539 research outputs found

    RR Lyrae stars in eclipsing systems - historical candidates

    Full text link
    Discovery of binary systems among RR Lyrae stars belongs to challenges of present astronomy. So far, none of classical RR Lyrae stars was clearly confirmed that it is a part of an eclipsing system. For this reason we studied two RR Lyrae stars, VX Her and RW Ari, in which changes assigned to eclipses were detected in sixties and seventies of the 20th century. In this paper our preliminary results based on analysis of new photometric measurements are presented as well as the results from the detailed analysis of original measurements. A new possible eclipsing system, RZ Cet was identified in the archive data. Our analysis rather indicates errors in measurements and reductions of the old data than real changes for all three stars.Comment: 6 pages, 4 figures, submitted to Proceedings of the 47th Conference on Variable Stars Researc

    MicroRNA expression profiling of single whole embryonic stem cells

    Get PDF
    MicroRNAs (miRNAs) are a class of 17–25 nt non-coding RNAs that have been shown to have critical functions in a wide variety of biological processes during development. Recently developed miRNA microarray techniques have helped to accelerate research on miRNAs. However, in some instances there is only a limited amount of material available for analysis, which requires more sensitive techniques that can preferably work on single cells. Here we demonstrate that it is possible to analyse miRNA in single cells by using a real-time PCR-based 220-plex miRNA expression profiling method. Development of this technique will greatly facilitate miRNA-related research on cells, such as the founder population of primordial germ cells where rapid and dynamic changes occur in a few cells, and for analysing heterogeneous population of cells. In these and similar cases, our method of single cell analysis is critical for elucidating the diverse roles of miRNAs

    Numerical benchmark campaign of cost action tu1404 – microstructural modelling

    Get PDF
    This paper presents the results of the numerical benchmark campaign on modelling of hydration and microstructure development of cementitious materials. This numerical benchmark was performed in the scope of COST Action TU1404 “Towards the next generation of standards for service life of cement-based materials and structures”. Seven modelling groups took part in the campaign applying different models for prediction of mechanical properties (elastic moduli or compressive strength) in cement pastes and mortars. The simulations were based on published experimental data. The experimental data (both input and results used for validation) were open to the participants. The purpose of the benchmark campaign was to identify the needs of different models in terms of input experimental data, verify predictive potential of the models and finally to provide reference cases for new models in the future. The results of the benchmark show that a relatively high scatter in the predictions can arise between different models, in particular at early ages (e.g. elastic Young’s modulus predicted at 1 d in the range 6-20 GPa), while it reduces at later age, providing relatively good agreement with experimental data. Even though the input data was based on a single experimental dataset, the large differences between the results of the different models were found to be caused by distinct assumed properties for the individual phases at the microstructural level, mainly because of the scatter in the nanoindentation-derived properties of the C-S-H phase.</jats:p

    MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis.

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are critical regulators of transcriptional and post-transcriptional gene silencing, which are involved in multiple developmental processes in many organisms. Apart from miRNAs, mouse germ cells express another type of small RNA, piwi-interacting RNAs (piRNAs). Although it has been clear that piRNAs play a role in repression of retrotransposons during spermatogenesis, the function of miRNA in mouse germ cells has been unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we first revealed the expression pattern of miRNAs by using a real-time PCR-based 220-plex miRNA expression profiling method. During development of germ cells, miR-17-92 cluster, which is thought to promote cell cycling, and the ES cell-specific cluster encoding miR-290 to -295 (miR-290-295 cluster) were highly expressed in primordial germ cells (PGCs) and spermatogonia. A set of miRNAs was developmentally regulated. We next analysed function of miRNA biogenesis in germ cell development by using conditional Dicer-knockout mice in which Dicer gene was deleted specifically in the germ cells. Dicer-deleted PGCs and spermatogonia exhibited poor proliferation. Retrotransposon activity was unexpectedly suppressed in Dicer-deleted PGCs, but not affected in the spermatogonia. In Dicer-deleted testis, spermatogenesis was retarded at an early stage when proliferation and/or early differentiation. Additionally, we analysed spermatogenesis in conditional Argonaute2-deficient mice. In contrast to Dicer-deficient testis, spermatogenesis in Argonaute2-deficient testis was indistinguishable from that in wild type. CONCLUSION/SIGNIFICANCE: These results illustrate that miRNAs are important for the proliferation of PGCs and spermatogonia, but dispensable for the repression of retrotransposons in developing germ cells. Consistently, miRNAs promoting cell cycling are highly expressed in PGCs and spermatogonia. Furthermore, based on normal spermatogenesis in Argonaute2-deficient testis, the critical function of Dicer in spermatogenesis is independent of Argonaute2

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    Time-resolved XUV Opacity Measurements of Warm-Dense Aluminium

    Full text link
    The free-free opacity in plasmas is fundamental to our understanding of energy transport in stellar interiors and for inertial confinement fusion research. However, theoretical predictions in the challenging dense plasma regime are conflicting and there is a dearth of accurate experimental data to allow for direct model validation. Here we present time-resolved transmission measurements in solid-density Al heated by an XUV free-electron laser. We use a novel functional optimization approach to extract the temperature-dependent absorption coefficient directly from an oversampled pool of single-shot measurements, and find a pronounced enhancement of the opacity as the plasma is heated to temperatures of order the Fermi energy. Plasma heating and opacity-enhancement is observed on ultrafast time scales, within the duration of the femtosecond XUV pulse. We attribute further rises in the opacity on ps timescales to melt and the formation of warm-dense matter

    Measurements of Dihadron Correlations Relative to the Event Plane in Au+Au Collisions at sNN=200\sqrt{s_{NN}}=200 GeV

    Full text link
    Dihadron azimuthal correlations containing a high transverse momentum (\pt) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium, i.e. jet-quenching. Previous measurements revealed a strong modification to dihadron azimuthal correlations in Au+Au collisions with respect to \pp\ and \dAu\ collisions. The modification increases with the collision centrality, suggesting a path-length dependence to the jet-quenching effect. This paper reports STAR measurements of dihadron azimuthal correlations in mid-central (20-60\%) Au+Au collisions at \snn=200~GeV as a function of the trigger particle's azimuthal angle relative to the event plane, \phis=|\phit-\psiEP|. The azimuthal correlation is studied as a function of both the trigger and associated particle \pt. The subtractions of the combinatorial background and anisotropic flow, assuming Zero Yield At Minimum (\zyam), are described. The away-side correlation is strongly modified, and the modification varies with \phis, which is expected to be related to the path-length that the away-side parton traverses. The pseudo-rapidity (\deta) dependence of the near-side correlation, sensitive to long range \deta correlations (the ridge), is also investigated. The ridge and jet-like components of the near-side correlation are studied as a function of \phis. The ridge appears to drop with increasing \phis while the jet-like component remains approximately constant. ...Comment: 50 pages, 39 figures, 6 table

    Measurements of D0D^{0} and DD^{*} Production in pp + pp Collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We report measurements of charmed-hadron (D0D^{0}, DD^{*}) production cross sections at mid-rapidity in pp + pp collisions at a center-of-mass energy of 200 GeV by the STAR experiment. Charmed hadrons were reconstructed via the hadronic decays D0Kπ+D^{0}\rightarrow K^{-}\pi^{+}, D+D0π+Kπ+π+D^{*+}\rightarrow D^{0}\pi^{+}\rightarrow K^{-}\pi^{+}\pi^{+} and their charge conjugates, covering the pTp_T range of 0.6-2.0 GeV/cc and 2.0-6.0 GeV/cc for D0D^{0} and D+D^{*+}, respectively. From this analysis, the charm-pair production cross section at mid-rapidity is dσ/dyy=0ccˉd\sigma/dy|_{y=0}^{c\bar{c}} = 170 ±\pm 45 (stat.) 59+38^{+38}_{-59} (sys.) μ\mub. The extracted charm-pair cross section is compared to perturbative QCD calculations. The transverse momentum differential cross section is found to be consistent with the upper bound of a Fixed-Order Next-to-Leading Logarithm calculation.Comment: 15 pages, 16 figures. Revised version submitted to Phys. Rev.
    corecore