\mathrm{NN}} = 5.02 TeV has been measured using the ALICE detector at the Large Hadron Collider (LHC). The transverse momentum (pTp_{\mathrm{T}}) distributions of K(892)0^{*}(892)^{0} and ϕ(1020)\phi(1020) mesons have been measured at midrapidity (y8(|y| 8 GeV/c/c, the RAAR_{\rm AA} values of K(892)0^{*}(892)^{0} and ϕ(1020)\phi(1020) are below unity and observed to be similar to those of pions, kaons, and (anti)protons. The RAAR_{\rm AA} values at high pTp_{\mathrm T} for K(892)0^{*}(892)^{0} and ϕ(1020)\phi(1020) mesons are in agreement within uncertainties for sNN=5.02\sqrt{s_\mathrm{NN}} = 5.02 and 2.76 TeV

    Charm-quark fragmentation fractions and production cross section at midrapidity in pp collisions at the LHC

    No full text
    International audienceRecent pT-integrated cross-section measurements of the ground-state charm mesons and baryons, D0, D+, Ds+, Λc+, and Ξc0, are used to evaluate the charm fragmentation fractions and production cross section per unit of rapidity at midrapidity (|y|&lt;0.5), in pp collisions at s=5.02  TeV at the LHC. The latter is dσcc¯/dy||y|&lt;0.5=1165±44(stat)-101+134(syst)  μb. These measurements were obtained for the first time in hadronic collisions at the LHC, including the charm baryon states, recently measured by ALICE at midrapidity. The charm fragmentation fractions differ significantly from the values measured in e+e- and ep collisions, providing evidence of the dependence of the parton-to-hadron fragmentation fractions on the collision system, indicating that the assumption of their universality is not supported by the measured cross sections. An increase of a factor of about 3.3 for the fragmentation fraction for the Λc+ with a significance of 5σ between the values obtained in pp collisions and those obtained in e+e- (ep) collisions is reported. The fragmentation fraction for the Ξc0 was obtained for the first time in any collision system. The measured fragmentation fractions were used to update the cc¯ cross sections per unit of rapidity at |y|&lt;0.5 at s=2.76 and 7 TeV, which are about 40% higher than the previously published results. The data were compared with perturbative-QCD calculations and lie at the upper edge of the theoretical bands

    Measurements of the groomed and ungroomed jet angularities in pp collisions at s \sqrt{s} = 5.02 TeV

    No full text
    International audienceThe jet angularities are a class of jet substructure observables which characterize the angular and momentum distribution of particles within jets. These observables are sensitive to momentum scales ranging from perturbative hard scatterings to nonperturbative fragmentation into final-state hadrons. We report measurements of several groomed and ungroomed jet angularities in pp collisions at s \sqrt{s} = 5.02 TeV with the ALICE detector. Jets are reconstructed using charged particle tracks at midrapidity (|η| < 0.9). The anti-kT_{T} algorithm is used with jet resolution parameters R = 0.2 and R = 0.4 for several transverse momentum {p}_{\mathrm{T}}^{\mathrm{ch}} ^{jet} intervals in the 20–100 GeV/c range. Using the jet grooming algorithm Soft Drop, the sensitivity to softer, wide-angle processes, as well as the underlying event, can be reduced in a way which is well-controlled in theoretical calculations. We report the ungroomed jet angularities, λα_{α}, and groomed jet angularities, λα,g_{α,g}, to investigate the interplay between perturbative and nonperturbative effects at low jet momenta. Various angular exponent parameters α = 1, 1.5, 2, and 3 are used to systematically vary the sensitivity of the observable to collinear and soft radiation. Results are compared to analytical predictions at next-to-leading-logarithmic accuracy, which provide a generally good description of the data in the perturbative regime but exhibit discrepancies in the nonperturbative regime. Moreover, these measurements serve as a baseline for future ones in heavy-ion collisions by providing new insight into the interplay between perturbative and nonperturbative effects in the angular and momentum substructure of jets. They supply crucial guidance on the selection of jet resolution parameter, jet transverse momentum, and angular scaling variable for jet quenching studies.[graphic not available: see fulltext

    Measurement of the Cross Sections of Ξc0\Xi^0_{c} and Ξc+\Xi^+_{c} Baryons and of the Branching-Fraction Ratio BR(Ξc0Ξe+νe\Xi^0_{c} \rightarrow \Xi^-{e}^+\nu_{ e})/BR(Ξc0Ξπ+\Xi^0_{c} \rightarrow \Xi^-\pi^+) in pp collisions at 13 TeV

    No full text
    The pTp_T-differential cross sections of prompt charm-strange baryons Ξc0_c^0 and Ξc+_c^+ were measured at midrapidity (|y|<0.5) in proton-proton (pp) collisions at a center-of-mass energy s\sqrt{s} = 13 TeV with the ALICE detector at the LHC. The Ξc0_c^0 baryon was reconstructed via both the semileptonic decay (Ξ^-e+^+νe_e) and the hadronic decay (Ξ^-π+^+) channels. The Ξc+_c^+ baryon was reconstructed via the hadronic decay (Ξ^-π+^+π+^+) channel. The branching-fraction ratio BR(Ξc0_c^0→Ξ^-e+^+νe_e)/BR(Ξc0_c^0→Ξ^-π+^+) = 1.38±0.14(stat)±0.22(syst) was measured with a total uncertainty reduced by a factor of about 3 with respect to the current world average reported by the Particle Data Group. The transverse momentum (pTp_T) dependence of the Ξc0_c^0- and Ξc+_c^+-baryon production relative to the D0^0 meson and to the Σc0,+,++_c^{0,+,++}- and Λc+_c^+-baryon production are reported. The baryon-to-meson ratio increases toward low pTp_T up to a value of approximately 0.3. The measurements are compared with various models that take different hadronization mechanisms into consideration. The results provide stringent constraints to these theoretical calculations and additional evidence that different processes are involved in charm hadronization in electron-positron (e+^+e^-) and hadronic collisions

    Measurement of the groomed jet radius and momentum splitting fraction in pp and Pb-Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV

    No full text
    This article presents groomed jet substructure measurements in pp and Pb-Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV with the ALICE detector. The soft drop grooming algorithm provides access to the hard parton splittings inside a jet by removing soft wide-angle radiation. We report the groomed jet momentum splitting fraction, zg, and the (scaled) groomed jet radius, θg. Charged-particle jets are reconstructed at midrapidity using the anti-kT_T algorithm with resolution parameters R = 0.2 and R = 0.4. In heavy-ion collisions, the large underlying event poses a challenge for the reconstruction of groomed jet observables, since fluctuations in the background can cause groomed parton splittings to be misidentified. By using strong grooming conditions to reduce this background, we report these observables fully corrected for detector effects and background fluctuations for the first time. A narrowing of the θg distribution in Pb-Pb collisions compared to pp collisions is seen, which provides direct evidence of the modification of the angular structure of jets in the quark-gluon plasma. No significant modification of the zg distribution in Pb-Pb collisions compared to pp collisions is observed. These results are compared with a variety of theoretical models of jet quenching, and provide constraints on jet energy-loss mechanisms and coherence effects in the quark-gluon plasma

    Direct observation of the dead-cone effect in quantum chromodynamics

    No full text
    In particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD). These partons subsequently emit further partons in a process that can be described as a parton shower which culminates in the formation of detectable hadrons. Studying the pattern of the parton shower is one of the key experimental tools for testing QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass mQ and energy E, within a cone of angular size mQ/E around the emitter. Previously, a direct observation of the dead-cone effect in QCD had not been possible, owing to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible hadrons. We report the direct observation of the QCD dead cone by using new iterative declustering techniques to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD. Furthermore, the measurement of a dead-cone angle constitutes a direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics

    Polarization of Λ and ¯Λ hyperons along the beam direction in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The polarization of the Λ and Λ¯¯¯¯ hyperons along the beam (z) direction, Pz, has been measured in Pb-Pb collisions at sNN−−−√ = 5.02TeV recorded with ALICE at the Large Hadron Collider (LHC). The main contribution to Pz comes from elliptic flow induced vorticity and can be characterized by the second Fourier sine coefficient Pz,s2=⟨Pzsin(2φ−2Ψ2)⟩, where φ is the hyperon azimuthal emission angle, and Ψ2 is the elliptic flow plane angle. We report the measurement of Pz,s2 for different collision centralities, and in the 30-50% centrality interval as a function of the hyperon transverse momentum and rapidity. The Pz,s2 is positive similarly as measured by the STAR Collaboration in Au-Au collisions at sNN−−−√ = 200 GeV, with somewhat smaller amplitude in the semi-central collisions. This is the first experimental evidence of a non-zero hyperon Pz in Pb-Pb collisions at the LHC. The comparison of the measured Pz,s2 with the hydrodynamic model calculations shows sensitivity to the competing contributions from thermal and the recently found shear induced vorticity, as well as to whether the polarization is acquired at the quark-gluon plasma or the hadronic phase

    Measurement of the groomed jet radius and momentum splitting fraction in pp and Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    This article presents groomed jet substructure measurements in pp and Pb−Pb collisions at sNN−−−√=5.02 TeV with the ALICE detector. The Soft Drop grooming algorithm provides access to the hard parton splittings inside a jet by removing soft wide-angle radiation. We report the groomed jet momentum splitting fraction, zg, and the (scaled) groomed jet radius, θg. Charged-particle jets are reconstructed at midrapidity using the anti-kT algorithm with resolution parameters R=0.2 and R=0.4. In heavy-ion collisions, the large underlying event poses a challenge for the reconstruction of groomed jet observables, since fluctuations in the background can cause groomed parton splittings to be misidentified. By using strong grooming conditions to reduce this background, we report these observables fully corrected for detector effects and background fluctuations for the first time. A narrowing of the θg distribution in Pb−Pb collisions compared to pp collisions is seen, which provides direct evidence of the modification of the angular structure of jets in the quark−gluon plasma. No significant modification of the zg distribution in Pb−Pb collisions compared to pp collisions is observed. These results are compared with a variety of theoretical models of jet quenching, and provide constraints on jet energy-loss mechanisms and coherence effects in the quark−gluon plasma
    corecore