5 research outputs found

    Hepatic Notch2 deficiency leads to bile duct agenesis perinatally and secondary bile duct formation after weaning

    Get PDF
    ("control") mice. Fetal and neonatal Notch2-cKO livers were devoid of cytokeratin19 (CK19)-, Dolichos-biflorus agglutinin (DBA)-, and SOX9-positive ductal structures, demonstrating absence of prenatal cholangiocyte differentiation. Despite extensive cholestatic hepatocyte necrosis and growth retardation, mortality was only ~15%. Unexpectedly, a slow process of secondary cholangiocyte differentiation and bile-duct formation was initiated around weaning that histologically resembled the ductular reaction. Newly formed ducts varied from rare and non-connected, to multiple, disorganized tubular structures that connected to the extrahepatic bile ducts. Jaundice had disappeared in ~30% of Notch2-cKO mice by 6 months. The absence of NOTCH2 protein in postnatally differentiating cholangiocyte nuclei of Notch2-cKO mice showed that these cells had not originated from non-recombined precursor cells. Notch2 and Hnf6 mRNA levels were permanently decreased in Notch2-cKO livers. Perinatally, Foxa1, Foxa2, Hhex, Hnf1β, Cebpα and Sox9 mRNA levels were all significantly lower in Notch2-cKO than control mice, but all except Foxa2 returned to normal or increased levels after weaning, coincident with the observed secondary bile-duct formation. Interestingly, Hhex and Sox9 mRNA levels remained elevated in icteric 6 months old Notch2-cKOs, but decreased to control levels in non-icteric Notch2-cKOs, implying a key role in secondary bile-duct formation. Conclusion: Cholangiocyte differentiation becomes progressively less dependent on NOTCH2 signaling with age, suggesting that ductal-plate formation is dependent on NOTCH2, but subsequent cholangiocyte differentiation is not

    Interorgan Coordination of the Murine Adaptive Response to Fasting*

    Get PDF
    Starvation elicits a complex adaptive response in an organism. No information on transcriptional regulation of metabolic adaptations is available. We, therefore, studied the gene expression profiles of brain, small intestine, kidney, liver, and skeletal muscle in mice that were subjected to 0–72 h of fasting. Functional-category enrichment, text mining, and network analyses were employed to scrutinize the overall adaptation, aiming to identify responsive pathways, processes, and networks, and their regulation. The observed transcriptomics response did not follow the accepted “carbohydrate-lipid-protein” succession of expenditure of energy substrates. Instead, these processes were activated simultaneously in different organs during the entire period. The most prominent changes occurred in lipid and steroid metabolism, especially in the liver and kidney. They were accompanied by suppression of the immune response and cell turnover, particularly in the small intestine, and by increased proteolysis in the muscle. The brain was extremely well protected from the sequels of starvation. 60% of the identified overconnected transcription factors were organ-specific, 6% were common for 4 organs, with nuclear receptors as protagonists, accounting for almost 40% of all transcriptional regulators during fasting. The common transcription factors were PPARα, HNF4α, GCRα, AR (androgen receptor), SREBP1 and -2, FOXOs, EGR1, c-JUN, c-MYC, SP1, YY1, and ETS1. Our data strongly suggest that the control of metabolism in four metabolically active organs is exerted by transcription factors that are activated by nutrient signals and serves, at least partly, to prevent irreversible brain damage
    corecore