386 research outputs found
Reduced Fluoroquinolone Susceptibility in Salmonella enterica Isolates from Travelers, Finland
We tested the fluoroquinolone susceptibility of 499 Salmonella enterica isolates collected from travelers returning to Finland during 2003–2007. Among isolates from travelers to Thailand and Malaysia, reduced fluoroquinolone susceptibility decreased from 65% to 22% (p = 0.002). All isolates showing nonclassical quinolone resistance were from travelers to these 2 countries
The Cross-Cultural Invariance of the Servant Leadership Survey: A Comparative Study across Eight Countries
This paper tests and confirms the cross-cultural equivalence of the Servant Leadership Survey (SLS) in eight countries and languages: The Netherlands, Portugal, Germany, Iceland, Italy, Spain, Turkey and Finland. A composite sample consisting of 5201 respondents from eight countries that all filled out the SLS was used. A three-step approach was adopted to test configural invariance, measurement equivalence, and structural equivalence. For the full 30-item version of the SLS, configural invariance and partial measurement equivalence were confirmed. Implications of these results for the use of the SLS within cross-cultural studies are discussed
ABBA regulates plasma-membrane and actin dynamics to promote radial glia extension
Radial glia play key roles in neuronal migration, axon guidance, and neurogenesis during development of the central nervous system. However, the molecular mechanisms regulating growth and morphology of these extended cells are unknown. We show that ABBA, a novel member of the IRSp53-MIM protein family, is enriched in different types of radial glia. ABBA binds ATP-actin monomers with high affinity and deforms PtdIns(4,5)P2-rich membranes in vitro through its WH2 and IM domains, respectively. In radial-glia-like C6-R cells, ABBA localises to the interface between the actin cytoskeleton and plasma membrane, and its depletion by RNAi led to defects in lamellipodial dynamics and process extension. Together, this study identifies ABBA as a novel regulator of actin and plasma membrane dynamics in radial glial cells, and provides evidence that membrane binding and deformation activity is critical for the cellular functions of IRSp53-MIM-ABBA family proteins
The relative importance of work-releated psychosocial factors in physician burnout
Background Identifying the most significant risk factors for physician burnout can help to define the priority areas for burnout prevention. However, not much is known about the relative importance of these risk factors. Aims This study was aimed to examine the relative importance of multiple work-related psychosocial factors in predicting burnout dimensions among physicians. Methods In a cross-sectional sample of 2423 Finnish physicians, dominance analysis was used to estimate the proportionate contribution of psychosocial factors to emotional exhaustion, depersonalization and reduced personal accomplishment. The psychosocial factors included job demands (time pressure, patient-related stress, lack of support, stress related to information systems, work-family conflict) and job resources (job control, team climate, organizational justice). Results Together, psychosocial factors explained 50% of the variance in emotional exhaustion, 24% in depersonalization and 11% in reduced professional efficacy. Time pressure was the most important predictor of emotional exhaustion (change in total variance explained Delta R-2 = 45%), and patient-related stress was the most important predictor of both depersonalization (Delta R-2 = 52%) and reduced professional accomplishment (Delta R-2 = 23%). Stress related to information systems was the least important predictor of the burnout dimensions (Delta R-2 = 1-2%). Conclusions Psychosocial factors in physicians' work are differently associated with the dimensions of burnout. Among the factors, the most significant correlates of burnout are job demands in the form of time pressure and patient-related stress.Peer reviewe
Obatoclax Inhibits Alphavirus Membrane Fusion by Neutralizing the Acidic Environment of Endocytic Compartments
As new pathogenic viruses continue to emerge, it is paramount to have intervention strategies that target a common denominator in these pathogens. The fusion of viral and cellular membranes during viral entry is one such process that is used by many pathogenic viruses, including chikungunya virus, West Nile virus, and influenza virus. Obatoclax, a small-molecule antagonist of the Bcl-2 family of proteins, was previously determined to have activity against influenza A virus and also Sindbis virus. Here, we report it to be active against alphaviruses, like chikungunya virus (50% effective concentration [EC50] = 0.03 mu M) and Semliki Forest virus (SFV; EC50 = 0.11 mu M). Obatoclax inhibited viral entry processes in an SFV temperaturesensitive mutant entry assay. A neutral red retention assay revealed that obatoclax induces the rapid neutralization of the acidic environment of endolysosomal vesicles and thereby most likely inhibits viral fusion. Characterization of escape mutants revealed that the L369I mutation in the SFV E1 fusion protein was sufficient to confer partial resistance against obatoclax. Other inhibitors that target the Bcl-2 family of antiapoptotic proteins inhibited neither viral entry nor endolysosomal acidification, suggesting that the antiviral mechanism of obatoclax does not depend on its anticancer targets. Obatoclax inhibited the growth of flaviviruses, like Zika virus, West Nile virus, and yellow fever virus, which require low pH for fusion, but not that of pH-independent picornaviruses, like coxsackievirus A9, echovirus 6, and echovirus 7. In conclusion, obatoclax is a novel inhibitor of endosomal acidification that prevents viral fusion and that could be pursued as a potential broad-spectrum antiviral candidate.Peer reviewe
Integrins are not essential for entry of coxsackievirus A9 into SW480 human colon adenocarcinoma cells
Background: Coxsackievirus A9 (CV-A9) is a
pathogenic enterovirus type within the family Picornaviridae. CV-A9 infects A549 human epithelial lung carcinoma
cells by attaching to the aVβ6 integrin receptor through a highly conserved Arg-Gly-Asp (RGD)
motif, which is located at the exposed carboxy-terminus of the capsid protein
VP1 in all studied clinical isolates. However, genetically-modified CV-A9 that
lacks the RGD motif (CV-A9-RGDdel) has been shown to be infectious in some cell
lines but not in A549, suggesting that RGD-mediated integrin binding is not always
essential for efficient entry of CV-A9.
Â
Methods: Two cell lines, A549 and SW480, were
used in the study. SW480 was the study object for the integrin-independent
entry and A549 was used as the control for integrin-dependent entry. Receptor
levels were quantitated by cell sorting and quantitative PCR. Antibody blocking
assay and siRNA silencing of receptor-encoding genes were used to block virus
infection. Peptide phage display library was used to identify peptide binders
to CV-A9. Immunofluorescence and confocal microscopy were used to visualize the
virus infection in the cells.
Â
Results: We investigated the receptor use
and early stages of CV-A9 internalization to SW480 human epithelial colon
adenocarcinoma cells. Contrary to A549 infection, we showed that both CV-A9 and
CV-A9-RGDdel internalized into SW480 cells and that function-blocking anti-αV
integrin antibodies had no effect on the binding and entry of CV-A9. Whereas
siRNA silencing of β6 integrin subunit had no influence on virus infection in
SW480, silencing of β2-microglobulin (b2M) inhibited the virus infection in both cell lines. By using a peptide
phage display screening, the virus-binding peptide identical to the N-terminal
sequence of HSPA5 protein was identified and shown to block the virus infection
in both A549 and SW480 cell lines. HSPA5 was also found to co-localize with
CV-A9 at the SW480 cell periphery during the early stages of infection by
confocal microscopy.
Â
Conclusions: The data suggest that while aVβ6 integrin is essential for CV-A9
in A549 cell line, it is not required in SW480 cell line in which β2M and HSPA5
alone are sufficient for CV-A9 infection. This suggests that the choice of
CV-A9 receptor(s) is dependent on the tissue/cellular environment.</p
Common cold in Team Finland during 2018 Winter Olympic Games (PyeongChang): Epidemiology, diagnosis including molecular point-of-care testing (POCT) and treatment
Objectives: The common cold is the main cause of medical time loss in elite sport. Rapid diagnosis has been a challenge that may be amenable to molecular point-of-care testing (POCT).Methods: We performed a prospective observational study of the common cold in Team Finland during the 2018 Winter Olympic Games. There were 44 elite athletes and 68 staff members. The chief physician recorded the symptoms of the common cold daily on a standardised form. Two nasal swabs were taken at the onset of symptoms. One swab was analysed within 45 min using a molecular POCT for respiratory syncytial virus and influenza A and B viruses. After the Games, the other swab was tested for 16 possible causative respiratory viruses using PCR in laboratory-based testing.Results: 20 out of 44 (45%) athletes and 22 out of 68 (32%) staff members experienced symptoms of the common cold during a median stay of 21 days. Eleven (26%) samples tested virus-positive using POCT. All subjects with influenza (n=6) and 32 close contacts were treated with oseltamivir. The aetiology of the common cold was finally detected in 75% of the athletes and 68 % of the staff members. Seven virus clusters were identified. They were caused by coronaviruses 229E, NL63 and OC43, influenza B virus, respiratory syncytial virus A, rhinovirus and human metapneumovirus. The virus infections spread readily within the team, most commonly within the same sport discipline.Conclusions: The cold was indeed a common illness in Team Finland during the Winter Olympic Games. POCT proved to be clinically valuable, especially for influenza. The aetiology of the common cold was identified in most cases.</p
Optimization methodology for high COD nutrient-limited wastewaters treatment using BAS process
Optimization of biofilm activated sludge (BAS) process via mathematical modelling is an entangle activity since economic, environmental objective and technical decision must be considered. This paper presents a methodology to optimize the operational conditions of BAS process in four steps by combining dynamic simulation techniques with non-linear optimization methods and with operative decision-making criteria. Two set of variables are separately prioritized in the methodology: essential variables related to physical operation to enforce established process performance, and refinement variables related to biological processes that can generate risks of bulking, pin-point floc and rising sludge. The proposed optimization strategy is applied for the treatment of high COD wastewater under nutrient limitation using an integrated mathematical model for COD removal that include predation, hydrolysis and a simplified approach to the limiting solids flux theory in the secondary clarifier in order to facilitate the convergence of the optimization solver. The methodology is implemented in a full-scale wastewater treatment plant for a cellulose and viscose fibre mill obtaining (i) improvement of the effluent quality index (Kg pollution/m3) up to 62% and, (ii) decrease the operating cost index (€/m3) of the process up to 30% respect the regular working operational conditions of the plant. The proposed procedure can be also applied to other biological treatments treating high COD nutrient-limited industrial wastewater such as from textile and winery production among others
Rapid detection of functional gene polymorphisms of TLRs and IL-17 using high resolution melting analysis
Genetic variations in toll-like receptors (TLRs) and IL-17A have been widely connected to different diseases. Associations between susceptibility and resistance to different infections and single nucleotide polymorphisms (SNPs) in TLR1 to TLR4 and IL17A have been found. In this study, we aimed to develop a rapid and high throughput method to detect functional SNPs of above mentioned proteins. The following most studied and clinically important SNPs: TLR1 (rs5743618), TLR2 (rs5743708), TLR3 (rs3775291), TLR4 (rs4986790) and IL17 (rs2275913) were tested. High resolution melting analysis (HRMA) based on real-time PCR combined with melting analysis of a saturating double stranded-DNA binding dye was developed and used. The obtained results were compared to the "standard" sequencing method. A total of 113 DNA samples with known genotypes were included. The HRMA method correctly identified all genotypes of these five SNPs. Co-efficient values of variation of intra-and inter-run precision repeatability ranged from 0.04 to 0.23%. The determined limit of qualification for testing samples was from 0.5 to 8.0 ng/mu l. The identical genotyping result was obtained from the same sample with these concentrations. Compared to "standard" sequencing methods HRMA is cost-effective, rapid and simple. All the five SNPs can be analyzed separately or in combination
- …