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ABSTRACT

By studying the large-scale structure of the bright high-redshift Lyman-break galaxy
(LBG) population it is possible to gain an insight into the role of environment in
galaxy formation physics in the early Universe. We measure the clustering of a sample
of bright (—22.7 < Myy < —21.125) LBGs at z ~ 6 and use a halo occupation distri-
bution (HOD) model to measure their typical halo masses. We find that the clustering
amplitude and corresponding HOD fits suggests that these sources are highly biased
(b ~ 10) objects in the densest regions of the high-redshift Universe. Coupled with the
observed rapid evolution of the number density of these objects, our results suggest
that the shape of high luminosity end of the luminosity function is related to feed-
back processes or the onset of dust obscuration - as opposed to a scenario where these
sources are predominantly rare instances of the much more numerous Myy ~ —19
population of galaxies caught in a particularly vigorous period of star formation. De-
spite investigating several variations on the model, we struggle to simultaneously fit
both the number densities and clustering measurements. We interpret this as a signal
that a refinement of the model halo bias relation at high redshifts or the incorporation
of quasi-linear effects may be needed for future attempts at modelling the clustering
and number counts. Finally, the difference in number density between the fields (Ultra-
VISTA has a surface density~ 1.8 times greater than UDS) is shown to be consistent
with the cosmic variance implied by the clustering measurements.

Key words: galaxies: evolution — galaxies: star-formation — galaxies: high-redshift —

techniques: photometric — clustering — LBGs

1 INTRODUCTION
1.1 Lyman-break Galaxies

The study of Lyman-break Galaxies (LBGs) is a long estab-
lished probe of the high-redshift Universe (the first few bil-
lion years), with samples of many hundreds of star-forming
galaxies now known to z ~ 10 (e.g. |Oesch et al,|[2016}
[Bouwens et al.|[2016} [McLeod et al.|[2016]). LBGs are par-
ticularly useful as it is possible to establish their photomet-
ric redshift to reasonable accuracy in a luminosity regime
where spectroscopic confirmation is challenging (e.g.
ftericci et al.||2014). The neutral gas in the inter-galactic
medium (IGM) is essentially opaque to photons with wave-
lengths shorter than the ‘Lyman Break’ (12164, in the far
ultraviolet). The source therefore appears faint bluewards
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of this wavelength, but retains its original luminosity red-
wards, creating a sharp drop in luminosity. When this spec-
trum is then redshifted, the location of the break provides a
clear spectral feature with which to select galaxies to high-
redshifts using broad-band filters.

The technique, originally developed in the early 1990’s
(Guhathakurta et al.[1990; |Steidel & Hamilton|1992; |Steidell
et al.|[1996)) in the context of z ~ 3 galaxies, where the Ly-
man break is shifted into visible wavebands, first started pro-
viding large numbers of sources with the Hubble Space Tele-
scope (HST) in the late 1990’s and 2000’s (e.g. |Giavalisco
|& Mauro|[2002} |[Bouwens et al.[[2007; [Dunlop et al.|[2013).
More recently, the approach is being used to push scientific
boundaries at z ~ 6 — 9 where the break is shifted into the
near-infrared (see for a review). Wide field sur-
veys like the United Kingdom Infrared Telescope (UKIRT)
Infrared Deep Sky Survey (UKIDSS, in particular the Ultra
Deep Survey, UDS, Hartley et al.|[2013), and more recently
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public surveys on the Visible and Infrared Survey Telescope
for Astronomy (VISTA) such as the UltraVISTA survey in
the COSMOS field (McCracken et al|2012)) and the VISTA
Deep Extragalactic Observations (VIDEO) survey (Jarvis
give access to the deep NIR images of the sky
needed for detecting statistically significant samples of the
brightest LBGs, which has lead to advances in the under-
standing of their star formation rates and number densities
beyond the break in the luminosity function.

A key observable that can be calculated for LBG sur-
veys (and galaxy surveys in general), is the luminosity or
mass function, the comoving number density of galaxies as
a function of absolute luminosity or stellar mass (see
for a review). Measuring and understanding the
evolution of luminosity functions with redshift allows us to
trace the build-up and evolution of galaxies through cosmic
time (Madau & Dickinson|[2014)); is a key way to compare
cosmological simulations of structure formation to observa-
tions (Lacey et al.|2016; |Clay et al.[2015); and can be readily
linked theoretically to the dark matter equivalent, the halo
mass function (HMF; the comoving density of dark matter
halos as a function of halo mass, see [Murray et al| (2013)
for a review of current constraints). Luminosity functions
are typically observed to have the form of a Schechter func-
tion: n(L) = ¢*(L/L*)* exp(—L/L*) (Schechter|[1976). In
this parametrisation, a describes the power law behaviour
of number density at the low-luminosity end, L* is the tran-
sition luminosity to the high luminosity exponential cutoff,
and ¢* is a normalisation. The rest frame UV luminosity
function for z ~ 4 — 8 has been determined by several stud-

has a different appearance 10 percent of the time, a straight-
forward abundance matching will erroneously place these
sources with a different appearance in more massive halos as
they are rarer, even though they are the same object as the
underlying population. For this reason, other probes of the
galaxy halo connection are needed. Information from lens-
ing is very effective, either strong (e.g.|Jullo et al.|2007) or
weak (galaxy-galaxy lensing, e.g.|Coupon et al|2015; Man-|
|delbaum et al.|[2013)), but requires the background sources
to be at even higher redshift than the lenses, making it un-
feasible for high (z > 2) galaxies.

One viable and popular approach is to measure the
clustering (2-point statistics) of the galaxies alongside the
number counts (1-point statistics). This can then be linked
to models/our theoretical understanding of structure forma-
tion to estimate the typical environment of the galaxies. One
popular framework for modelling galaxy clustering is the
‘Halo Occupation Distribution’ model (Zehavi et al.|[2005),
which models the non-linear clustering of galaxies within
individual halos, and the large scale clustering of the halos
simultaneously, giving information about how many galaxies
are in each halo as a function of halo mass. The HOD model
has been applied extensively at z = 0 (Guo et al.||2015)) and
z = 0.5—2 (McCracken et al.[2015} |Coupon et al.[2015; [Hat-|
where large galaxy samples are available.
In the more uncertain high-redshift regime, the HOD model
has recently been applied to low-luminosity LBG galaxies at
z =4 — 7 by [Harikane et al|(2016). It is crucial however to
understand the relationship at the massive/most luminous
end, as this is where AGN-driven feedback may have a role

ies (e.g. recent work by McLure et al.[2013}; [Bouwens et al|

(Silk & Joseph!|2011). There are preliminary hints that red-

[2015} |[Finkelstein et al.|2015; Bowler et al.|2015) with broad
agreement. The highest redshift constraints on the LBG lu-

minosity function are currently at z ~ 9 — 10 e.g.
let al| (2015} 2016); McLeod et al.| (2016).

1.2 Clustering

Galaxies are formed and live in dark matter halos, and the
environment of the host halo is believed to be of critical im-
portance for the formation of the resident galaxies (Cooray
. One way of obtaining information about the
galaxy-halo connection is ‘abundance matching’ - matching
the galaxy comoving number density value to the halo mass
that is predicted to have the same number density by theo-
retical considerations of the halo mass function/N-body sim-
ulations e.g. rarer galaxies are associated with more massive
halos because such halos are rarer (Vale & Ostriker|[2004).
Abundance matching however can only ever give an incom-
plete account of the connection due to three complications.
Firstly, halos can host multiple galaxies, this can be partially
mitigated through sub-halo matching (Moster et al.[{2010]),

shifts of z = 6 —7 may mark the onset of quenching (Bowler,
2014} |2015)), so this is a vital time period for galaxy

evolution in the history of the Universe.

1.3 Probes of Reionization

As well as being a crucial period for galaxy formation
(see for a review), understanding large-scale
structure/clustering at z = 5 — 8 is also important cos-
mologically, in particular for our understanding of reion-
ization. In the standard cosmological model, the Universe
was initially an ionised plasma, that during recombination
at z ~ 1000 cooled sufficiently for protons and electrons
to combine to form neutral atoms. However this medium
must have been reionized by the first stars and galaxies at
some point between then and z ~ 6 to produce the ion-
ized intergalactic medium we see today (see
[Natarajan & Yoshidal 2014 for an observational and the-
oretical review respectively). However there is still debate
in the literature about which sources had the energy to do
this e.g. massive galaxies, AGN, or something else (Grissom

but this assumes that the occupation statistics are the same
for sub-halos and isolated halos. Secondly, scatter in the
halo mass to galaxy mass/luminosity relation is not captured
by abundance matching. Finally, variations in observational
properties of a single population can bias results, in particu-
lar orientation or temporal effects e.g. if a given population

let al.|[2014; [Robertson et al.||2015; Bouwens et al.|[2015).
Furthermore, most models of reionzation are ‘patchy’ e.g.
non-instantaneous, with some parts of the Universe being
reionised earlier than others (Becker et al|[2015; Doré et al.
. The current best constraint on the average reioniza-
tion redshift from the Planck mission (based on the mea-
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sured optical depth) is z = 7.8 — 8.8 (Adam et al|[2016),
with many probes of the epoch (e.g. |Pentericci et al.|[2014;
[Becker et al|[2015)) suggesting that some parts of the Uni-
verse could still be undergoing reionization by z ~ 6. Uncov-
ering the cause and nature of reionization is likely to require
understanding how the reionization power spectrum inter-
weaves with galaxy large scale structure, so it is essential
to build up our understanding of the large scale structure
(LSS) of the galaxy population at these redshifts. For ex-
ample, [McQuinn et al| (2007) suggest that differences in
the clustering of LBGs and Lyman-alpha Emitting galax-
ies (LAEs) could give an insight into the possible ‘patchy’
nature of reionization. The Lyman-alpha line is suppressed
if the source is in a largely neutral region which biases the
observations of LAEs towards large ionized HiI regions. The
result is a larger ‘observed’ clustering for LAEs than the
‘intrinsic’ clustering of the underlying objects - effectively
neutral regions obstruct the line of sight in a way that en-
hances the clustering of LAEs. LBGs and other probes of
the high redshift galaxy population however do not receive
such an effect on their clustering, so a boost in the cluster-
ing of LAEs relative to LBGS (properly controlling for other
variables) could be indicative of reionization. Such an effect
is yet to be conclusively measured, e.g. [Ouchi et al] (2010)
find little evidence at z = 6.6 with 207 LAEs observed with
the Subaru telescope, but this approach and others like it
are likely to give improved constraints to the nature of the
epoch of reionization over the coming years.

1.4 Objectives of this work

LBG studies can be informally divided into analyses of
‘faint’ galaxies (in extremely deep, but narrow surveys),
and ‘bright’ galaxies (in slightly less deep, but extremely
wide surveys). Harikane et al.| (2016)) provide an analysis of
the clustering of relatively faint LBGs found within HST
deep surveys at z = 4 — 7. In this study we seek to ex-
tend these measurements to brighter luminosities by utilis-
ing wider area surveys. To do this, we measure and model
the clustering of the [Bowler et al| (2015) high luminosity
z ~ 6 sample, which covers the degree-scale UDS and Ultra-
VISTA fields. A clustering analysis of a subset of the UDS
sample has been performed in [McLure et al| (2009), who
modelled the correlation function with a single power law,
concluding the sources are in dark matter haloes of masses
105712 M. In this study we perform a similar analysis,
but extend to a full HOD model, including an additional
field and using deeper data available. Using this enlarged
sample, we are then able to discuss what our results mean
for feedback processes, models of structure formation, and
cosmic variance at high redshift. While samples of bright
galaxies do exist at z > 6.5 (Bowler et al|[2015)), they are
too small to provide constraints on the clustering, and hence
we limit our analysis to z ~ 6.

The structure of this paper is as follows. In Section 2
we describe the sample of LBGs used in this study. In Sec-
tion 3 we discuss how we measured the correlation function
in the sample and constructed our halo occupation distribu-

© 2015 RAS, MNRAS 000,

HOD of bright z=6 LBGs 3

tion models and fitting process. The results are presented in
Section 4. In Section 5 we discuss our results, linking them
to the literature, and interpreting the cosmic variance be-
tween the fields in light of our measurements. Magnitudes
are given in the AB system (Oke & Gunn||1983) and all
calculations are in the concordance cosmology ogs = 0.8,
Qr = 0.7, Q = 0.3 and Hy = 70 km s~ *Mpc~! unless
otherwise stated.

2 DATA AND SAMPLE SELECTION

In this study we use the high luminosity Lyman break galaxy
sample of Bowler et al.| (2015)). Deep optical and infrared
data (spanning wavelengths of 0.3 —2.5um) across two main
fields (see Fig. was used to select the sample; we sum-
marise the observations and selection criteria below, but see
[Bowler et al.| (2015]) for a more in depth description.

2.1 UltraVISTA/COSMOS

UltraVISTA (McCracken et al.|[2012} [Laigle et al|[2016) is
the deepest of the 6 public surveys on the VISTA telescope,
providing Y JH K near infra-red data covering the Cosmic
Evolution Survey (COSMOS) field (Scoville et al.[2007)). The
‘paw-print’ focal plane of VISTA and the survey observ-
ing strategy give a continuous ‘deep’ field, with discontinu-
ous ‘ultra-deep’ stripes across it that receive more observing
time. Bowler et al.| (2015)) also used u*, g, r and ¢ optical
data from the T0007 release of CFHTLS in the D2 field, as
well as Subaru/SuprimeCam z’-band imaging. The maximal
area of overlap of these datasets is in the one square degree
of CFHTLS, of which 0.62 deg? has ultra-deep UltraVISTA
data, and 0.38 deg? shallower UltraVISTA. The majority of
the sample is in the ultra-deep field and hence for our pur-
poses here we only use the ultra-deep 0.62 deg® (see Fig.

).

2.2 UDS

For the UKIDSS UDS field, Bowler et al| (2015) used
B, V, R, i and 2’ data from the Subaru XMM-Newton
Deep Survey (SXDS, [Furusawa et al.||2008), and J, H
and K band data from the DR10 of the UKIDSS UDS
(Lawrence et al|[2007). Again separate z’-band data from
Subaru/SuprimeCam was obtained, and in addition, ¥ band

data from the VIDEO survey (Jarvis et al|[2013]) was also

used. The total overlapping area is 0.74 deg® (see Fig. .

2.3 Candidate Selection

Again, Bowler et al.| (2015) describes the full sample se-
lection, but we summarise the process here. Sources were
detected with SEXTRACTOR (Bertin & Arnouts| [1996),
and photometric redshifts were determined with LEPHARE
(Arnouts et al.|[1999} Ilbert et al.|[2006)). Contaminant pop-
ulations (low redshift interlopers and brown dwarfs) were
removed in the SED fitting process. This leaves 156 and 107




4  Peter Hatfield

5.5 < z < 6.6 galaxies in the UltraVISTA and UDS fields re-
spectively. The UltraVISTA field was found to have a higher
surface density than the UDS field (by a factor of ~ 1.8); po-
tential causes for this, including lensing and cosmic variance
are discussed in section 7 of Bowler et al.| (2015).

This process gives in total 263 LBGs in the range
—22.7 < Myv < —20.5 with 5.5 < z < 6.5 over 1.35
deg®. We take our final sample as all 161 sources with
Myyv < —21.125, as the sample completeness drops off
rapidly faintwards of this value, as discussed in |Bowler et al.
(2015)), see their figure 6, but is fairly constant with magni-
tude brightwards of this value.

3 CORRELATION FUNCTIONS AND HOD
MODELLING

There is a large selection of statistical measurements that
can be used to characterise the clustering of extragalactic
sources and large-scale structure, including nearest neigh-
bour (Bahcall & Soneiral|1983), genus (Gott et al.||{2009),
power spectrum (Tegmark & Max||2003) and counts in cells
(White||1979). In this study we measure and model the two-
point correlation function, the excess probability of how
much more likely two galaxies are to be at a given separa-
tion than a random uniform distribution (this statistic can
be linked to other measurements e.g. counts in cells statistics
are ‘averaged’ correlation functions, and the power spectrum
is the Fourier transform of the correlation function).

The underlying meaningful physical relation is the full
three dimensional spatial correlation function; however we
only have the observables of angular separations and rela-
tively coarse redshift information. Limber Inversion (Limber
1954)) provides a way to connect the two. The two main ap-
proaches to connect the observables to the spatial correlation
function are to either calculate the angular correlation func-
tion, and compare to angular projections of the model, or to
use the redshift information to form the projected correla-
tion function in both transverse and longitudinal directions
(incorporating redshift space distortions, which are normally
integrated out), see|Davis & Peebles| (1983) and |[Fisher et al.
(1994). Here we measure and model the angular correlation
function, as calculating the projected correlation function
requires precise knowledge of the redshifts of the sample to
avoid being biased, and is in general more appropriate for
surveys with spectroscopic redshifts.

3.1 The Angular Correlation Function

The angular two-point correlation function w(6) is defined
by:

dP = o(1 + w(0))dS, (1)

where dP is the probability of finding two galaxies at
an angular separation 6, o is the surface number density
of galaxies, df) is the solid angle. This is most commonly
estimated by calculating DD(6), the normalised number of

galaxies at a given separation in the real data, and RR(0),
the corresponding figure for a synthetic catalogue of random
galaxies identical to the data catalogue in every way (i.e.
occupying the same field) except position. We use the|Landy
& Szalay| (1993)) estimator:

DD —-2DR+ RR
w(b) = =T @)

which also uses DR(0), data to random pairs, as it has
a lower variance (as an estimator) and takes better account
of edge effects.

Uncertainties are calculated with ‘bootstrap resam-
pling’, which samples the galaxies with replacement from
the dataset, from which we recalculate the correlation func-
tion (see [Ling et al.||1986). Repetition of this process pro-
duces multiple ‘realisations’ of the correlation function, from
which the covariance matrix of the w(f) values can be esti-
mated. It is possible to calculate the error bars from Poisson
uncertainty on the DD values, but (Cress et al.| (1996) and
Lindsay et al.| (2014) found errors calculated in this manner
were a factor of 1.5 to 2 smaller than those estimated with
bootstrap. It is particularly key to account for covariance
between adjacent angular space bins in the small-number
counts regime here as each galaxy will contribute to multi-
ple bins. In this paper we use 100 bootstrap resamplings to
estimate the uncertainty at the 16th and 84th percentiles.

For the construction of our random catalogue we cre-
ated a mask over the fields to exclude image artefacts and
foreground stars. Five galaxies in the UDS field were found
to be within the masked area. Although the mask may be a
little conservative, it is likely that our measurements of clus-
tering in the vicinity of these sources will be heavily biased
by the presence of the artefact being masked, so we do not
use these five galaxies when calculating the correlation func-
tion (although it makes very little difference to our analysis).
The fact that the survey area has a finite area gives a neg-
ative offset to the true correlation function, usually known
as the integral constraint. As per Beutler et al.| (2011) and
Hatfield et al.| (2016), we calculate the integral constraint
using the numerical approximation of Roche & Eales| (1999))
and treat it as part of the model when fitting parameters. In
this paper we calculate the correlation function with both
the binning method (DD and RR are how many galaxy pair
separations in each angular scale bin) and the continuous
estimation/kernel smoothing method described in Hatfield
et al.| (2016).

3.2 Halo Occupation Distribution modelling

Halo Occupation Modelling is an increasingly popular way
of modelling galaxy clustering measurements. We do not de-
scribe the full details of the scheme here, see |Coupon et al.
(2012) and McCracken et al.| (2015 for a more complete
breakdown. A given set of galaxy occupation statistics is
given, usually parametrised by 3-5 numbers, e.g. the num-
ber of galaxies in a halo as a function of halo mass. The
model correlation function is broken down to a ‘1-halo’ term,
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Figure 1. The geometry of the UDS and UltraVISTA fields. The red points are the galaxy locations from (2015). The blue
points are the random points chosen to cover the fields used for the construction of RR for the calculation of the correlation function. The
three galaxies in the UltraVISTA field that are not surrounded by blue points are the z = 6 sources detected in the deep (as opposed to
ultra-deep) part of the UltraVISTA field, that we do not include in this study. The overall shape of the fields is predominantly determined
by the part of the sky that the multiple different surveys overlap in. The small scale gaps and holes are foreground stars and detector
artefacts etc. See figures 1 and 2 of to see how the irregular footprints arise from the intersection of the sky patches

covered by different surveys.

describing the small-scale clustering of galaxies within an in-
dividual halo, and a ‘2-halo’ term, describing the clustering
of the halos themselves. The ‘l-halo’ term is constructed
by convolving the profile of galaxies within a halo with it-
self, weighting by the number of galaxies in the halo, and
then integrating over all halo masses. The profile is usu-
ally taken to be one galaxy at the centre of the halo (the
‘central’) and all other galaxies tracing a Navarro-Frank-
White (NFW; Navarro et al.|[1996]) profile. The 2-halo term
is constructed by scaling the dark matter linear correlation
function by the weighted-average halo bias of the host halos.

The most general HOD parametrisation commonly used
is that of |Zehavi et al. (2005)), that gives the total number
of galaxies in a halo as:

<Ntot(Mh)> = <Ncen(Mh)> + <Nsat(Mh)>a (3)

the total number of central galaxies as:

(Neen(Mp)) = erf (M) 7

Olog M
and the total number of satellites as:
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(Neat (M) = (Neen (M) (u)

M

This model has five parameters; M,,;, describes the
minimum halo mass required to host a central galaxy, oiog ar
describes how sharp this step jump is (equivalently to the
central to halo mass scatter), My is a halo mass below which
no satellites are found, and M; is the scale mass for accu-
mulating satellites (Mo is typically a lot smaller than M,
so M, is commonly said to be the halo mass at which the
first satellite is accreted, although analytically they are very
slightly different - this is the difference between M; and M,
used by some authors). The power law index « describes
how the number of satellites grows with halo mass. The
random variables of the number of galaxies of the sample
under consideration in a halo as a function of halo mass
are Neen and Ngqt (e.g. they are not absolute values). The
halo has a central galaxy (of the given galaxy population)
with a probability given by Equation ] and no central with
the complementary probability (which is why the expected
value for the number of centrals is given by EquationE[). Nsat
is zero if Neey is zero, and Poisson distributed with mean

[e3
My, _IMO if Neen = 1, giving the expectation in Equation
However, although we have the largest sample of bright
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LBGs at these redshifts, this is still only a comparatively
small sample for HOD modelling. Thus, in order to reduce
the number of parameters in the model (six once duty cy-
cle is included, see Section , we fix some as functions of
others.

As per [Harikane et al| (2016) we fix glog v = 0.2. The
assumptions that go into this choice however are based on
results at much lower redshifts (Kravtsov et al.|2004} |Zheng|
let al.||2005; |Conroy et al.|[2006) which do not necessarily
hold at these early times, when the luminosity-halo scatter
is fairly unconstrained. Indeed [Hatfield et al| (2016)) found
a scatter of ~ 0.6 consistent with the data at z ~ 1. How-
ever fortunately for our purposes (unfortunately from the
perspective of using clustering to infer the scatter) the 2-
point statistics have very little dependence on the scatter.
Hence our conclusions do not alter dramatically with choice
of o10g M, and so we fix it as the same as the [Harikane et al]
value for ease of comparison.

We additionally fix a = 1; this is both the fiducial value
(it is logical to expect that once in the most massive halo
regime that the number of satellites scales linearly with the
halo mass, as the bulk of the halo mass will have been ac-
creted), as well as the result found by most measurements at
moderate (z < 2) redshift (e.g. Hatfield et al.|2016} |Coupon|
et a1J012).

We investigate the consequences of allowing various pa-
rameters to be fixed or free in the fitting process. Again
as per Harikane et al| (2016)), if not free, M; and My are
fixed as functions of M, following the z = 0 — 5 results of
[Conroy et al.| (2006):

log My = 1.18log Mynin — 1.28, (6)

log Mo = 0.76 log M + 2.3. (7)

In this work we use the halo mass function of
(2013), and the halo bias of Tinker et al.|(2010).

3.3 Duty Cycle

The role of a duty cycle (DC) is the main difference to be
incorporated when modelling LBG galaxies at high redshift
compared with studies in the local Universe. Clustering anal-
yses of LBGs typically find that there is a mismatch be-
tween the measured number density, and the number den-
sity implied by the clustering . This is in
agreement with current understanding of galaxies at these
redshifts that suggest that star formation may be highly
episodic e.g. |Stark et al| (2009). Typically the occupation
statistics model implied by fitting only to the clustering will
suggest a larger comoving number density than is observed
in the luminosity function. This discrepancy is typically ex-
plained by invoking a duty cycle, that the observed LBGs
have luminosities that vary dramatically in time, and are
being observed only when in a bright phase. This illustrates
the importance of understanding clustering alongside the

number counts. With a duty cycle of 10 percent (i.e. it is
only in its bright phase 10 percent of the time), the un-
derlying galaxy appears 10 times rarer than it actually is.
A straight abundance matching in this scenario would then
mistakenly put them in rarer, and thus more massive, halos.

Without incorporating the duty cycle, the implied co-
moving number density is the mean number of galaxies in a
halo, times the halo mass function, integrated over all halo
masses. This number is then multiplied by the duty cycle to
give the model comoving density:

Ngat = DC X /Oo HMF(Mh) X <Ntot(Mh)>th7 (8)
0

where HMF is the halo mass function and DC is the
duty cycle.

3.4 MCMC Fitting

To compare with observations, we use the HALOMOD El code
(Murray, Power, Robotham, in prep.) to calculate the spa-
tial correlation function. We then project this to an angular
correlation function (as per [Limber|[1954), and subtract off
the numerical approximation of the integral constraint to
get our final model correlation function.

We use EMCEEE' (Foreman-Mackey et al.|[2013) to pro-
vide a Markov Chain Monte Carlo sampling of the parameter
space to fit our correlation function. We use a likelihood of:

obs model]2
2 [1Og ngal - IOg ngal

3 )

alog n

+ ) [w(60:) = W (0)][CF 1w (05) — W™ (6)),
i,
(10)
where ng;’f is the observed galaxy number density,
ngiﬁdel is the model galaxy number density, giogr is the er-
ror on the log of the number density including both Pois-
son noise and cosmic variance, 6; are the angular scales we
fit over, w° is the observed angular correlation function,
w™del ig the angular correlation function of a given model,
and C} ; is the covariance matrix of the measurements of the
correlation function from the bootstrapping.

When the parameters are free, we use a uniform prior
over 10 < log o (Mmin/Mp) < 13, log,y (Mmin/Mp) <
log,q (M1/Mg) < 14 (uniform in log space) and 0 < DC < 1.
We used 20 walkers with 1000 steps, which have starting po-
sitions drawn uniformly from the prior.

We use 500,000 random data points in this study. As
per [Hatfield et al| (2016)) and Hatfield & Jarvis| (2016)), we
use 100 bootstrap resamplings to estimate the uncertainty
at the 16th and 84th percentiles of the resampling. For ng‘;f ,
we use the value obtained when integrating the luminosity
function brightwards to infinity from Myv = —21.125 (as

1 https://github.com/steven-murray /halomod
2 http://dan.iel.fm/emcee/current/
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opposed to the number obtained by dividing the number
of sources by the volume probed) as the luminosity func-
tion already has incompleteness factored in. This equates
to ng‘;f = 4.1 x 107 °Mpc ™3, for the fields combined. This is
from the best-fitting double power law model in|Bowler et al.
(2015)). Using the best-fitting Schecter function gives the
marginally lower value of ng';f = 3.8x10"°Mpc~3. Changing
from one value to the other does not impact our conclusions.
The main sources of incompleteness are blending with fore-
ground sources, and misclassification of true z ~ 6 LBGs as
dwarf stars or lower redshift contaminants, see |[Bowler et al.
(2015).

4 RESULTS
4.1 Clustering Measurements

Fig. 2] shows the angular correlation function of the full
sample over the range 1073 < 0/deg < 107%®, estimated
with both the binning approach (where galaxy pair separa-
tions are counted in discrete angular ranges) and the kernel
smoothing method (where the distribution of galaxy pair
separations is smoothed to produce a continuous estimation
of the correlation function in the angular range under con-
sideration). They (as expected) agree well, and produce the
familiar approximate power law ~ 878 although the ker-
nel smoothing method is able to cope better with bins that
contain a small number of pairs. For the rest of our analysis,
we take the value of the smoothed correlation function, at
the ten angular scales calculated for the bins, as our final
measurements

In general, measurements of clustering at different
scales will be covariant as individual galaxies contribute mul-
tiple times to DD, usually at different scales. Furthermore,
extra care with covariances is needed when using the ker-
nel method, as a given galaxy pair contributes at a range
of scales (this can be mitigated by picking measurements
larger than the smoothing scale, but is important to keep
track of here as we are in a low-data regime). Therefore we
also construct the covariance matrix from the bootstrapped
samples for our measurements, in order to account for these
covariances in the fitting process. We show the correlation
matrix (the covariance matrix with each value normalised
by the standard deviation of each measurement) in Fig.
Not taking covariances into account would be the equivalent
of ignoring the off-diagonal values, which are non-negligible,
particular at the large and very small scales.

3 With the continuous estimation of the correlation function, one
can in principle extract an estimate of the correlation function
at an arbitrary number of angular scales in the range probed.
However this gives dramatically diminishing returns as adjacent
measurements would be increasingly covariant e.g. one could take
the estimate of the correlation function at 1000 points in the
angular range for which we estimate the correlation function, but
adjacent points would be almost perfectly correlated and no extra
information would be gained.
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4.2 Modelling Results

We carry out several MCMC fits to the data with the HOD
model as per Section [3:4] with four variations. The four sce-
narios considered were:

® Mpmin, M1 and DC free (e.g. 1-halo and 2-halo ampli-
tudes and number counts all free)

e M, fixed as function of M,,:, as per Section (e.g.
1-halo amplitude as fixed function of 2-halo amplitude)

e M, fixed as function of Myn, DC = 0.6 (e.g. 1-halo
amplitude as fixed function of 2-halo amplitude, duty cycle
fixed at the [Harikane et al.|[2016| value)

e M, fixed as function of Mpin, DC = 1 (e.g. 1-halo
amplitude as fixed function of 2-halo amplitude, no duty
cycle - galaxies ‘on’ at all times)

In addition to these four models we also compute:

e Halo masses for the most straightforwards abundance
matching scheme e.g. M,,:, for a sample of galaxies above
a given luminosity threshold is the halo mass such that the
comoving number density of halos greater than that mass is
equal to the comoving number density of the galaxy sample
(see Table [2))

e Galaxy bias from a pure bias model e.g. fit for b where
Emodel = D*EDM.

The results from these 6 models are shown in Tables
[[] and 2] Fig. [ shows the data, the best-fit models. We
show the posterior from one fitting in Fig. [5| for illustra-
tive purposes. It is clear that the amplitude of the correla-
tion function is roughly two orders of magnitude larger than
the dark matter correlation function in the linear regime,
corresponding to a very high bias. Most of our models sug-
gest that My,in ~ 1011‘5M@ e.g. our galaxies are hosted by
halos of that mass and above. It also seems that the satel-
lite fraction is at most a few percent, which suggests that at
most 5-6 galaxies in our sample are satellites (in the scenario
that these sources were the same underlying population as
the lower luminosity LBGs, the satellite fraction could have
been higher as a non-trivial portion would have been from
halos hosting multiple galaxies).

It becomes harder however to make statements beyond
these basic claims because the HOD fits are only of mod-
erate quality (see the x? values in Table . In general fits
decreased in quality as more parameters were fixed, as ex-
pected. We discuss the tensions more in section but
summarise the results of each model here. The Myin, M1
and DC free model is free to go to high masses until ten-
sion between model and measured number density stop it
from going higher. This model can also take M; extremely
high, to bring the amplitude of the small scale clustering
down to match the data. Models that do not have M7 free
cannot vary their small scale behaviour freely. This forces
their halo masses down, as the small scale behaviour grows
rapidly with Mp,in; if they went higher the disagreement on
small scales would become much larger. When DC is free
(and M, is fixed as a function of Mmin ), the model actually
prefers to go even lower than the abundance matching halo
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Figure 2. The angular correlation function for our sample of bright (Myy < —21.125) z ~ 6 LBGs from Bowler et al., (2015). The
figure shows the correlation function estimated both with a binning method (blue points), and a kernel smoothing method (red curve,
with dotted lines showing uncertainty). Where the binned correlation function dips to negative values corresponds to where there were

no galaxy pairs in the bin.
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Figure 3. The correlation coefficients (covariance normalised)
of our measurements. Blue values are positive correlations, red
values are negative values. The red diagonal corresponds to the
standard deviation measurements (a random variable is always
perfectly correlated with itself).

mass, and uses the duty cycle to reach agreement with the
number counts. However when these models have the duty
cycle fixed, they cannot do this, so the trade off between

agreeing with small scale clustering and the number counts
sets the halo mass. For DC' = 0.6 to agree with the observed
number counts, the intrinsic number counts must be higher
than for DC' = 1, forcing the model to prefer slightly lower
halo masses. Conversely the ‘pure bias’ model was able to
fit the clustering data well. This suggests that the reason
for the poor quality fit is a mismatch between the clustering
and the number counts - halos of the halo mass implied by
the bias are far rarer than the observed galaxies areEl, which
is problematicﬂ- although part of the raison d’etre of HOD
schemes is to understand how multiple galaxies can occupy
the same halo, which would allow the number of galaxies to
be greater than the number of halos, this is, as discussed,
a few percent effect, as opposed to a factor of ten effect. In
addition, the fact that no 1-halo term emerges is slightly
anomalous. We note that [Harikane et al.| (2016]) use fitting
formulae of the HMF in|Tinker et al.| (2010)) directly without

4 This problem would have been even worse if the HMF had
been taken from [Tinker et al| (2010) without the high redshift
correction of [Behroozi et al | (2013).

5 This is the opposite problem to what the duty cycle is invoked
to solve - duty cycles in clustering studies of LBGs solved the
issue of number counts being lower than implied by clustering,
the problem here is the number counts are higher.
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the normalization constraint, which overestimates the abun-
dance by a factor of 1.7 at z =4 (Y. Harikane 2017, private
communication). So the results of |Harikane et al.| (2016) are
likely more consistent with a duty cycle of 1 (rather than
the fixed value of 0.6 that they use in their analysis).

5 DISCUSSION

5.1 The link between low- and high-luminosity
galaxies and their haloes at z ~ 6

The most relevant previous study to compare our results to
is [Harikane et al.| (2016]), which presented clustering mea-
surements and HOD fits to z ~ 6 LBG galaxies, but on
smaller angular scales of approximately 107325 < §/deg <
107525 compared with our 1072 < 0/deg < 107%®, and for
fainter rest frame absolute magnitudes of —20.5 < Myy <
—19 compared with our —22.7 < Myy < —21.125 sample
(see Fig. @ Thus our results combined with [Harikane et al.
(2016)) describe LBG clustering over almost three orders of
angular scale and a factor of 40 in luminosity.

Our bias and halo mass results compared with the re-
sults of |Harikane et al.| (2016) are shown in Fig. |7} Although
only moderate quality fits (possible reasons for which are dis-
cussed in the subsequent sub-sections), all our fitted models
suggest our galaxy sample has a substantially higher typical
host halo mass and galaxy bias than the lower luminosity
samples in [Harikane et al.| (2016)). This higher bias is evident
by directly comparing the two measurements of the corre-
lation function. Our sample has an amplitude ~ 3 times
higher than the [Harikane et al.| (2016)) bright (Myy < —20)
sample with w(0.01°) ~ 0.2, and our measured bias is a
factor of 1.7 greater than that measured for the lower lumi-
nosity [Harikane et al.| (2016 sample (as w o b®). In general
higher luminosity and higher stellar mass galaxy samples
have higher biases, but it is important to note that it was
not a foregone conclusion to measure a bias this high. It
was entirely possible that our Myy ~ —21.5 sample could
have been the same (or largely the same) population as the
sample of Harikane et al. (2016), just observed during a
particularly vigorous but rare burst of star formation. If
that had been the case, we would have measured a lower
clustering amplitude, and inferred a much lower duty cycle.
The comoving space density of the galaxies in our sample is
4.1x 1075 Mpc~3, compared with 3.8 x 10™% Mpc~2 for the
most luminous z = 6|Harikane et al.| (2016) sample. Harikane
et al.[ (2016) do not measure the duty cycle for this sample,
but assume it to be equal to 0.6. As an illustrative example, a
duty cycle of 0.6 for the|Harikane et al.| (2016]) sample would
mean an actual underlying population comoving density of
6.3 x 10~*Mpc~3. If our sample was part of the same popu-
lation, that would correspond to DC = 0.06 (in other words
that the fainter population spends approximately 6 percent
of its time in this super-enhanced state of star formation).
However the amplitude of the clustering rules this out and
our Myy < —21.125 sample is comprised of continuously
high-luminousity objects in very dense environments.

© 2015 RAS, MNRAS 000,
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5.2 Apparent lack of a 1-Halo term

Models using extrapolated values of M; suggest that at
scales of 1072-%deg and smaller there should be a sharp up-
turn in the value of the correlation function as the obser-
vations start to probe clustering of multiple galaxies within
individual halos (see Fig. . We do not observe this in the
data, in contrast to Harikane et al.| (2016), see Fig. @ A di-
rect interpretation of this would be that M; just increases
much faster than the extrapolation of Equation |§| i.e. the
satellite fraction drops off extremely fast and an unfeasi-
bly large (for this redshift) halo is needed to host two of
these sources. Another possibility is suggested by |[Jose et al.
(2013)), who also observe a lack of a 1-halo term in cluster-
ing measurements of z ~ 3 — 7 LAEs. Their proposed solu-
tion was that halo occupancy behaved in a sub-Poissonian
manner, and they found that a modified distribution (see
their equation 15) was able to reproduce the measurements.
However, we suggest that there are good reasons to believe
that there is strong cosmic variance on our small scale mea-
surements that is not accounted for in the bootstrap uncer-
tainties, making it hard to make direct inferences about the
satellite population of these galaxies.

For single contiguous field observation, cosmic variance
is smaller on small scales than on large scales in a lim-
ited sense, simply because one observes more instances of
small scale structure. However these are not independent
instances of small-scale structure, as they all come from
the same large-scale density field. To illustrate this, suppose
our sources have Mpyin ~ 1011'4M@, then we would expect
My ~ 1012'2M® e.g. only halos with M > 1012'2M® host
more than one of our bright sample. The comoving density of
M > 1012'2M@ halos is 5.2 x 10~"Mpc ™ and the comoving
volume probed by the observations is ~ 1.7 x 10" Mpc3. This
means that the expected numbers of M > 10'*? M, halos
in the volume surveyed is ~ 10. Just these ten would give
~ 10 close pairs (in addition a few more would be expected
from projection effects), which is more than twice the 4 close
(1073 — 1072-5deg) pairs observed here, and would push the
small scale correlation function up. However these halos will
be extremely biased, much more than the ~ 10" *M¢, ha-
los. Conceivably for an extreme case, it could be that if our
observations were repeated 10 times, we would find that 9
times no M > 10" M, halos were observed, and the tenth
time a very overdense region is observed, which has 100 in.
In the first nine cases, no satellites would be observed, lead-
ing to a flat correlation function to small radii that we see
in our observations, and the tenth time an overestimate of
the satellite fraction is measured. Therefore we would expect
there to be very substantial cosmic variance on our measure-
ments of the correlation function on small scales - variance
that is not incorporated into our errors on our clustering
measurements. Essentially the 1-halo term is dominated by
contributions from very massive halos, which are the most
biased, so there is the most cosmic variance on small scale
measurements of the correlation function. It appears to be
the case that neither of our fields are overdense enough to
sample the highly biased sample of massive halos at this red-
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Figure 4. Comparison of our measurements (red curve and shaded area) with the five different models we fit. The two blue curves
correspond to models with only M,,;, free, the dashed curve has DC = 1 and the full line DC = 0.6. On linear solutions all models are
very similar, apart from the bias only model, as the number density constraint is restricting the model from going too high. Only the
M, free model allows the small-scale amplitude to vary independently.

Table 1. Our constraints on the HOD parameters from the MCMC fitting. Also shown are the corresponding satellite fractions (fsat)
and galaxy biases (b) and fit reduced x? of the samples. Quantities in brackets are either fixed in the model, or fixed as a function of
other parameters in the model. Masses are in Solar mass units (log base ten). Note that values and error bars quoted are the 16th, 50th
and 84th percentiles of the posterior, as opposed to the peak values. This makes very little difference apart from the posterior for the
duty cycle value for the M,,;n, M1 and DC free model, which is peaked at DC=1 and hence only has one tail, see Fig. El The lower
luminosity parameter values are taken directly from [Harikane et al| (2016), apart from satellite fraction, which we calculate.

Model Myy log Myin log My log My «a o DC 102fsat b x?/d.o.f.
My, DC free -21.125  11.5378:9213.647939 (12,6719 (1) (0.2) 0.79F%15 <o0.2 8.281923 1.3
DC free 21125 11357042 (12127000 (11515080 (1) (0.2) 036707, 3.87F02 765703 15
DC =0.6 21125 11487002 (12267005 (11.6270:03) (1) (0.2) (0.6) 3.291%11 816791 1.3
DC =1 21125 11517002 (1234005 (11657003 (1) (02) (1) 3.16T%% 837912 1.9
Bias Only -21.125 NA NA NA NA NA NA NA 10.86+3-1 0.8
Harikanel6 -20.0 11.301919 (12.06£3:9%) (1147139 (1)  (0.2) (0.6) 5.0 63704 05
Harikanel6 -19.1 11.037593 (11.7550-20)  (11.23%583) (1) (0.2) (0.6) 7.1 55702 14

shift which could be massive enough to host multiple bright
LBGs, and instead our small scale measurements are domi-

so the cosmic variance on halos required to host multiple
galaxies is less extreme and b) their correlation functions are

nated by the angular projection of the linear clustering (e.g.
objects near in angular space by chance, but not near in
physical space).

The [Harikane et al| (2016) measurements however do
have a prominent 1-halo term. We suggest that the reason for
this may lie in the fact that a) they are at lower luminosities,

measured from galaxies in seven different fields (rather than
our two), so they had a greater chance of observing a dense
field that had the massive halos necessary for satellites.
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Figure 5. Triangle plot of our posterior from our MCMC fitting for the HOD model with My,in, M1 and DC free (masses in log base
ten Solar mass units). Dashed lines on the one dimensional single parameter plots are 16th, 50th and 84th percentiles.

Table 2. Comparison of abundance matching results to clustering fits for our data. Columns are (1) LBG sample used, (2) LBG threshold
absolute magnitude, (3), observed comoving number density (Mpc~3), (4) the minimum halo mass in the most straightforwards abundance
matching scheme (log base ten Solar mass units), (5) the model comoving number density (Mpc~3) of the best fit HOD models in this
work and Harikane et al., (2016) without incorporating duty cycle, (6) the corresponding minimum halo mass from the HOD model (log
base ten Solar mass units).

Data MUV ngbserved log Mrrr]:?ﬁ(:hed n;nodel 10g MTI:L]%?&]
(Mpc—3) (Mpc—3?)

Bowler15 -21.125  4.1x107° 11.51 8.9 x 1076 11.5319:98

Harikanel6 -20.0 3.8 x 1074 11.09 2.1x1074 11.30191%

Harikane16 -19.1 13.4 x 1074 10.79 7.3 x 1074 11.03%9-93
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Figure 6. Comparison of our measurements (red curve, 1-c un-
certainties in the lighter curves), the lower luminosity Harikane
et al., (2016) measurements, and the dark matter angular corre-
lation function (black curve).

5.3 Mismatch between the number counts and
bias measurements

As discussed in Section it was not possible to obtain a
good HOD fit to the number counts and clustering. A good
fit was only obtained for the clustering measurements with
a pure bias model. The core of the discrepancy is that to ob-
tain the directly measured bias of ~ 10, the galaxies would
need to be in halos of minimum mass Muin ~ 1012M@. This
corresponds to a comoving density of 2.8 x 10~*Mpc ™2, com-
pared with an observed number density of 4.1 x 10~>Mpc >
i.e. approximately a factor of 15 lower than the observed
value. Similarly, plain abundance matching would suggest
minimum mass Mpyin ~ 1011‘5M@ corresponding to a bias
of ~ 8. We note that Barone-Nugent et al| (2014) report
a very similar issue at z ~ 7.2, where they found that a
duty cycle of 1 was needed for their LBG sample, and that
even then the measured bias was slightly inconsistent with
the number density. We discuss in this sub-section possible
explanations for this discrepancy.

5.83.1 Contaminants

It is possible that some of the sources used for our clus-
tering measurements are not truly z ~ 6 LBGs, but are
instead brown dwarfs or galaxies at other redshifts. This is
unlikely to be the cause of the discrepancy, as [Bowler et al.
had access to photometry across a very large range

~ —@— Harikane et al., 2016
¢ This work (M1, DC free)
102 * Y This work (DC free)
r [ZJ  This work (DC=0.6)
g C <> This work (DC=1)
g - %  Bias only model
2 I@Q <> Abundance Match
B Y4
1011 -
E L L L L L
3
10
o 8+ %}C
6

| | | | |
—21.5 —=21.0 —=20.5 —20.0 —19.5 —19.0 —18.5
Myy

Figure 7. Comparison of our results with comparable measure-
ments of lower luminosity LBGs from [Harikane et al|(2016). Top
plot: Mp,in as a function of absolute UV luminosity threshold (in
units of Solar mass). Bottom plot: galaxy bias as a function of
absolute UV luminosity threshold. The results from our six differ-
ent models are shown for comparison (x-axis values slightly offset
for each model for clarity).

of wavelengths and performed extensive testing with brown
dwarf templates to rule out substantial contamination. Fur-
thermore, stellar contamination would actually reduce the
clustering amplitude as stars are unclustered and have no
physical correlation with the galaxies. This is also in general
the case for contamination from galaxies at other redshifts,
which would not be spatially correlated with the region of
space probed at z ~ 6. One possible exception to this is if a
substantial proportion of the sources are actually at z ~ 1.3
(the redshift degenerate with z ~ 6 when it is difficult to dis-
tinguish between the two spectral breaks in SED modelling),
in which case we would effectively be measuring the corre-
lation function at z ~ 1.3, which would render all modelling
so far void. However we dismiss this possibility - although it
is possible there are a few z ~ 1.3 interlopers in the sample,
it seems extremely unlikely that they make up a substan-
tial proportion of the sample a) because of our confidence
in the template fitting, and b) because of the deep multi-
wavelength data used in [Bowler et al.| (2015)). We conclude
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that contamination is unlikely to be a substantial factor in
the clustering-number density discrepancy.

5.8.2  More complex galaxy-halo relations

HOD modelling is predicated on the principle that the only
thing that determines the galaxy content of a halo is the
mass of the halo - if this is violated, then in general more
complex relations between the galaxy-halo relation and clus-
tering measurements are possible. Well known cases include
assembly bias (see |Hearin et al.|2015, where the bias of ha-
los depends on halo assembly history as well as mass), a
requirement of a nearby halo to interact with (Cen & Sa-
farzadeh| [2015)), or a dependence on the large scale linear
density field. These effects are potentially plausible - it is
possible to imagine a galaxy having a brief starburst (which
we then observe as an ultra-bright source) as a result of an
interaction in a denser region of the Universe, or for the
amount of gas left for star formation in a halo to be related
to the age of the halo. However it is in general very hard
to distinguish between these different effects if one only has
access to the large-scale linear bias (which is effectively a
one dimensional measurement). Galaxy-galaxy lensing can
in principle observationally break these degeneracies (e.g. if
sources are in older, lower mass halos, their clustering will
reflect the assembly-dependent bias of the hosts, but the
lensing will reflect just the mass), but this is likely to never
be possible at these redshifts as it requires a high number
density of even higher redshift sources. It seems likely that
comparison with simulations is the only way to investigate
the viability of such underlying processes.

5.8.8  Uncertainty in knowledge of the high-redshift dark
matter distribution

A key input to HOD modelling is our knowledge of the spa-
tial distribution of the underlying dark matter, in particular
the HMF and halo bias as a function of halo mass (which
comes predominantly from N-body simulations). If the dark
matter model used is incorrect, then the conclusions from
HOD modelling will also in general be incorrect. As shown in
Table [1, abundance matching suggests that the sources are
in > 1011‘5M@ halos. However, the bias from the clustering
would suggest that they are in > 1012M® halos, which are a
factor of twenty rarer. [Tinker et al.| (2008) and |Tinker et al.
(2010) found model HMF's and halo biases from N-body sim-
ulations at redshifts of z = 0 — 2.5. |Behroozi et al.| (2013)
then introduced a high-redshift calibration to the Tinker|
et al| (2010) HMF, extending the validity to z ~ 8 (repre-
senting an increase of approximately 20 percent at z = 6 for
M ~ 1011'3M® halos). Hence confidence in N-body simula-
tions makes a correction factor of ~ 20 appears implausible,
within the current structure formation paradigm. However,
Behroozi et al.| (2013) did not calibrate the high redshift
halo bias, so we are effectively using biases at z ~ 2.5 ex-
trapolated to z ~ 6. The excess in the clustering amplitude
is only around a factor of 50 percent, which would require
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around a 25 percent correction in bias. Thus we suggest
that our results could potentially be explained with a high-
redshift calibration to the halo bias function that steepens
it at the high mass end. See also |Behroozi & Silk| (2016))
for a discussion on this direction of inference e.g. how high
redshift stellar-mass functions can give information on the
high-redshift HMF.

An alternate potential correction to our understanding
of the distribution of dark matter is the incorporation of
‘quasi-linear effects’. HOD modelling makes a binary divi-
sion between non-linear clustering within halos, and large-
scale linear bias. However this transition is gradual, not
sharp, and bias can be scale-dependent on up to 10 Mpc
scales (relevant for scales probed with our observations), al-
though it always tends to a constant value at large scales
(Mann et al.|[1997). Introducing a functional form for scale-
dependent bias can model some of these effects and |Jose
et al. (2016]) conclude that quasi-linear clustering has the
largest effect at high redshift (z > 2), and high hight halo
mass. In particular, |Jose et al.[(2017)) note a similar discrep-
ancy to ours at 3 < z < 5, and find that quasi-linear effects
can cause one to over estimate halo mass by up to a factor
of ten if unaccounted for. They give v values (the correction
to the bias) of order 30-40 percent - around the size of our
inconsistency - at the relevant masses and scales relevant for
our analysis, so it seems plausible that incorporating quasi-
linear effects could solve our discrepancy, and be necessary
for future analysis. |Jose et al.| (2017) also show that quasi-
linear effects make the transition into the 1-halo term less
sharp, which could explain why we do not observe one, as
discussed in section [5.2} Quasi-linear effects are sub-percent
at lower redshift, so HOD modelling at lower redshift is not
invalidated (Van den bosch et al.|2013).

5.83.4 Modification of Our understanding of high redshift
structure formation

Alternatively, it may be the case that N-body simulations
do not correctly capture the physics of early structure for-
mation, in a way that no calibration will be able to account
for. The potential issue of ‘too many’ high mass/luminosity
galaxies has been identified by [Steinhardt et al.| (2016]). They
summarise results that suggest that the best constraints on
the HMF at z = 4— 10 inferred from observations is dramat-
ically higher than the HMF from ACDM, with the discrep-
ancy getting worse towards high halo masses and higher red-
shifts. Although in a challenging observational regime, they
suggest that the observations show that current theories of
structure assembly at z > 4 could be flawed.

Although a possibility, our results are not in sufficient
disagreement with models to warrant support of this hy-
pothesis yet - it is necessary to explore the much more likely
possibilities of the high-redshift halo bias needing calibra-
tion and quasi-linear issues before considering more dra-
matic changes to theories of structure formation.
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5.4 Estimating Cosmic Variance

Cosmic variance is a term that can be used to refer to a
number of related but subtly different effects. The specific
context in which we use the term here is that many extra-
galactic statistical measurements vary by more than sample
variance between different fields because of large scale struc-
ture. As noted in Bowler et al.| (2015), the number density
of our two fields varies by much more than sample vari-
ance assuming a Poisson distribution. This is a consequence
of large-scale structure, which our clustering measurements
quantify. These clustering measurements can be linked back
to the number count estimates to see if the cosmic variance
observed is consistent with the clustering measurements, or
if one of the fields is over/under dense, even accounting for
large-scale structure. Understanding cosmic variance can be
important for correctly connecting high redshift observa-
tions of galaxies with our understanding of reionization e.g.
Ouchi et al.| (2009).

Note that in general it is possible for two populations
to have the same average number counts, but different cos-
mic variances - this occurs when they have the same 1-point
statistics, but different 2-point statistics. Thus we can use
the 2-point statistics to refine the estimate of cosmic vari-
ance in Bowler et al| (2015) who used the Trenti Cosmic
Variance calculator (Trenti & Stiavelli|[2008) - which only
uses 1-point statistics. A clustered and unclustered popula-
tion of the same number density will have substantial and
zero cosmic variance respectively (both will have Poisson
variance). Also 2-point statistics only give the variance of
the full probability distribution of counts in a field. Higher
order statistics (n-point correlation function etc.) are needed
to fully probe the full distribution. Similarly, 3-point statis-
tics are needed to quantify the cosmic variance on measure-
ments of 2-point statistics, 4-point statistics are needed to
quantify the cosmic variance on measurements of 3-point
statistics, and so on ad infinitum. Alternatively, more com-
plex cosmic variance behaviours can be studied with mock
catalogs from cosmological simulations of structure forma-
tion (Trenti & Stiavelli|[2008).

The cosmic variance is related to the expected value of
the correlation function in the geometry of the field, that
is to say the expected value of the correlation function at
the separation of two points randomly selected in the field.
Analytically we can write the expectation as:

_ LaLaw(0: — G5 d*6:d%;

w(A
w( ) fA fA dgeidgej ]

(11)

where A is the angular region of the field, w is the 2-
point correlation function, w(A) is the expectation of the
correlation function in that field, 8; and 6; are points in the
field, |0_; — 03\ is their angular separation, and the integrals
are double integrals over the area of the field. We calculate
this numerically by sampling 100,000 pairs of points in the
field, calculating their angular separation, finding the value
of the correlation function at that angular scale (with the

best fit model from Section , and then taking the aver-
age.

Trenti & Stiavelli| (2008) summarise results from Peebles
(1993); |[Newman & Davis| (2001)) and [Somerville et al.| (2003])
that conclude:

. (N?) —(N)? 1
w(A) = ——— — — (12)
(N)? (N)
where N is the random variable of the number of objects
in a field. This can be rearranged to the form:

(N?) = (N)?* = (N) + ®(A)(N)?, (13)

2 2 2
Ototal = Opoisson + ocv,

where Oiotar = (N2?) — (N)? is the total standard

deviation on measurements of number counts, Opoisson =

(N) is the Poisson standard deviation and ccy =

w(A)(N) is the standard deviation from cosmic variance
e.g. total standard deviation is the Poisson and cosmic vari-
ance standard deviations added in quadrature. The stan-
dard deviation from cosmic variance reduces to ooy =
by/@pm(A)(N) in the ‘pure-bias’ case where w = b2wpar,
where b is the bias and wpas is the dark matter angular
correlation function.

This formalism has all the properties one would ex-
pect from cosmic variance. Cosmic variance is higher when
sources are more clustered (further away from uniform).
Cosmic variance becomes lower as the size of the field in-
creases, as the correlation function is sampling larger scales,
where the function has a lower value, a consequence of the
fact that a larger range of environments are being probed.
A more subtle effect is that cosmic variance also varies with
field shape, as well as size. The average length scale probed
for a circle is a lot smaller than for a long thin rectangle of
the same area (for example), corresponding to a higher aver-
age correlation function value, and greater cosmic variance.
This can be interpreted (as described in Trenti & Stiavelli
2008)) as a consequence of the fact that a more compact field
geometry is predominantly sampling the same environment,
be it an over- or under-density. However a long thin geom-
etry is sampling from a large range of environments, and
overdensities and underdensities are more likely to cancel
out. The formalism for describing cosmic variance here also
works when the field is disconnected. If the ‘field’ is actually
two disconnected subfields separated by a vast distance in
the sky, when calculating the average of the correlation func-
tion over this field, half the time the two points will be in
different sub-fields, and the value of the correlation function
on this scale will be effectively zero. This halves the value of
@(A), effectively reducing cosmic variance contribution by a
factor of /2 as completely different regions of the Universe
are being probed.

Table [3] summarises our results when applied to the Ul-
traVISTA and UDS fields for our z ~ 6 samples (using our
best fit pure bias model). The most important columns to
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Table 3. Actual and expected number of galaxies in each field. The columns are: field used, the field angular area (in deg?), the actual
number of galaxies in the field (N,), the actual angular galaxy density in the field (pa, in deg™2), the expected number of galaxies in
the field if it had the mean density (Ne), the expected angular galaxy density in the field - all identical figures as we are considering
deviations from the mean density (pe, in deg’2), standard deviation from Poisson statistics, equal to the square root of Ne (0 poisson),
standard deviation from cosmic variance, estimated from our clustering measurements (ocy ), our Poisson and cosmic variance errors

added in quadrature (orotqr)

Field

Area

Na Pa Ne Pe w OPoisson OCV OTotal
(deg?) (deg™?) (deg™?)
UDS 0.74 64 86 92 124 0.027 10 15 18
UltraVISTA 0.62 103 166 7 124 0.023 9 12 15
Total 1.35 167 124 167 124 0.013 13 19 23

compare are the N, (the actual number of galaxies in the
field), N. (the expected number there would be if both fields
had the average density) and otota: the standard deviation
on counts including Poisson and cosmic variance implied by
our clustering measurements. In both cases, the observed
number of galaxies in each field is approximately a 1.50 de-
viation from the model value (as noted inBowler et al.[2014}
they are the most over- and under-dense respectively of the
five CANDELS fields). Thus at these redshifts, both Ultra-
VISTA and UDS appear to be moderate, but not unreason-
able, over and under-densities respectively.

5.5 The onset of quenching

[Bowler et al|(2014) and Bowler et al.| (2015) report a rapid
evolution in the high luminosity end of the luminosity func-
tion at z = 6 — 7, a transition from a power-law drop off to
an exponential cut-off, interpreted as the onset of quench-
ing or dust obscuration. We show in Fig. [§]the luminosity to
halo mass ratios implied by the Bowler et al.| (2015)) luminos-
ity functions and the simplest possible abundance matching
scheme:

My (Muv) = Y r (Yrum (Mov)),

where M, is the halo mass corresponding to the mag-
nitude Myv, Yamr(Mp) is the comoving number density
of halos greater than mass My and Yrum(Mp) is the co-
moving number density of LBGs brighter than magnitude
Myv. This is a very simple model (more complex abun-
dance matching schemes do exists e.g. SHAM,
2015), and ignores complexities such as scatter, satellites
and duty cycle, but illustrates the argument in [Bowler et al]
that 2z = 6 — 7 is the onset of quenching. At the
low luminosity end, the luminosity to halo mass ratio drops
with time, as/Harikane et al.| (2016]) find using clustering (see
their figure 10). At the high mass end, the ratio is fairly con-
stant, before dropping off towards low redshift e.g.
. The unphysical rise in the z = 7 luminosity to
halo mass ratio at the high luminosity end is a result of the
fact that the luminosity function cannot (as noted inBowler]
continue as a power law to even brighter mag-

nitudes, as it would quickly be dramatically higher than the
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Figure 8. Luminosity (monochromatic luminosity at 15004; that
is to say, Af) where A is the wavelength and f) is the flux per
wavelength) to halo mass ratios as a function of halo mass, derived
abundance matching Bowler et al., (2015) luminosity functions
and Behroozi et al., (2013) halo mass functions. The results are
shown for both Schechter function fit and the double power law
fit, for z = 5, z = 6 and z = 7. In bold are the best fitting
functions, double power law for z = 6 and z = 7, Schechter for
z = 5, and the dashed line shows the alternative.

HMF. More realistically, in a scenario with no high lumi-
nosity/mass end quenching, the luminosity function would
drop off at the same rate as the HMF (which doesn’t drop
off as fast as a Schechter function). If at higher luminosi-
ties it really does continue as a power law, then the LBGs
would become much more numerous than their correspond-
ing halos, and almost certainly these bright objects would
be rare phases in the duty cycle of a more common popu-
lation. |[Davidzon et al. (2017) make a similar argument for
the onset of quenching, using stellar mass estimates from
UltraVISTA-DR2, SPLASH and Hyper-Suprime-Cam data
in the COSMOS field, except finding the transition at z ~ 3
rather than z ~ 6.
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The fact that these galaxies at the bright end of the
luminosity function truly are in the densest regions of the
Universe as opposed to less biased objects caught in ex-
tremely rare massive star-bursts, supports the explanation
that the drop off in the luminosity to halo mass ratio at
the high-mass end is essentially still operational at z = 6.
If the sample had been just rare episodes of vigorous star
formation, then the interpretation of the steepness/drop off
rate at the bright end of the luminosity function would be
different - it would instead be dominated by the distribution
of star-formation rates a given population has, and how rare
its episodes of high star formation are, as opposed to the lu-
minosity function being dominated by a modified halo mass
function.

To determine if z ~ 6—7 is the onset of mass quenching,
a similar analysis to this work of luminous z = 7 LBGs would
need to be performed to see if the luminosity to halo mass
ratio doesn’t drop off. There are three main possibilities at
z~ T

o Myy ~ —22 LBGs have the same host halo mass as
Myv ~ —20 objects; this would suggest they are the same
population of objects at different points in their duty cycle

o Myy ~ —22 LBGs have the same host halo mass as
they do at z ~ 6. This would suggest that the luminosity to
halo mass ratio at the high luminosity end doesn’t change
much over z ~ 6 — 7, which would not support z ~ 6 — 7
being the onset of mass quenching/dust obscuration

o Myy ~ —22 LBGs have a lower host halo mass as
they do at z ~ 6, but still higher than the galaxies with
Myv ~ —20, in such a way that the luminosity to halo
mass ratio was constant as a function of halo mass. This
would be supportive that z ~ 6 — 7 was indeed the onset of
quenching (or dust obscuration).

6 CONCLUSIONS

We have used the largest existing sample of extremely bright
Lyman-break galaxies at z ~ 6 to investigate their large
scale structure and links to the possible onset of feedback
quenching or dust obscuration at this redshift. This sample
(detailed in [Bowler et al.|[2015)) of 263 LBGs was selected
in the UltraVISTA /COSMOS and UDS/SXDS fields, using
deep optical and near-infrared data required to distinguish
the galaxies from contaminant populations. The method we
used to study the connection between the galaxies and their
host halo was to measure their clustering with the angular
correlation function, and model these measurements with a
HOD scheme.
The key conclusions of this work are:

e Bright LBGs (Myv < —21) appear to be highly bi-
ased (b ~ 10) objects in dense environments, as opposed to
being rare temporal episodic incarnations of fainter galax-
ies (Myv ~ —19). This suggests that the bright-end of the
luminosity function at z ~ 6 is determined by feedback pro-
cesses or dust obscuration, rather than duty cycles. Our re-
sults have important implications for the physical origin of

the observed steepening of the bright end of the ultra-violet
luminosity function between z ~ 6 and z ~ 7 (Bowler et al.
2014} [2015|) - which in a straightforward abundance match-
ing scheme would imply a dramatically increased luminosity
to halo mass ratio at z ~ 7 to z ~ 6.

e We find a tension between the observed number counts
and bias, that suggests that some modification to our knowl-
edge of the high-redshift dark matter distribution is needed
This is most likely to be the incorporation of quasi-linear
effects (as described in|Jose et al.[[2017)), or possibly a minor
calibration upwards of halo bias at high redshift.

e Although number counts within each field differ by far
more than Poisson sample variance, estimates of the cosmic
variance from the clustering would suggest that both fields
are only moderate 1.5-c over/under densities.

e We do not require duty cycle to explain our observa-
tions (equivalently DC' ~ 1), and the satellite fraction of
the sources is very small, at most a few percent

In the next few years, deep, wide surveys such as
VIDEO and the VISTA Extragalactic Infrared Legacy Sur-
vey (VEILS, Honig et al.|2016]), which will extend the area
of VIDEO, will provide improved constraints on the lumi-
nosity function and clustering of high-redshift galaxies, and
allowing extension to even more luminous LBGs. By the
mid 2020s it should be possible to use the FUCLID space
telescope mission to do this with 1,000s of LBGs (Bowler
et al.||2017), which will reveal how the measured large scale
structure of LBGs and LAEs relates to reionization.
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