189 research outputs found

    Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.)

    Get PDF
    The possibility of using quenching analysis of chlorophyll a fluorescence as a selection tool for improving the cold tolerance of maize was investigated in six genotypes differing greatly in the ability to develop a competent photosynthetic apparatus at low temperature. Upon gradual cooling, measurements of the quantum yield of electron transport (ΦPSII) indicated that leaves of tolerant genotypes, that developed at suboptimal temperature (15 °C), maintained higher rates of electron transport than leaves of sensitive genotypes. This difference was largely due to the ability of the tolerant plants to keep higher efficiency of excitation energy capture by open photosystem II reaction centres (F′v/F′m). The absence of genotypic differences in leaves that developed at optimal temperature indicates that the trait is not expressed constitutively, but relies on adaptation mechanisms. Furthermore, the genotypic difference was not expressed under increasing illumination at 15 °C and 25 °C suggesting that the trait is also low-temperature-specific and is not expressed solely in response to increasing excess light energy. Applying the method to flint and dent breeding population led to a substantial increase (up to 31%) in the photosynthetic capacity of hybrids between selected F3 inbreeding families grown at suboptimal temperature, demonstrating that the method is an efficient selection tool for improving the cold tolerance of maize through breedin

    Ermüdungssicherheit von Brücken – Teil 2: Nachweis basierend auf den Messwerten des Monitoring-Projekts „Bahnbrücke Eglisau“

    Get PDF
    Bei der genieteten Rheinbrücke in Eglisau wurde über einen Zeitraum von einem Jahr ein Monitoring durchgeführt. Die mittels Rainflow-Analyse ausgewerteten Messwerte dienten als Grundlage für den Nachweis der Ermüdungssicherheit. Die Messquerschnitte sind in der Regel nicht identisch mit den Nachweisquerschnitten, weshalb die gemessenen Dehnungen bzw. Spannungen in die für den Nachweis maßgebende Nietlage des Nachweisquerschnittes umgerechnet wurden. Die hierfür erforderlichen Umrechnungsfaktoren wurden rechnerisch am statischen Modell ermittelt. In einem ersten Schritt wurde die Dauerfestigkeit für die ermüdungsbeanspruchten Bauteile untersucht. Für die Bauteile mit ungenügender Dauerfestigkeit wurde anschließend eine Schadensakkumulationsberechnung nach Palmgren-Miner auf Basis der für genietete Konstruktionsdetails geltenden Wöhlerkurven durchgeführt. Basierend auf den Messwerten aus dem Monitoring konnte schließlich für die Nietkonstruktion eine genügende Ermüdungssicherheit und für das maßgebende Bauteil eine weitere Nutzungsdauer von mindestens 50 Jahren nachgewiesen werden. Fatigue safety of riveted bridges – Part 2: Verification based on the monitoring data of the project “Railway Bridge at Eglisau“. Long term monitoring over one year has been conducted on the riveted Railway Bridge over the Rhine at Eglisau. Measured values were exploited by rainflow analysis and served as the basis for the verification of fatigue safety. As the locations of measurements are generally not identical with the cross sections of verification, measured strains respectively stresses, were extrapolated to the relevant verification cross section by means of factors that were obtained by structural analysis. Using these values, all fatigue relevant structural details were first verified with respect to the fatigue limit. Then, damage accumulation calculation according to the Palmgren-Miner rule and based on Wöhler curves for riveted details was performed for those structural details where the fatigue limit check was not fulfilled. Sufficient fatigue safety could finally be verified for the whole riveted structure and an additional service life of at least 50 years for the most fatigue relevant structural element

    Dorsoventral variations in dark chilling effects on photosynthesis and stomatal function in Paspalum dilatatum leaves

    Get PDF
    The effects of dark chilling on the leaf-side-specific regulation of photosynthesis were characterized in the C4 grass Paspalum dilatatum. CO2- and light-response curves for photosynthesis and associated parameters were measured on whole leaves and on each leaf side independently under adaxial and abaxial illumination before and after plants were exposed to dark chilling for one or two consecutive nights. The stomata closed on the adaxial sides of the leaves under abaxial illumination and no CO2 uptake could be detected on this surface. However, high rates of whole leaf photosynthesis were still observed because CO2 assimilation rates were increased on the abaxial sides of the leaves under abaxial illumination. Under adaxial illumination both leaf surfaces contributed to the inhibition of whole leaf photosynthesis observed after one night of chilling. After two nights of chilling photosynthesis remained inhibited on the abaxial side of the leaf but the adaxial side had recovered, an effect related to increased maximal ribulose-1,5-bisphosphate carboxylation rates (Vcmax) and enhanced maximal electron transport rates (Jmax). Under abaxial illumination, whole leaf photosynthesis was decreased only after the second night of chilling. The chilling-dependent inhibition of photosynthesis was located largely on the abaxial side of the leaf and was related to decreased Vcmax and Jmax, but not to the maximal phosphoenolpyruvate carboxylase carboxylation rate (Vpmax). Each side of the leaf therefore exhibits a unique sensitivity to stress and recovery. Side-specific responses to stress are related to differences in the control of enzyme and photosynthetic electron transport activities

    Impact of chlororespiration on non-photochemical quenching of chlorophyll fluorescence and on the regulation of the diadinoxanthin cycle in the diatom Thalassiosira pseudonana

    Get PDF
    In diatoms, metabolic activity during long dark periods leads to a chlororespiratory electron flow, which is accompanied by the build-up of a proton gradient strong enough to activate the diadinoxanthin (Ddx) de-epoxidation reaction of the Ddx cycle. In the present study, the impact of chlororespiration on non-photochemical quenching (NPQ) of chlorophyll fluorescence and the regulation of the Ddx cycle in the diatom Thalassiosira pseudonana was investigated by manipulation of the redox state of the photosynthetic electron transport chain during darkness. The response of a transfer of T. pseudonana cells from growth light conditions to 60 min darkness was found to depend on oxygen: in its presence there was no significant reduction of the PQ pool and no de-epoxidation of Ddx to diatoxanthin (Dtx). Under anaerobic conditions a high reduction state of the electron transport chain and a slow but steady de-epoxidation of Ddx was observed, which resulted in a significant accumulation of Dtx after 60 min of anaerobiosis. Unexpectedly, this high concentration of Dtx did not induce a correspondingly high NPQ as it would have been observed with Dtx formed under high light conditions. However, the sensitivity of NPQ to Dtx in cells kept under dark anaerobic conditions increased during reoxygenation and far-red (FR) light illumination. The results are discussed with respect to the activation of the de-epoxidation reaction and the formation of NPQ and their dependence on the extent of the proton gradient across the thylakoid membrane

    Systematic Dissection and Trajectory-Scanning Mutagenesis of the Molecular Interface That Ensures Specificity of Two-Component Signaling Pathways

    Get PDF
    Two-component signal transduction systems enable bacteria to sense and respond to a wide range of environmental stimuli. Sensor histidine kinases transmit signals to their cognate response regulators via phosphorylation. The faithful transmission of information through two-component pathways and the avoidance of unwanted cross-talk require exquisite specificity of histidine kinase-response regulator interactions to ensure that cells mount the appropriate response to external signals. To identify putative specificity-determining residues, we have analyzed amino acid coevolution in two-component proteins and identified a set of residues that can be used to rationally rewire a model signaling pathway, EnvZ-OmpR. To explore how a relatively small set of residues can dictate partner selectivity, we combined alanine-scanning mutagenesis with an approach we call trajectory-scanning mutagenesis, in which all mutational intermediates between the specificity residues of EnvZ and another kinase, RstB, were systematically examined for phosphotransfer specificity. The same approach was used for the response regulators OmpR and RstA. Collectively, the results begin to reveal the molecular mechanism by which a small set of amino acids enables an individual kinase to discriminate amongst a large set of highly-related response regulators and vice versa. Our results also suggest that the mutational trajectories taken by two-component signaling proteins following gene or pathway duplication may be constrained and subject to differential selective pressures. Only some trajectories allow both the maintenance of phosphotransfer and the avoidance of unwanted cross-talk

    Horizontally acquired glycosyltransferase operons drive salmonellae lipopolysaccharide diversity.

    Get PDF
    The immunodominant lipopolysaccharide is a key antigenic factor for Gram-negative pathogens such as salmonellae where it plays key roles in host adaptation, virulence, immune evasion, and persistence. Variation in the lipopolysaccharide is also the major differentiating factor that is used to classify Salmonella into over 2600 serovars as part of the Kaufmann-White scheme. While lipopolysaccharide diversity is generally associated with sequence variation in the lipopolysaccharide biosynthesis operon, extraneous genetic factors such as those encoded by the glucosyltransferase (gtr) operons provide further structural heterogeneity by adding additional sugars onto the O-antigen component of the lipopolysaccharide. Here we identify and examine the O-antigen modifying glucosyltransferase genes from the genomes of Salmonella enterica and Salmonella bongori serovars. We show that Salmonella generally carries between 1 and 4 gtr operons that we have classified into 10 families on the basis of gtrC sequence with apparent O-antigen modification detected for five of these families. The gtr operons localize to bacteriophage-associated genomic regions and exhibit a dynamic evolutionary history driven by recombination and gene shuffling events leading to new gene combinations. Furthermore, evidence of Dam- and OxyR-dependent phase variation of gtr gene expression was identified within eight gtr families. Thus, as O-antigen modification generates significant intra- and inter-strain phenotypic diversity, gtr-mediated modification is fundamental in assessing Salmonella strain variability. This will inform appropriate vaccine and diagnostic approaches, in addition to contributing to our understanding of host-pathogen interactions

    Membrane-Lipid Therapy in Operation: The HSP Co-Inducer BGP-15 Activates Stress Signal Transduction Pathways by Remodeling Plasma Membrane Rafts

    Get PDF
    Aging and pathophysiological conditions are linked to membrane changes which modulate membrane-controlled molecular switches, causing dysregulated heat shock protein (HSP) expression. HSP co-inducer hydroxylamines such as BGP-15 provide advanced therapeutic candidates for many diseases since they preferentially affect stressed cells and are unlikely have major side effects. In the present study in vitro molecular dynamic simulation, experiments with lipid monolayers and in vivo ultrasensitive fluorescence microscopy showed that BGP-15 alters the organization of cholesterol-rich membrane domains. Imaging of nanoscopic long-lived platforms using the raft marker glycosylphosphatidylinositol-anchored monomeric green fluorescent protein diffusing in the live Chinese hamster ovary (CHO) cell plasma membrane demonstrated that BGP-15 prevents the transient structural disintegration of rafts induced by fever-type heat stress. Moreover, BGP-15 was able to remodel cholesterol-enriched lipid platforms reminiscent of those observed earlier following non-lethal heat priming or membrane stress, and were shown to be obligate for the generation and transmission of stress signals. BGP-15 activation of HSP expression in B16-F10 mouse melanoma cells involves the Rac1 signaling cascade in accordance with the previous observation that cholesterol affects the targeting of Rac1 to membranes. Finally, in a human embryonic kidney cell line we demonstrate that BGP-15 is able to inhibit the rapid heat shock factor 1 (HSF1) acetylation monitored during the early phase of heat stress, thereby promoting a prolonged duration of HSF1 binding to heat shock elements. Taken together, our results indicate that BGP-15 has the potential to become a new class of pharmaceuticals for use in ‘membrane-lipid therapy’ to combat many various protein-misfolding diseases associated with aging

    Alternative Sigma Factor σH Modulates Prophage Integration and Excision in Staphylococcus aureus

    Get PDF
    The prophage is one of the most important components of variable regions in bacterial genomes. Some prophages carry additional genes that may enhance the toxicity and survival ability of their host bacteria. This phenomenon is predominant in Staphylococcus aureus, a very common human pathogen. Bioinformatics analysis of several staphylococcal prophages revealed a highly conserved 40-bp untranslated region upstream of the int gene. A small transcript encoding phage integrase was identified to be initiated from the region, demonstrating that the untranslated region contained a promoter for int. No typical recognition sequence for either σA or σB was identified in the 40-bp region. Experiments both in vitro and in vivo demonstrated that σH recognized the promoter and directed transcription. Genetic deletion of sigH altered the int expression, and subsequently, the excision proportion of prophage DNAs. Phage assays further showed that sigH affected the ability of spontaneous lysis and lysogenization in S. aureus, suggesting that sigH plays a role in stabilizing the lysogenic state. These findings revealed a novel mechanism of prophage integration specifically regulated by a host-source alternative sigma factor. This mechanism suggests a co-evolution strategy of staphylococcal prophages and their host bacteria
    corecore