10,595 research outputs found

    Solar energy modulator

    Get PDF
    A module is described with a receiver having a solar energy acceptance opening and supported by a mounting ring along the optic axis of a parabolic mirror in coaxial alignment for receiving solar energy from the mirror, and a solar flux modulator plate for varying the quantity of solar energy flux received by the acceptance opening of the module. The modulator plate is characterized by an annular, plate-like body, the internal diameter of which is equal to or slightly greater than the diameter of the solar energy acceptance opening of the receiver. Slave cylinders are connected to the modulator plate for supporting the plate for axial displacement along the axis of the mirror, therby shading the opening with respect to solar energy flux reflected from the surface of the mirror to the solar energy acceptance opening

    The bearable lightness of being

    No full text
    How are philosophical questions about what kinds of things there are to be understood and how are they to be answered? This paper defends broadly Fregean answers to these questions. Ontological categories-such as object, property, and relation-are explained in terms of a prior logical categorization of expressions, as singular terms, predicates of varying degree and level, etc. Questions about what kinds of object, property, etc., there are are, on this approach, reduce to questions about truth and logical form: for example, the question whether there are numbers is the question whether there are true atomic statements in which expressions function as singular terms which, if they have reference at all, stand for numbers, and the question whether there are properties of a given type is a question about whether there are meaningful predicates of an appropriate degree and level. This approach is defended against the objection that it must be wrong because makes what there depend on us or our language. Some problems confronting the Fregean approach-including Frege's notorious paradox of the concept horse-are addressed. It is argued that the approach results in a modest and sober deflationary understanding of ontological commitments

    Concurrent processing simulation of the space station

    Get PDF
    The development of a new capability for the time-domain simulation of multibody dynamic systems and its application to the study of a large angle rotational maneuvers of the Space Station is described. The effort was divided into three sequential tasks, which required significant advancements of the state-of-the art to accomplish. These were: (1) the development of an explicit mathematical model via symbol manipulation of a flexible, multibody dynamic system; (2) the development of a methodology for balancing the computational load of an explicit mathematical model for concurrent processing; and (3) the implementation and successful simulation of the above on a prototype Custom Architectured Parallel Processing System (CAPPS) containing eight processors. The throughput rate achieved by the CAPPS operating at only 70 percent efficiency, was 3.9 times greater than that obtained sequentially by the IBM 3090 supercomputer simulating the same problem. More significantly, analysis of the results leads to the conclusion that the relative cost effectiveness of concurrent vs. sequential digital computation will grow substantially as the computational load is increased. This is a welcomed development in an era when very complex and cumbersome mathematical models of large space vehicles must be used as substitutes for full scale testing which has become impractical

    The environment and host haloes of the brightest z~6 Lyman-break galaxies

    Get PDF
    By studying the large-scale structure of the bright high-redshift Lyman-break galaxy (LBG) population it is possible to gain an insight into the role of environment in galaxy formation physics in the early Universe. We measure the clustering of a sample of bright (-22.7<M_UV<-21.125) LBGs at z~6 and use a halo occupation distribution (HOD) model to measure their typical halo masses. We find that the clustering amplitude and corresponding HOD fits suggests that these sources are highly biased (b~8) objects in the densest regions of the high-redshift Universe. Coupled with the observed rapid evolution of the number density of these objects, our results suggest that the shape of high luminosity end of the luminosity function is related to feedback processes or dust obscuration in the early Universe - as opposed to a scenario where these sources are predominantly rare instances of the much more numerous M_UV ~ -19 population of galaxies caught in a particularly vigorous period of star formation. There is a slight tension between the number densities and clustering measurements, which we interpret this as a signal that a refinement of the model halo bias relation at high redshifts or the incorporation of quasi-linear effects may be needed for future attempts at modelling the clustering and number counts. Finally, the difference in number density between the fields (UltraVISTA has a surface density ~1.8 times greater than UDS) is shown to be consistent with the cosmic variance implied by the clustering measurements.Comment: 19 pages, 8 figures, accepted MNRAS 23rd March 201

    Space Representation of Stochastic Processes with Delay

    Get PDF
    We show that a time series xtx_t evolving by a non-local update rule xt=f(xt−n,xt−k)x_t = f (x_{t-n},x_{t-k}) with two different delays k<nk<n can be mapped onto a local process in two dimensions with special time-delayed boundary conditions provided that nn and kk are coprime. For certain stochastic update rules exhibiting a non-equilibrium phase transition this mapping implies that the critical behavior does not depend on the short delay kk. In these cases, the autocorrelation function of the time series is related to the critical properties of directed percolation.Comment: 6 pages, 8 figure

    Strong nonlinear optical response of graphene flakes measured by four-wave mixing

    Get PDF
    We present the first experimental investigation of nonlinear optical properties of graphene flakes. We find that at near infrared frequencies a graphene monolayer exhibits a remarkably high third-order optical nonlinearity which is practically independent of the wavelengths of incident light. The nonlinear optical response can be utilized for imaging purposes, with image contrasts of graphene which are orders of magnitude higher than those obtained using linear microscopy.Comment: 4 pages, 5 figure

    Equatorial X-rays and their effect on the lower mesosphere

    Get PDF
    On the night of May 23/24, 1975, a sequence of rocket and balloon experiments was launched from Chilca Base, Peru (12.5 deg S, 76.8 deg W, magnetic dip = - 0.7 deg). Detailed analysis and comparisons of the data yielded the first direct measurement of lower mesospheric response to a galactic X-ray source. This result could only have been determined at the equator, where cosmic ray background effects are minimal. The objective of the experiments was to seek out the equatorial energetic electron belt, sporadically reported to contain fluxes near auroral levels, measure the bremsstrahlung radiation produced by this particle belt, and determine the influence of this radiation on the middle atmosphere. High altitude rocket payloads (Nike Tomahawk 18.170 and 18.171) were launched to probe the thermosphere during and following the anticipated downward drift period. Each carried an on-axis X-ray scintillation detector and Geiger Mueller energetic electron detectors. Magnetometers and lunar sensors were used to determine payload aspect

    A Variational Principle for Eigenvalue Problems of Hamiltonian Systems

    Full text link
    We consider the bifurcation problem u′′+λu=N(u)u'' + \lambda u = N(u) with two point boundary conditions where N(u)N(u) is a general nonlinear term which may also depend on the eigenvalue λ\lambda. We give a variational characterization of the bifurcating branch λ\lambda as a function of the amplitude of the solution. As an application we show how it can be used to obtain simple approximate closed formulae for the period of large amplitude oscillations.Comment: 10 pages Revtex, 2 figures include

    Variable-delay feedback control of unstable steady states in retarded time-delayed systems

    Full text link
    We study the stability of unstable steady states in scalar retarded time-delayed systems subjected to a variable-delay feedback control. The important aspect of such a control problem is that time-delayed systems are already infinite-dimensional before the delayed feedback control is turned on. When the frequency of the modulation is large compared to the system's dynamics, the analytic approach consists of relating the stability properties of the resulting variable-delay system with those of an analogous distributed delay system. Otherwise, the stability domains are obtained by a numerical integration of the linearized variable-delay system. The analysis shows that the control domains are significantly larger than those in the usual time-delayed feedback control, and that the complexity of the domain structure depends on the form and the frequency of the delay modulation.Comment: 13 pages, 8 figures, RevTeX, accepted for publication in Physical Review
    • …
    corecore