86 research outputs found

    Gravitational Collapse of a Radiating Shell

    Full text link
    We study the collapse of a self-gravitating and radiating shell. Matter constituting the shell is quantized and the construction is viewed as a semiclassical model of possible black hole formation. It is shown that the shell internal degrees of freedom are excited by the quantum non-adiabaticity of the collapse and, consequently, on coupling them to a massless scalar field, the collapsing matter emits a burst of coherent (thermal) radiation.Comment: LaTeX, 34 pages, 21 EPS figures include

    Black Holes in Magnetic Monopoles

    Full text link
    We study magnetically charged classical solutions of a spontaneously broken gauge theory interacting with gravity. We show that nonsingular monopole solutions exist only if the Higgs vacuum expectation value vv is less than or equal to a critical value vcrv_{cr}, which is of the order of the Planck mass. In the limiting case the monopole becomes a black hole, with the region outside the horizon described by the critical Reissner-Nordstrom solution. For v<vcrv<v_{cr}, we find additional solutions which are singular at r=0r=0, but which have this singularity hidden within a horizon. These have nontrivial matter fields outside the horizon, and may be interpreted as small black holes lying within a magnetic monopole. The nature of these solutions as a function of vv and of the total mass MM and their relation to the Reissner-Nordstrom solutions is discussed.Comment: (28 pages

    Relational time in generally covariant quantum systems: four models

    Get PDF
    We analize the relational quantum evolution of generally covariant systems in terms of Rovelli's evolving constants of motion and the generalized Heisenberg picture. In order to have a well defined evolution, and a consistent quantum theory, evolving constants must be self-adjoint operators. We show that this condition imposes strong restrictions to the choices of the clock variables. We analize four cases. The first one is non- relativistic quantum mechanics in parametrized form. We show that, for the free particle case, the standard choice of time is the only one leading to self-adjoint evolving constants. Secondly, we study the relativistic case. We show that the resulting quantum theory is the free particle representation of the Klein Gordon equation in which the position is a perfectly well defined quantum observable. The admissible choices of clock variables are the ones leading to space-like simultaneity surfaces. In order to mimic the structure of General Relativity we study the SL(2R) model with two Hamiltonian constraints. The evolving constants depend in this case on three independent variables. We show that it is possible to find clock variables and inner products leading to a consistent quantum theory. Finally, we discuss the quantization of a constrained model having a compact constraint surface. All the models considered may be consistently quantized, although some of them do not admit any time choice such that the equal time surfaces are transversal to the orbits.Comment: 18 pages, revtex fil

    Exact Dirac Quantization of All 2-D Dilaton Gravity Theories

    Full text link
    The most general dilaton gravity theory in 2 spacetime dimensions is considered. A Hamiltonian analysis is performed and the reduced phase space, which is two dimensional, is explicitly constructed in a suitable parametrization of the fields. The theory is then quantized via the Dirac method in a functional Schrodinger representation. The quantum constraints are solved exactly to yield the (spatial) diffeomorphism invariant quantum wave functional for all theories considered. This wave function depends explicitly on the (single) configuration space coordinate as well as on the imbedding of space into spacetime (i.e. on the choice of time).Comment: 11 pages, LateX, (Equations (36) and (37) have been corrected and the discussion of them modified.

    On the Schroedinger Representation for a Scalar Field on Curved Spacetime

    Get PDF
    It is generally known that linear (free) field theories are one of the few QFT that are exactly soluble. In the Schroedinger functional description of a scalar field on flat Minkowski spacetime and for flat embeddings, it is known that the usual Fock representation is described by a Gaussian measure. In this paper, arbitrary globally hyperbolic space-times and embeddings of the Cauchy surface are considered. The classical structures relevant for quantization are used for constructing the Schroedinger representation in the general case. It is shown that in this case, the measure is also Gaussian. Possible implications for the program of canonical quantization of midisuperspace models are pointed out.Comment: 11 pages, Revtex, no figure

    The Semi-Classical Back Reaction to Black Hole Evaporation

    Get PDF
    The semi-classical back reaction to black hole evaporation (wherein the renormalized energy momentum tensor is taken as source of Einstein's equations) is analyzed in detail. It is proven that the mass of a Schwarzshild black hole decreases according to Hawking's law dM/dt=C/M2dM/dt = - C/ M^2 where CC is a constant of order one and that the particles are emitted with a thermal spectrum at temperature 1/8πM(t)1/8\pi M(t).Comment: 10 pages, LATE

    Adiabatic Invariant Treatment of a Collapsing Sphere of Quantized Dust

    Get PDF
    The semiclassical collapse of a sphere of quantized dust is studied. A Born-Oppenheimer decomposition is performed for the wave function of the system and the semiclassical limit is considered for the gravitational part. The method of adiabatic invariants for time dependent Hamiltonians is then employed to find (approximate) solutions to the quantum dust equations of motions. This allows us to obtain corrections to the adiabatic approximation of the dust states associated with the time evolution of the metric. The diverse non-adiabatic corrections are generally associated with particle (dust) creation and related fluctuations. The back-reaction due to the dominant contribution to particle creation is estimated and seen to slow-down the collapse.Comment: LaTeX, 16 pages, no figures, final version to appear in Class. and Quantum Gravit

    Surface gravity in dynamical spherically symmetric spacetimes

    Get PDF
    A definition of surface gravity at the apparent horizon of dynamical spherically symmetric spacetimes is proposed. It is based on a unique foliation by ingoing null hypersurfaces. The function parametrizing the hypersurfaces can be interpreted as the phase of a light wave uniformly emitted by some far-away static observer. The definition gives back the accepted value of surface gravity in the static case by virtue of its nonlocal character. Although the definition is motivated by the behavior of outgoing null rays, it turns out that there is a simple connection between the generalized surface gravity, the acceleration of any radially moving observer, and the observed frequency change of the infalling light signal. In particular, this gives a practical and simple method of how any geodesic observer can determine surface gravity by measuring only the redshift of the infalling light wave. The surface gravity can be expressed as an integral of matter field quantities along an ingoing null line, which shows that it is a continuous function along the apparent horizon. A formula for the area change of the apparent horizon is presented, and the possibility of thermodynamical interpretation is discussed. Finally, concrete expressions of surface gravity are given for a number of four-dimensional and two-dimensional dynamical black hole solutions.Comment: 35 pages, revtex, 3 figures included using eps
    corecore