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VALIDATION TESTING OF THE EERC PILOT-SCALE
CIRCULATING FLUIDIZEG-BED COMBUSTOR USING SALT CREEK COAL

1.0 INTRODUCTION

Project CFB was initiated in May 1988 under funding provided from the
U.S. Department of Energy (DOE), the Empire State Electric Energy Research
Corporation (ESEERCO), Northern States Power Company (NSP), the Electric Power
Research Institute (EPRI), Otter Tail Power Company, North Dakota Lignite
Research Council, ARCO Coal Company, TU Electric, Consolidated Edison of New
York, Premier Refractories and Chemicals, and the University of North Dakota
Energy and Environmental Research Center (EERC). The overall goal of the
project was to provide a technical basis for assessing tha economic and
environmental feasibility of circulating fluidized-bed combustion (CFBC)
technology, focusing on the effect of system configuration and coal properties
on performance. Other underlying goals of the program were to 1) design and
construct a CFBC test facility, thereby providing a test facility at an
independent laboratory; 2) demonstrate that the test unit is capable of
meeting the original design objectives; and 3) assess the ability of the unit
to provide scalable data. The purpose of this interim report is to present
data from validation testing to establish the scalability of data generated
from this unit.

The 110-MW CFBC at the Colorado Ute Nucla Station has been successfully
operating for the last several years. As it is one of EPRI’s demonstration
plants, EPRI was able to assemble a large data base characterizing the
performance of this unit. In addition, EPRI and Pyropower participated in
pilot plant testing in a pilot-scale CFBC in San Diego, CA. EERC obtained
samples of the same coal and limestone used by those organizations and has
operated its CFBC under similar operating conditions. This has provided the
opportunity to compare the performance of the EERC CFBC with both a utility-
scale plant and a vendor-operated pilot plant. Based on this comparison and
supported by the information presented in this report, EERC feels confident
that the 1-MWwn pilot-scale CFBC not only meets the original design objectives
of Project CFB, but it also provides data that is scalable to a full-scale
unit.

2.0 DESCRIPTION OF TEST FACILITIES
2.1 1-MWw CFBC Test Facility

A schematic of the overall circulating fluidized-bed combustion system
is shown in Figure 1. The overall system is divided up into the following
systems:

- Combustion Air System,

- Flue Gas System,

- Flue Gas Recirculation System,
- Ash-Fouling Section,

- Coal and Sorbent System,

- Combustor,

- Solids Recirculation System,

- Natural Gas-Fired Preheater,
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Combustor Heat Exchange System,
External Heat Exchange System, and
Flue Gas Cooling Water System.

A forced draft blower supplies the combustion air and secondary air to
the combustor. The combustion air heater is a shell and tube heat exchanger
that uses hot flue gas to preheat the combustion air before it enters the
combustor. Total combustion air flow is controlled by the amount of bypass
through the combustion air bypass valve located directly after the combustion
air heat exchanger. The secondary combustion air control valve determines the
ratio of combustion air above the distributor plate to the amount of
combustion air introduced into the combustor plenum below the distributor
plate. The secondary combustion air can be introduced through manifolds at
two different levels, located 5’°-9" and 10°-6" above the distributor plate in
Sections 2 and 3, respectively, of the combustor. There are four 3-inch
manual gate valves at each level used to select where secondary air is
introduced into the combustor.

Flue gas can be routed through any of three circuits, designated A for
the primary circuit and B and C for the others. Flue gas flow during this
test was entirely through Circuit A. Flue gas in Circuit A flows through the
center duct of the particulate collection device, the ash-fouling section, the
combustion air heater, an 18-inch cyclone, eight water-jacketed flue gas heat
exchangers, and finally through either the flue gas bypass, the baghouse, or
partially through a 10-inch cyclone. Circuits B and C, designed to be used
for testing at higher gas flow rates, have seven water-jacketed flue gas heat
exchangers and 14-inch cyclones for particulate collection. There are flow
control valves at the exit of both cyclones in Circuits B and C, as well as
gate-type isolation valves located at the entrance of Circuits B and C in the
combustor exit. Temperatures and pressures are monitored throughout each
circuit. The flue gas ducting for the three circuits combines and feeds into
the induced draft (ID) blower. The ID blower is controlled with an electronic
speed controller.

The flue gas recirculation blower is used to supply either air or flue
gas to the external heat exchanger (EHX) and to supply flue gas to the
combustor for flue gas recirculation testing. Manual gate valves before the
blower select either air or flue gas to the blower. Air was used as the
fluidiZzing gas during this testing.

Primary and secondary combustion air flow, fluidizing gas to the
external heat exchanger, combustor flue gas recirculation, and flue gas flow
rates are measured using orifice plates. Pressure transmitters and
thermocouples interface with the data acquisition/control system to record and
display the flow rates. Orifice differential and static pressures are also
monitered with magnehelic pressure gages.

The ash-fouling section is connected to the Duct A exit of the
particulate collection device. There are provisions for the installation of
probes to be used for measurement of potential slagging, ash deposition,
and/or ash fouliny that could occur in the convective pass of a circulating
fluidized-bed boiler.

The configurations of the coal and sorbent feed systems are the same.
The coal storage hopper capacity is about 3000 1bs, while the sorbent storage
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hopper capacity is about 500 1bs. Both have rotary valves below the storaaes
hoppers feeding into weigh hoppers suspended from electronic weigh cells.
Capacities of the coal and sorbent weigh hoppers are approximately 1000 and
500 1bs, respectively. At the bottom of the weigh hoppers, rotary valves,
controlled with electronic speed controllers, are used for controlling the
feed rates. At the exit of the weigh hopper rotary feed control valves, the
coal and sorbent feed into a 3-inch auger that conveys the coal and sorbent
mixture to the combustor. At this point, the mixture arops downward through a
3-inch pipe and feeds by gravity into the combustor.

The combustor is made up of a series of refractory-iined sections bolted
together. Each section has two inches of hard abrasion-resistant refractory
used in combination with seven inches of insulating refractory. The combustor
plenum section contains the primary combustion air entrance and a bed material
drain. A removable stainless steel nozzle distributor plate is installed
between the plenum and the first combustor section. The solids recirculation
return from the external heat exchanger enters the combustor at the first
combustor section (Section 1).  The next seven sections (Sections 2-8) each
have two doorways on opposite sides for the installation of either blank
refractory doors or heat exchange panels. At this time, eight of the possible
fourteen heat exchange panels are installed in the combustor, two each in
Sections 2 and 8, and none in section 5. Coal and sorbent feed enters the
combustor at Section 2, which also contains the first set of secondary
combustion air ports. The second set of four secondary combustion air ports
enters the combustor at Section 3. Section 9, the combustor exit, connects to
the particulate collection device. Thermocouple and pressure taps are present
in all of the combustor sections.

The refractory-lined components of the solids recirculation system
include the particulate collection device (PCD), the downcomer, and the
external heat exchanger (EHX). The PCD is divided by refractory walls into
three ducts. Duct A is in the center, with Ducts B and C on either side.
Ducts B and C were not used during this test burn. There are nine removable
refractory doors in the top of the collector, three in each duct. Chevrons
are installed in Duct A for the collection of solids entering from the
combustor exit. Solids captured in the PCD enter the downcomer and travel
downward into the EHX. Additionally, solids collected in the ash-fouling
section hopper and by the 18-inch cyclone also flow by gravity to the
downcomer.

The EHX has a plenum section where air or flue gas is introduced. A
removable stainless steel nozzle distributor plate is installed between the
plenum and the main section of the EHX. A natural gas-fired preheater,
described later, is attached to the top section of the EHX. Twenty U-shaped
stainless steel water-cooled heat exchanger tubes are installed in a removable
refractory-lined door in the EHX. There are thermocouples at the entrance and
exit of each duct of the PCD. There are %hermocouples and pressure taps
distributed along the length of the downcomer and in the external heat
exchanger.

The preheater combustion chamber is constructed with inner and outer
stainless steel shells. The natural gas-fired burner is bolted on top of the
preheater and fires downward. To maintain the inside metal surface of the
prehzater at an acceptable operational temperature, air is circulated through
a baffled cooling jacket. Cooling air enters at the top of the preheater and
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continues downward where it combines with the combustion gases at the bottom
nf the preheater transition cone. Preheater combustion air and the cooling
jacket air are supplied by the forced draft blower. A butterfly valve in the
4-inch supply line from the FD blower isolates the system when it is not being
used. There are butterfly valves in the combustion air and cooling air lines
for control purposes. There are also orifice plates in each line with
magnehelic pressure gages to monitor the flow rates. Gas flows to the natural
gas burner and pilot burner are controlled with flowmeters located in the
control room. There is also a flame safety system located in the control room
to shut off the flow of natural gas to the preheater if 1) a flame is not
present in the preheater, 2) combustion air is not being supplied to the
preheater or cooling jacket, or 3) the combustion air pressure is greater than
the natural gas pressure supplied to the preheater.

The water flow rate for all combustor heat exchangers is measured
individually by flowmeters and controlled by the globe valves installed above
the flowmeters in the panel boards. Total flow is measured by an in-line
turbine flowmeter with a bypass around it to allow for maintenance or repair
during operation. An air system is connected to the inlet manifolds of each
of the heat exchange panels. Air is used to cool the heat exchanger panels
during operation prior to the introduction of water. Each inlet manifold has
a selector switch to allow for the proper distribution of either air or water
through the manifold into the heat exchange tubes of the panels.

There are twenty heat exchangers installed in the external heat
exchanger door. Each U-shaped heat exchanger is constructed out of 1l-inch
stainless steel pipe with 1/2-inch stainless steel tubing at each end. Each
of eight circuits have a flowmeter and flow control valve mounted ir a panel
board to monitor and control the flow of water. Total flow is measured by an
in-line turbine flowmeter with a bypass around it to allow for maintenance or
repair during operation. Four different configurations are used, two using a
single tube, two with two tubes in series, two with three tubes in series, and
two with four heat exchange tubes connected in series. The temperature of the
water exiting each circuit is measured by thermococouples.

2.2 Flue Gas Emission Monitcring

Flue gas composition was monitored continuously throughout the run. The
results of these analyses were recorded by the data acquisition system, as
well as displayed in the control room. Table 1 shows the instrument and

technique used for each flue gas component. The flue gas analyzers were
calibrated about three times a day

2.3 Analytical Equipment and Procedures

The following equipment and procedures were used for the analysis of
coal, fly ash, Timestone, and bed material samples:

o Proximate analysis was performed to determine moisture, ash,
volatile matter, and fixed carbon levels of the coal. Moisiure,
ash, and volatile matter contents were determined with a Fischer
490 coal analyzer. Fixed carbon was calculated by subtracting the

summation of percentage moisture, ash, and volatile matter from
100.



TABLE 1

Flue Gas Analytical Instrumentation

Gas Component Analyzer Detection Technique
0, Beckman Paramagnetic
Mod=21 755 ‘
SO, Dupont Photometric light
Model 400 absorption
NO, Thermo-Electron Chemilumirescent in a
Series 10 photomultiplier tube
N.O Siemens Infrared
Ultramat 5E
co, Co, Beckman Infrared
Model 865

Ultimate analysis was performed to determine the carbon, hydroger,
nitrogen, sulfur, ash, and oxygen content of the coal. A Perkin-Elmer
Model 240 elemental analyzer was used to determine CHN concentrations.
Total sulfur content was determined with a Fischer sulfur analyzer.
Ash was determined as described above in the proximate analysis.
Oxygen was calcu‘ated by subtracting <-om 100 th2 sum of percentages
of moisture and the other components of the ultimate analysis.

Heating (calorific) value of the coal was measured by ASTM Method D
2015-77 using a Parr adiabatic calorimeter and master controller.

Particle-size distributions of the coal, limestone, bed material,
downcomer material, and baghouse ash were determined by sieve analysis
according to ASTM Method D 410-38 utilizing U.S. standard screens.

Wet sieve, Malvern (particle-size distribution by laser light

scattering), and Coulter Counter analyses were also performed on the
ash and limestone.

Major mineral oxides (A1, Si, Na, Mg, Ca, P, K, Fe, Ti, and S) were
determined by x-ray fluorescence using a Kevex 0700 x-ray
spectrometer.

The amount of carbonate (uncalcined limestone) in fly ash samples was
determined by ASTM Method D 1756-62.

3.0 TEST MATRIX

The matrix of test parameters is shown in Table 2. The calcium-to-
sulfur ratio shown in the table includes calcium in the coal as well as in the
limestore. Test 1 was performed at full load with no limestone addition to
establish baseline sulfur emission data for the Salt Creek coal. Test 2 is a
full load test with the addition of limestone for sulfur capture. Tests 3 and
4 were partial load tests, based on coal feed rate. In both partial load

$nnd o b + + A £3~3a] 3 . .
tests, the temperature and superficial gas velocity were allowed to decrease,

[PV BV} o) v2 |
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TABLE 2

Test Parameters for Salt Creek Coal on CFBC

Velocity

Test # Temperature (°F) Load (%) Ca/S Excess Air (%) PA/SA (ft/sec)
1 1616 100 0.54 20 54:46 16
2 1616 100 2.04 20 54:46 16
3 dek 75 2.04 20 56:44 *%
4 *% 50 2.04 30 ok *%
5 1475 100 1.54 45 70:30 16
6 1475 100 1.54 15 50:50 16
7 1625 100 1.54 15 70:30 16
8 1625 100 1.54 45 50:50 16
9 1625 100 3.54 45 70:30 16
10 1625 100 3.54 15 50:50 16
11 1475 100 3.54 15 70:30 15
12 1475 100 3.54 45 50:50 16

the excess air was not controlled, and the total heat-transfer surface in the
combustor and external heat exchanger was held ccnstant.

Tests 5 through 12 were all full load tests. Temperature, Ca/S ratio,
excess air level, and primary-to-secondary air split were varied to determine
“their effects on flue gas emissions and combustion efficiency. 'High and Tow
values of each parameter were tested; significant effects of any parameter
will suggest more extensive testing of that parameter at a later date.

4.0 COAL AND LIMESTONE PROPERTIES

Salt Creek coal and limestone were provided by EPRI. The coal was
crushed and sized to -1/4". A sample of the coal was taken during crushing
and grinding, and samples were obtained during each test period. These
samples were submitted for proximate, ultimate, and sieve analysis of the
fuel, and determination of the major mineral oxides in the fuel ash were by
x-ray fluorescence. Table 3 lists the results of the coal, mineral, and
computer-controlled scanning electroen microscope (CCSEM) analyses for each
test period. The meisture ranged from 6.8 to 8.2%; the ash content ranged
from 16.9 to 20.2%. The heating value, which ranged from 9976 to 10,563
Btu/1b for the EERC tests, was a bit lower than the 11,100 Btu/1b observed at

the Nucla station. The average particle-size distribution of the coal is
shown in Figure 2.

Table 3 shows values for sulfur in the coal, ranging from 0.40% to
0.50%, and adjusted sulfur in the coal, ranging from 0.49% to 0.57%. The
adjustment was made for two reasons: first, the original sulfur levels were
significantly lower than the average 0.54% sulfur in the coal at the Nucla
station, and second, the original sulfur values were not consistent with the
sulfur retention values calculated during the tests. The sulfur emissions
from Test 1, with no limestone feed, were used as the baseline to determine
what the sulfur content should be; sulfur was adjusted upward until the
calculated sulfur retention for Test 1 was greater than zero, then the sulfur

7
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Potassium, K,0

Phosphorous, P,0,
Sulfur, SO,

0.96

(continued)

0.8 0.7 1.3

1.2

228 10,307 10,175 10,544 10,279 10,274

1.0 0.9 0.9 0.5 1.0 1.2
9976 10,421 10,258 10,445 10,

1.1

High Heating Value (moisture-free), Btu/lb
10,563 10,013 10,084




TABLE 3 (continued)

Coal Analyses (CFB-SC1-0191)
Mineral Analysis (wt%)

Size Fraction, microns

1.0 2.2 4.6 10.0 22.0 " 46.0
to to to to to to
, 2.2 4.6 10.0 22.0 46.0 100.0 Totals
Quartz 0.1 0.2 1.0 1.4 2.0 3.2 8.0
Iron Oxide 0.0 0.0 0.0 0.2 0.1 0.5 0.8
Rutile 0.0 0.0 0.0 0.0 0.0 0.0 0.1
Alumina 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Calcite 0.0 0.0 0.0 0.1 0.1 0.0 0.3
Dolomite 0.0 0.0 0.0 0.1 0.1 0.0 0.2
Ankerite 0.0 0.0 0.0 0.1 0.0 0.0 0.1
Kaolinite 1.1 5.2 20.1 6.6 12.0 13.3 58.4
Montmorillonite 0.4 1.2 1.6 1.7 3.3 3.1 11.3
K A1-Silicate 0.1 0.1 0.1 0.2 1.0 ~ 0.2 1.6
Ca Al-Silicate 0.0 0.1 0.0 0.0 0.0 0.0 0.1
Aluminosilicate 0.1 0.1 0.2 0.6 1.4 4.9 7.4
Mixed Al1-Silicate 0.1 0.1 0.0 n.1 0.1 0.0 0.5
Pyrite 0.0 0.0 0.0 0.0 0.0 0.0 0.1
Apatite 0.0 0.0 0.0 0.1 0.0 0.0 0.1
Gypsum/Al-Silicate 0.0 0.1 0.0 0.0 0.0 0.0 0.1
Si-Rich 0.1 0.2 0.0 0.8 1.9 3.1 6.1
Ca-Rich 0.0 0.0 0.2 0.0 0.1 0.0 0.4
Unknown 0.3 0.4 0.6 0.6 1.5 1.2 4.6
Total 2.4 7.8 23.9 12.7 23.8 29.4 100.0

content for the rest of the tests was adjusted upward by the same percentage.
The reason for the inaccurate sulfur analyses is under investigation.

The average elemental analysis for the limestone is shown in Table 4.
The Timestone used for these tests had a calcium content of 37% and no
magnesium, compared to 36.3% calcium and 0.53% magnesium in the limestone used
during the Nucla testing. The limestone was crushed and sized at the Nucla
station prior to shipping to EERC. The limestone particle-size distributions
from test to test were consistent; however, there was a great deal of
variability in particle size depending on the method of analysis, as shown in
Figure 3. The Timestone was extremely cohesive and tended to agglomerate when
subjected to vibration, such as that used in the sieve analyses.
Subsequently, both Malvern and Coulter Counter tests were performed, and
uniform results were obtained which were more consistent with the visual
inspection of the limestone. The 1imestone used at Colorado Ute was sized by
dry sieve analysis; Figure 3 shows the size distribution similarity between
the EERC and Colorado Ute limestones.
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TABLE 4
Average Limestone Analysis (% ELEMENTAL)

Component Average
Silica 1.8
Aluminum 0.3
Iron 0.2
Calcium 37.0
Magnesium 0.0
Sulfur 0.1

5.0 OPERATIONAL PERFORMANCE

5.1 Summary of Results

Upon completion of the run, data for each of the steady-state test
periods were averaged. A summary of the process data for each test is
presented in Table 5. The twelve test periods correspond to those presented
in the test matrix listed in Table 2.

In general, the unit performed within the parameters specified in the
original test plan. One notable exception was the actual calcium-to-sulfur
ratio which was calculated at the conclusion of the run. The calcium-to-
sulfur ratio was typically higher than specified in the test matrix. This can
be attributed to limestone feed problems which will be discussed, along with
specific results, in subsequent sections.

5.2 General Operability

The unit performed well during testing of the Salt Creek coal. No major
problems were encountered with the unit or auxiliary equipment. The coal was
crushed and sized to -1/4 inch and placed into storage hoppers. A rotary
valve was used to transfer the coal from the storage hopper into the
1000-pound main feed hopper as needed. The feed hopper was suspended from a
load cell to determine the coal feed rate. A second rotary valve was used to
feed and meter the coal to a horizontal screw feeder. In addition to
controlling the coal feed rate, the rotary valves serve to isolate the feed
hoppers from system pressure in the combustor. Isolation is necessary to
prevent possible ignition of the coal before it reaches the combustor, as well
as to maintain stable feed rates and weigh cell measurements. The horizontal
screw feeder conveyed the feed material to a section of 3" pipe, vertical at
the top and entering the combustor at an angle of approximately 30° from
vertical. Coal and limestone feed by gravity through this pipe. An air lance

was used to assist the flow of material through the angled section of the
gravity feed leg.

The limestone, crushed and sized prior to shipping and supplied along
with the Salt Creek coal, was transferred to a 500-pound capacity storage
hopper. The configuration of the Timestone feed system was identical to the
fuel feed side, and metered limestone flowed by gravity to the horizontal
screw feeder where it combined with the feed coal. Some minor problems were
encountered with the screw feeder due to binding. Additional minor problems

11
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arose due to blockage of feed material in the gravity feed leg beneath the
auger. A somewhat more persistent problem was encountered with the flow of
limestone out of the feed hopper. The crushed limestone had a very high angle
of repose which caused frequent "rat-holing" and subsequent loss of sorbent
feed. As a result, considerable attention had to be paid to the limestone
feed hopper to maintain a continuous supply of sorbent to the combustor.

it is not anticipated that there would be any major coal feed problems
unless there were significant differences in the surface moisture of the coal
tested at EERC and that used at a commercial plant. Limestone feed may
present some problems at a commercial CFB using a feed system similar to that
employed at FERC. However, it is believed that minor design modifications

would alleviate the limestone feed problems experienced during the EERC pilot
plant test run.

One additional problem which surfaced during the course of testing was
blinding of the baghouse bags over time. The combination of a relatively
thick layer of ash on the baghouse bags with a high baghouse static pressure
resulted in deformation of some of the bag cages and the development uf a hole
in at least one bag. The observed high pressure drops acr¢ss the baghouse may
be a function of the ash, considering the cohesive nature of the material.
This could present problems in a commercial plant, but it is believed that
minor adjustments in cage design and on-line bag cleaning procedures may
alleviate the baghouse problems encountered during pilot-scale testing at
EERC. Another area of concern with regards to the fly ash is the design of
commercial ash-handling systems. Particular attention must be paid to the
design of fly ash hoppers to compensate for the cohesiveness of the ash and
allow for adequate removal during operation.

The pilot-scale CFB has nineteen thermocouples located along the length
of the combustor in nine sections. Also, there are five thermocouples inplace
along the length of the downcomer. During full-load testing, the temperature
distribution throughout the combustor and downcomer was very uniform and, on
the average, did not vary by more than 100°F, indicating good solids
recirculation within the system. During partial load tests, the combustor
temperature distribution remained fairly uniform. However, temperatures in
the downcomer were up to 200°F lower ihan the highest combustor temperatures,

as would be expected due to proportional heat loss through refractory-lined
walls.

5.3 Collector Performance

Chevron collectors with internally sloped deflector plates were used in
the particulate collection device during this test. The chevron collectors
feature a geometry that helps force the particulate to the back of the
collectors where there is an opening all the way down the back of the
collector to allow the particulates to flow downward into the collection
hoppers that feed into the downcomer. The particulate collection device
housing the chevron collectors has three ducts into which the combustor exits.
The main middle duct used during this test is referred to as Duct A while the
outside two ducts are referred to as Ducts B and C. Ducts B and C can be
brought on-line, if required, for higher velocity testing than is currently
being conducted. Three stages of collectors were utilized in Duct A during
this test. The first two stages are intended to capture the majority of
particulate, while the third stage was designed with the intention of
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capturing smaller particles. The first stage used four chevron collectors,
two in each row. The second stage had a total of twelve chevron collectors,
four in each row. The third stage had a single row of four chevron collectors
using nozzles to accelerate the flow into them.

At the conclusion of the two weeks of testing, the three sets of
collectors were removed for inspection. It appeared that all four collectors
in stage one had been operating properly. In the second stage, the four
collectors in the back row were plugged off with fine bed material, while the
first two rows appeared to have been operating with some slight blockages at
their top and bottom. The third stage of collectors were entirely plugged
with bed material fines. The outer two nozzles on stage three had also
warped, blocking much of the flow to these two collectors. It appears that a
combination of factors caused plugging of the back row of stage two and all of
the stage three collectors. All of these collectors are about half the size
of the ones used in stage one, resulting in a smaller exit from the chevron
collector into the collection hoppers. The collectors that definitely plugged
up exit onto the back slope of the hopper they are over, allowing less volume
for solids to flow through at their exit. Stage three nozzles forced all of
the fines into these collectors, probably overloading this stage with more
fines than they could handle.

Operational temperatures in the downcomer remained high throughout
testing, indicating good collector performance even though approximately half
of the chevron collectors were plugged for, at least, the latter portion of
testing. Use of chevron collectors appears to have rasulted in a collector
that more closely simulates the operation of a large cyclone collector used
for a CFB utility or industrial boiler. Additional testing should be

conducted to better characterize the actual collection performance of the
system.

The current design is not forgiving of the large amount of fines that
were traveling through the system due to the addition of recycling the catch
from the cyclone. Some of the plugging problems encountered might also have
been more specific to the limestone used for this test, since the limestone
was a smaller size than had been originally anticipated for operation with
this pilot facility, and was extremely cohesive. To alleviate some of these
problems, it is planned to replace the smaller chevrons previously used in
stages two and three with larger chevron collecters similar to the stage one
chevrons, increase the slope of the defector plates in the new collectors,
increase the size of their back opening, and make allowances for chevron
collectors that have their exits directly over the hopper side walls.

No problems have been encountered with the durability of the chevron
collectors. They experienced more than 200 hours of high-temperature exposure
at temperatures averaging approximately 1500°F and, on occasion, temperatures
approaching 1700°F for short durations of a couple hours. The material of
construction is 304 stainless steel. No apparent warpage is present, with
many of the sharp edges only slightly dulled. The only damage that occurred
was to the one-eighth-inch stainiess steel sheet that was used to construct
the nozzles for the third stage. This appears to be due to a combination of
expansion and inadequate strength.
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5.4 Recirculation Rates and Size Distributions

The solids recirculation rate was determined by calculating the heat
balance around the external heat exchanger. The average solids recirculation
rates for each test are shown in Table 6. While a Tot of variability was
evident in the calculated rate, the recirculation ratio was generally within
the typical range of 40 to 80. The recirculation ratio is the ratio of solids
recirculation rate to coal and sorbent feed rate. Some of the recirculation
rates in Table 6 may appear quite low, while the corresponding recirculation
ratio is relatively high. Test 1 had a very high recirculation ratio because
no limestone was being fed during that test; consequently, the solids feed
rate was lower than in the other tests. Test 4 had low coal and sorbent feed
rates to achieve the 55% load condition; however, the low superficial gas
velocity in the combustor produced a very low recirculation rate, with a
correspondingly low recirculation ratio.

The cyclone collection efficiency for this unit was very good. The
higher the cyclone efficiency, the greater the proportion of material that
must be drained from the combustor bed as opposed to fly ash collected in the
baghouse. In a commercial combustor, a cyclone collection efficiency of 99.0
to 99.5% or more is required to maintain sufficient solids in the system for
stable operation. Consistency in the sulfur emissions, heat-transfer
coefficient, and the temperature distribution in the combustor, downcomer, and

external heat exchanger indicates uniform mixing and solids dist+ibution
throughout the system.

The particle-size distributions throughout the run were fairly
consistent. Figure 4 shows the particle-size distribution in the downcomer
for Test 1, Test 4, and the average of the remaining tests which were very
similar. Test 1 had proportionally larger particles in the downcomer because
it was performed early in the run and without limestone addition. Therefore,
the bed was composed primarily of coal ash and relatively large start-up sand.
Limestone was fed during Tests 2 through 12, which resulted in progressively
smaller bed particle sizes as the bed turned over from predominantly silica
sand and coal ash, to limestone and coal ash. The low velocity of Test 4
rrevented larger particles from being carried out of the combustor, giving the
smaller particle size shown in Figure 4. Figure 5 shows the particle sizes
found in the combustor, downcomer, and baghouse during Tests 2 and 4.

5.5 Bottom Ash/Total Ash Split

An ash balance for each test period, along with averages for the entire
run, is given in Table 7. Ash input to the system was composed of calculated
quantities of coal ash and limestone ash. The limestone-derived ash was
further broken down into estimates of the sorbent which either was calcined or
had undergone sulfation. The output of ash from the CFB system was measured
values of bottom ash (combustor and downcomer bed material), ash removed from
the 18" cyclone, and baghouse ash (fly ash).

The bottom ash and cyclone ash outputs are reported as the difference
between the amount of material removed and the amount of material added back
to the system to maintain a good solids inventory. The negative output values

of bottom ash and cyclone ash in Tests 1 and 4, respectively, are a result of
this calculation method.
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The ratios of bottom ash-to-total ash, as well as the percent closure,
were calculated and are included in Table 7. The average closure for the
entire run was about 78%, but increased to near 90% with Test 1 taken out of
the average. The bottom ash-to-total ash split averaged approximately 59% for
the run and varied from about 29% to 80%. Operation of the pilot plant at
reduced load did not significantly affect the ash split. The problems
encountered with fly ash cohesiveness may explain the high bottom ash-to-total
ash ratios reported. The bottom ash-to-toal ash was calculated as the total
ash input minus fly ash divided by the total ash. It is believed that
significant quantities of fly ash were adhering to the baghouse bags and
bottom hopper during various tests and may not have been properly accounted
for during the run. When calculated as total ash minus bottom ash divided by
total ash, a much lower bottom ash-to-total ash is indicated. The run average
calculated by this method is 7.2%, and the average without test 1 is 15%.
These numbers may be more representative of the ash split. More care must be
taken in future tests to ensure a good ash balance closure.

6.0 THERMAL PERFORMANCE
6.1 Energy and Material Balances

The fuel, air, and flue gas balances were calculated, and the results
are presented in Tables 8, 9, and 10, respectively. The theoretical fuel feed
rate was calculated using actual fuel characteristics and measured 0, and CO,
concentrations. The theoretical air flow rate and flue gas rates were
calculated using the actual coal feed rate and excess air levels. The
measured fuel feed rates were all slightly higher than the calculated values,
while the measured air flow rates were all Tower than the calculated values.
In both cases, the error was greatest in Test 6.

The energy balances for the twelve tests are presented in Table 11, both
in Btu/hr and as percentages. The energy input was made up of the energy
potential of the fuel, the primary and secondary combustion air, the external
heat exchanger fluidizing air, and the energy released from the sulfation of
the sorbent. Measurable heat loss sources were the combustor heat exchange
doors, the external heat exchanger cooling coils, the flue gas, the unburned
carbon in the asn removed, and the energy absorbed during calcination of the
sorbent. The unmeasurable heat loss due to convection and radiation was
obtained by difference. Almost half of the heat was removed by the flue gas,
while 36% to 50% of the heat was removed through the combustor heat exchange
doors and external heat exchanger cooling coils. Average wall Tosses
accounted for about 11% of the total heat loss.

The material balances for the twelve test periods are shown in Table 12.

The material balance closures were generally good, with the greatest deviation
from complete closure occurring in Test 6 at 107.5%.

6.2 Combustion Efficiency

Combustion efficiencies for all twelve tests are shown in Table 13. The
combustion efficiency calculation is based on the amount of unburned carbon

removed in the bottom ash and fly ash as a function of the carbon input as
coal feed and bed material addition.
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TABLE 8

Fuel Balance

Test Number

1 2 3 4 5 6 7 8 9 10 11 12
Fuel Feed Rate (meas., 1b/hr) 226 239 204 133 213 258 237 208 208 245 263 215
Fuel Feed Rate (calc., 1b/hr) 226 234 203 131 204 242 226 204 204 234 253 202
Error (%) -0.1 2.1 0.6 1.1 4.1 6.2 4.5 2.2 2.0 4.6 3.5 5.8
Note: meas. = feed rate calculated by linear regression performed on coal feed hopper weight loss over time.

calc. = theoretical feed rate calculated on the basis of the coal analysis for each test period.
TABLE 9
Air Balance
Test Number

1 2 3 4 5 6 7 8 9 10 11 12
Air Flow Rate (meas., scfm) 523 519 457 373 555 518 498 516 535 516 541 533
Air Flow Rate (calc., scfm) 522 528 459 379 579 564 533 539 557 551 573 577
Error (%) 0.1 -1.9 -0.6 -1.6 -4.4 -9.0 -7.1 -43 -4.2 -6.7 -5.9 -8.2

Note:
assist air,

meas. = the sum of the primary and secondary combustion air flows, EHX air flow, and coal feed and downcomer

calc. = theoretical air flow calculated on the basis of the coal analysis and measured coal feed rate for

each test.

TABLE 10

Flue Gas Balance

Test Number

1 2 3 4 5 6 7 8 9 10 11 12

Flue Gas Flow Rate (meas., scfm) 484 497 436 412 600 490 474 520 503 520 620 601

Flue Gas Flow Rate (calc., scfm) 556 562 488 399 612 600 566 569 587 585 608 609

Error (%) -14.8 -13.0 -12.1 3.1 -2.0 -22.4 -19.4 -9.5 -16.7 -12.5 1.9 -1.3
Note: meas. = the flue gas flow measured during the run through an orifice located just upstream of the ID fan.
calc. = theoretical flue gas flow calculated on the basis of the coal analysis and actual coal feed rate

for each test.

The combustion efficiencies for Tests 1 through 4 are shown as a
function of bed temperature in Figure 6.
relatively Tow levels of excess air (21% - 24%), while the excess air in
Test 4 was 54%.

Tests 1, 2, and 3 were performed at

Tests 3 and 4 were low load tests, 85% and 55% respectively.

The high calculated combustion efficiency for Test 1 can be attributed in part

to the fact that no bottom ash was removed during the test, and the baghouse

discharge rate was relatively low. During this test the unit was operated
with a sand bed; limestone feed was not initiated until Test 2.

The expected trend of higher combustion efficiency with higher
temperature is not seen for the first 4 tests (see Figure 6). The average
superficial gas velocity for each test is given in Table 13.
4, the gas velocity was decreased from a nominal 16 ft/sec, to 13.9 and
10.0 ft/sec respectively. This impacts the system in two ways.
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solids residence times increase with the decrease in velocity. Gas residence
times are listed in Table 13. A second effect was a shift in particle-size
distribution. As shown in Figure 4, the size distvibution in the downcomer
and baghouse shifted to a smaller size for Tests 3 and 4. The increased gas
residence time and the decreased cut point caused an increase in carbon
burnout for Tests 3 and 4 that offset the expected temperature effects.

Figures 7 and 8 show the impacts of changing bed temperature and
velocity on carbon burnout. In Figure 7 the percentage of unburned carbon in
the bed material is plotted as a function of temperature. As expected, the
amount of unburned carbon increases as temperature decreases. This would tend
to indicate a poorer combustion efficiency at lower temperatures. The
opposite trend is noted with the baghouse catch; that is, the lTow temperature
tests have less unburned carbon in the baghouse catch than the high tempera-
ture tests. However, if one plots the unburned carbon in the baghouse catch
versus velocity as in Figure 8, it can be seen that as the velocity decreases
(increased residence time and decreased cut point), the amount of unburned
carbon decreases. This would indicate a higher combustion efficiency as
velocity decreases. The improved burnout at the lower velocities apparently
offset the poorer burnout caused by the lower temperature, with the net effect
being no significant difference in carbon burnout for the three load tests.

Figure 9 shows the efficiency for Tests 5 through 12 as a function of
temperature. Combustion efficiency increased with increasing bed temperature
and excess air level. The relatively high combustion efficiency in Test 12
may be the result of insufficient bag cleaning at the end of the test,
suggested by the low baghouse discharge rate for this test. Figures 10 and 11
show the amount of unburned carbon in the bed drain and baghouse catch as a
function of temperature. The percentage carbon in both the bed drain and
baghouse catch is higher at the lower temperatures and excess air levels.
This is different than that noted for Tests 2, 3, and 4, and reinforces the
previous observations of the effect of velocity on carbon burnout and overall
combustion efficiency.

6.3 Heat-Transfer Coefficient and Heat Flux

During testing, combustor heat exchange surface used for heat removal
included the doors in Sections 2, 3, 4, 6, 7 and 8. Flow rates and
temperatures of the cooling water used in these heat exchange surfaces was
monitored to allow calculation of heat-transfer coefficients and heat flux as
a function of position in the combustor. Tne average values of heat-transfer
coefficient and heat flux for each combustor section which contains one or
more heat exchange doors have been calculated for each of the twelve tests and
are presented in Tables 14 and 15. Table 16 presents the average heat-
transfer coefficient and heat flux for all twelve tests, along with the
average pressure drop across combustor Sections 2, 4, 6 and 8. This data is
also summarized in Table 6 to help facilitate comparison to test conditions.
The average heat flux for the Colorado Ute Nucla Station is in the range of
28,000 to 33,000 Btu/hr-ft® at full load, and 20,000 to 25,000 Btu/hr-ft* at
Tow load. For the twelve tests reported here, the heat flux ranged from

24,500 to 35,850 Btu/hr-ft® for full load tests and 18,030 Btu/hr-ft® at 55%
load.

One of the expected trends is the decrease in heat-transfer coefficient
and heat flux as a function of height (see Figures 12 and 13). The overall
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TABLE 16

Average Heat-Transfer Coefficient, Heat Flux, and Bed Density

dp H, Flux Bed Density
Section (in.H,0 col.) (Btu/hr-ft3-°F) (Btu/hr-ft?) (1bs/ft?)
2 38.6 30.6 38,900 40.32
4 3.2 18.9 24,300 1.67
6 1.5 19.0 24,400 0.78
8 0.2 18.4 22,400 0.10
1-8 44.2 20.7 26,400

mass density of bed material in the combustor decreases with combustor height.
The decrease in pressure drop with combustor height provides a measure of this
decrease in mass density. At the bottom of the combustor, below the secondary
air port, there is a relatively dense bed, and high heat fluxes and heat-
transfer coefficients similar to those of bubbling beds are present. In the
higher velocity region above the secondary air ports, the bed is less dense.
This transition from a dense to dilute bed is common for all CFBCs, irrespec-
tive of the type and location of secondary air ports, or if secondary air is
used at all. The transition point from dense to dilute bed will change some-
what, however, depending upon the design of the unit. The heat flux and heat-
transfer coefficients are expected to follow a similar trend for all units.

The impact of operating conditions on heat transfer can be seen by
comparing values from test to test. As load is decreased, the velocity also
decreases, causing a decrease in solids recirculation rate and a decrease in
the density within the upper regions of the bed. As expected, both the
combustor heat flux and heat-transfer coefficients decrease, as shown
graphically in Figures 12 and 13, respectively, for full and 55% load
situations. Another expected trend is the impact of operating temperature on
heat flux. As shown in Figure 14, the heat flux increases as the average-bed
temperature (driving force for heat transfer) increases. The heat-transfer
coefficient did not vary with temperature over this range of test conditions.

Other conditions appear to have smaller impacts on the heat flux and
heat-transfer coefficients. It should be noted that the differences measured
were within the standard deviation of the averages and, therefore, may not be
statistically significant. As other test runs are completed, similar data
will be compared to determine if the following effects are real or due to
random data scatter. As the Ca/S was increased from an average of 2.1 to 4.0,
the heat flux and heat-transfer coefficient decreased. It would be expected
that as the limestone feed rate increased, the amount of fine solids would
increase, thereby increasing the solids recirculation rate, and increase the
heat flux and heat-transfer coefficient. Therefore, this effect may be due to
random error in measurement, but will be investigated in future testing. The
other effect noted was a slight increase in the heat flux and heat-transfer
coefficient as the primary-to-total air split was increased from an average of
48% to 67%. This could be a real effect, resulting from more solids in the
primary zone being carried into the upper reaches of the combustor as the

amount of primary air increased. Higher velocities exist in the primary zone
at higher primary air ratios.
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7.0 ENVIRONMENTAL PERFORMANCE

The flue gas emissions for each test period are shown in Table 17.
Figure 15 shows the average emission levels at different load conditions.
Load was reduced by setting the coal feed to 85% or 55% of the full-load feed
rate. Heat exchange surfaces in the combustor and external heat exchanger
remained constant, so that the temperature in the partial-load conditions
dropped accordingly. Excess air was high (54%) during the 55% load test.
Furthermore, superficial gas velocity in the combustor decreased, as a result
of lower air flow rates and lower combustor temperatures. The N,0 emissions
were highest at the 55% load condition, as expected; the formation of N,0 is
inversely proportional to temperature and directly proportional to excess air.
NO, showed the opposite trend, but to a lesser degree. The SO, emissions were
lowest during the 85% load test, when the average temperature was 1559°F.
Calcium utilization was greatest at this temperature, as shown in Table 17.

7.1 SO, Emissions

Figure 16 shows SO, retention as a function of alkali-to-sulfur (A/S)
ratio for full load Tests 1, 2, and 10, presented as both alkali in the
limestone alone as well as total alkali content. These three tests were
performed at the same bed temperature, excess air level, and primary air
split. SO, retention increased with greater alkali addition. In order to
achieve 70% retention, an added A/S ratio of about 2.5 would be required at
these operating conditions. The average bed temperature of 1625°F used for
these tests is above the optimal temperature window for sulfur capture (1500°
to 1550°F). Therefore, lower add rates of sorbent would be needed to meet 70%
retention within the optimal sulfur capture window. About 7% to 10% of the
sulfur retention was due to the alkali inherent to the coal.

Figure 17 presents the sulfur retention as a function of total alkali-
to-sulfur ratio for all of the tests, with the exception of the 55% load test.
The increase in sulfur retention with increasing A/S ratio is evident. Also
important is the effect of temperature on sulfur retention. At a given A/S
ratio, the lowest retention was obtained at 1613°, higher at 1417°, and the
highest at 1559°F. This trend is as expected, as the optimal sulfur capture
is usually achieved in the range of 1500° to 1550°F. For future testing,
additional temperature tests would be desirable to identify the optimal
temperature and maximum sulfur retention for the test coal. The impact of

alkali-to-sulfur ratio and temperature on SO, emissions are shown in
Figure 18.

Figure 19 shows that the calcium utilization was greatest at a Tow
calcium-to-sulfur ratio, decreased as Ca/S ratio was increased to about 2.5,
then leveled off at a calcium utilization of about 25% with increasing Ca/S.
This is the normal trend for any calcium-based sulfur control system. At Tow
Ca/S ratios, only a portion of the sulfur is captured, so there is a
relatively high driving force. As the Ca/S ratio increases, more sulfur is
captured and less is available in the gas stream for capture, thereby reducing

the sulfur concentration driving force.
7.2 NO, Emissions

NO, emissions ranged from 31 to 216 ppm (0.04 to 0.35 1b/MM Btu), as
measured. NO, emissions are dependent upon several factors, including
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temperature, oxygen content, and alkali-to-sulfur ratio. Figure 20 shows some
of these effects. At low temperature and low excess air (oxygen content), the
NO, levels were predictably low. NO, increased with an increase in
temperature and/or an increase in excess air. High temperature and high
excess air produced the greatest NO, emissions. In each temperature-excess
air system, more NO, was released at the higher calcium-to-sulfur ratio.

These trends are similar to those produced in other FBC systems, in terms of
both bubbling and circulating designs.

7.3 N0 Emissions

N,0 emissions were greatest at low temperature, as shown in Figure 21.
The effect of excess air on N,0 emissions is negligible at high temperature
(greater than 1500°F); however, at lower temperature, the N,0 emissions are
significantly greater at the higher level of excess air. This trend is
evident at a temperature of approximately 1475°F in Figure 19, although the
test matrix did not include a low temperature (1350°F)-Tow excess air (20%)
operating condition to verify the trend. Measured values of N,0 ranged from

29 to 325 ppm (0.04 to 0.52 1b/MM Btu). Currently, there are no federal
standards controlling N,0 emissions.

7.4 CO Emissions

Table 17 indicated that the CO emissions from all tests were relatively
Tow (45 to 145 ppm). Figure 22 is a graph of the CO concentration corrected
to 3% 0, as a function of temperature which shows that the CO emissions were
greatest at low temperatures, as expected.

8.0 COMPARISON TO FULL SCALE
8.1 Heat Flux

The heat flux and heat-transfer coefficients are influenced primarily by
bed hydrodynamics. The solids recirculation rate, bed particle size and type,
velocity, and temperature all influence heat transfer in the CFBC. These
parameters can be, and were, duplicated fairly well in the EERC pilot plant,
as compared to the commercial plant. Therefore, one may expect the bed
hydrodynamics to be similar between the pilot- and full-scale units. However,
the impacts of a higher degree of wall effects for the smaller pilot-scale
unit and more pronounced circulation patterns for larger units is difficult to
assess. The relative degree of these differences and their importance in
process comparison between pilot and full scale is difficult to assess, and

further research is needed to quantify differences between pilot and full
scale.

A comparison of the heat flux data from the pilot- and full-scale plant
indicates that a reasonable assessment of heat flux can be measured in the
pilot-scale unit. The measured heat flux from the pilot-scale testing ranged
from 24,500 to 35,850 Btu/hr-ft® at full load conditions, with the variability
due to changes in operating conditions including bed temperature and primary-
to-total air split. At 55% load, the heat flux was only 18,030 Btu/hr-ftZ.
The measured heat flux from the Colorado Ute Nucla Station ranged from 28,000

to 33,000 Btu/hr-ft? at full load and 20,000 to 25,000 Btu/hr-ft? at part
load.
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8.2 Bed Temperature

The average bed temperature of the EERC combustor at full load is
similar to the full-load temperatures at both Nucla and Pyropower. Combustor
temperature distributions were also similar between the two pilot units as
shown in Figure 23. Partial load in all cases was achieved by reducing the
coal feed rate to a percentage of the full-load rate, while maintaining the
full-load heat-transfer surface configuration in the combustor. At partial-
load conditions, the EERC combustor operated at lower average combustor
temperature than either Nucla or Pyropower (Figure 24). The difference is due
to the use of an external heat exchanger in the EERC pilot plant. During the
55% load test, the heat-transfer coefficient in the combustor dropped from
21.0 to 14.4 Btu/hr-ft®-°F, while that in the external heat exchanger only
dropped from 105.8 to 96.5 Btu/hr-ft®>-°F, even though two of the three cooling

coils used in the full load test were taken off-line in the partial-load
tests.

8.3 Sorbent Performance

Some of the factors affecting sulfur capture in a fluidized-bed
combustor are temperature, reactivity and particle size of the sorbent,
adequate mixing of coal and sorbent, and residence time. In this comparison
between the full-scale Nucla station, the Pyropower pilot plant, and the EERC
pilot plant, the same coal and limestone were used, eliminating coal and
sorbent properties as variables. Maximum sulfur capture occurs at a
temperature of about 1550°F; the full-load tests performed at these facilities
had average combustor temperatures above 1610°F. Since increasing residence
time generally provides better sulfur capture, the full-scale plant, with its
taller combustion chamber and operating at similar gas velocity, would be
experted to achieve greater sulfur capture. However, pilot-scale units
typically have better mixing than full scale, suggesting a better sulfur
capture. The SO, retention as a function of calcium-to-sulfur ratio is shown
in Figure 25. Sulfur retention was similar in the EERC tests. Temperature

variations both above and below the optimum temperature of 1550°F resulted in
reduced sulfur capture.

Figure 26 shows the effect of calcium-to-sulfur ratio on calcium
utilization. Once again, the EERC data points are generally lower than those

reported by Pyropower and Nucla. This is consistent with the SO, retention
findings.

8.4 NO_ Emissions

One advantage of fluidized-bed combustion is the fact that its lower
operating temperature crectes lower NO, emissions than a pulverized coal
process. Figure 27, NO_ emissions as a function of temperature, shows that
there is good agreement between the three plants. The NO, emissions were
higher for those EERC tests performed at a high level of excess air, as

expected.
8.5 N,0 Emissions

N,0 emissions are inversely proportional to temperature and directly
proportional to oxygen content. Figure 28 shows a comparison between the EERC
pilot plant data and that obtained at the Nucla station, both at high and low
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oxygen levels. The trends are similar in the two units; the higher N,0

emissions in the pilot plant versus the full-scale plant are consistent with
reports from other researchers.

8.6 CO Emissions

The Tevel of carbon monoxide in the flue gas is an indication of
combustion efficiency. The Tevels of CO emissions from the EERC pilot plant
are comparable to the Pyrcpower unit and lower than those from Nucla, as shown

in Figure 29. Better mixing at the pilot scale could account for the
improvement over Nucla.

8.7 Bottom Ash/Fly Ash Split

The percentage of ash which remains in the combustor or downcomer as bed
material compared to that which is carried out of the combustor is a function
of the coal and sorbent size, and of the cut point of the cyclone. Figure 30
shows that EERC had a smaller cut point than Nucla and about the same cut
point as Pyropower, but the EERC fly ash top size was considerably smaller
than either. The bottom ash split for EERC ranged from 28.7% to 79.7% for
EERC, while the highest bottom ash split for Nucla and Pyropower were 48% and
22%, respectively. Although cut size may account for some of the difference,
the high bottom ash split at EERC may be due in part to a hole in one of the
bags and a tendency for the fly ash to hang up in the baghouse hopper, which
caused the amount of ash retrieved from the baghouse to be artificially low.
This is further evidenced by the poor closure in the ash balance. For
comparison to full-scale units, the ash split would need to be adjusted to
account for the difference in cyclone cut size.

8.8 Heat Split

The percent of heat removed in the bed (combustor and external heat
exchanger) as opposed to the heat removed in the flue gas is more a function
of coal type and operating conditions than of test unit. The percent of heat
removed in the flue gas was about 40% for both the EERC and Pyropower tlnits.
Pyropower had a higher percentage of wall losses - about 19% compared to 11%
for the EERC. Heat removal through cooling coils accounted for about 40% of
- total heat removal in both pilot plants; however, EERC has heat-transfer
surfaces in both the combustor and external heat exchanger, while Pyropower

only removes heat from the combustor. No data was available from the full-
scale unit.

8.9 Combustion Efficiency

Combustion efficiency is a function of temperature, excess air, particle
size, and residence time, the last two depending on the design of the
combustor. Typically, full scale units have greater residence time, leading

to better carbon burnout, but this is offset at the pilot scale by better
cyclone efficiency.

The EERC combustion efficiencies shown in Figure 31 are for Tests 5
through 12, both high and low excess air tests. While the lTow excess air
tests are comparable to the Pyropower data, the EERC pilot plant may have
slightly higher combustion efficiencies due to greater residence time, since
the EERC combustor is 12 feet taller than that at Pyropower. Combustion
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efficiencies from the EERC pilot unit are comparable to those from the
Colorado Ute Nucla Station.

9.0 SUMMARY

In the present configuration, adequate recirculation rates
representative of full-scale systems can be obtained, and a high
overall bed material particulate capture efficiency of approximately
99.5% was obtained in the particulate collection device.

Operation of the system at typical full-scale conditions provides
scalable heat flux and emissions data. Average heat flux in the
combustor was from 24,500 to 35,850 Btu/hr-ft* at full-load conditions

" and 18,030 Btu/hr-ft? at 50% load, which is comparable to a full-size

system.

Heat-transfer coefficients decreased in the combustor with increasing
height within the combustor from an average of 30.6 Btu/hr-ft®-°F for

Section 2 heat exchangers down to 18.7 Btu/hr-ft®>-°F for Section 8
combustor heat exchangers.

Bed temperature distribution in the combustor for all full load tests
was uniform over the entire height of the combustor.

Sulfur capture was highest at 1559°F, and an added alkali-to-sulfur
ratio greater than 2.5 was required to achieve 70% sulfur retention.
Calcium utilization decreased with increasing calcium-to-sulfur molar
ratio. No attempt was made during this run to determine the optimal
temperature for sulfur control.

NO, emissions were in the range of 25 to 280 ppm. NO, increased with
an increase in temperature and/or an increase in excess air, and
increased slightly with an increase in calcium-to-sulfur ratio.

N,0 were greatest at low temperatures. The effect of excess air on

- N,0 emissions is negligible at high temperatures (greater than

1500°F); however, at lower temperatures, N,0 emissions increased at
increased levels of excess air.

CO emissions were low, ranging from 45 to 145 ppm. The lowest CO
emissions occurred at lTow temperatures.

Combustion efficiencies ranged from 97.6% to 99.4%. The combustion
efficiency increased with increasing bed temperature, excess air, and
residence time. The measured combustion effiencies were comparable

to those from the Pyropower pilot plant and the Colorado Ute Nucla
Station.

The EERC pilot-scale unit can be used to generate data that is
scalable to a full-scale utility plant.

Tables 18, 19 and 20 summarize factors affecting scalability of CFB
data. Both physical parameters and operating conditions have an
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effect or, unit performance. The tables indicate which parameters can
be reliably scaled up, which need to be matched closely to full
scale, and which require further research before scalability can be
adequately assessed.
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TABLE 20

Scalability of Measured Performance Parameters from Pilot-Scale CFBC

Performance Parameter Scalability
Heat transfer Heat transfer is primarily a function of the

recirculation rate and the particle-size
distribution in the combustor. Good correlation
between the pilot- and full-scale units can be
expected if these two parameters can be controlled,
as seen by the EERC data.

Combustion efficiency Carbon burnout will be controlled mainly by the cut
point of the cyclone, with better carbon burnout
being achieved for smaller cut points. CO will
decrease as the gas residence, or combustor height,
decreases, but should increase for well-mixed
systems. Therefore, carbon burnout should be
similar between full- and pilot-scale units if the
cut point is similar. The impact of combustor
height versus gas mixing offset each other from
full- to pilot-scale systems, making overall
combustion efficiency a scalable parameter.

Bottom ash/total ash split The percentage of bottom ash will be primarily
determined by size of the coal ash and limestone,
and by the cut size of the cyclone. Assuming the
same coal and limestone sizing is used for the
pilot- and full-scale testing, similar ash splits
will be obtained only if the cyclone cut size is
the same. If a smaller cut size is obtained in the
pilot scale, as was done at EERC versus the
Colorado Ute Nucla Station, a higher fraction of
the ash will be bottom ash.

Bed grain size Assuming the same coal and 1imestone sizes are used
for both systems, the bed grain size will be
primarily a function of the cut size of the
cyctone, However, unless there is a large
difference in cut size between the full- and pilot-
scale units, the bed grain size will be
approximately the same.

Limestone utilization,suifur capture,Ca/S ratio Sulfur capture and limestone utilization between
the full- and pilot-scale units are similar.
Shorter combustor heights in pilot plants are
offset by better particle and gas mixing. Smaller
cyclone cut points in many pilot plants also favor
better performance. Data from the EERC and the
Pyropower pilot plant indicate similar performance
to the Colorado Nucla Station. The scalability of
this data may change with differing full-scale
designs.

CO emissions C0 emissions would be expected to increase in pilot

plants because of the shorter residence times, but

decrease because of the improved gas mixing. The

net effect for the EERC pilot plant is a decrease

in CO emissions as compared to full scale.

NO,, N,0 emissions NO, emissions in the pilot plant are often higher
than in full-scale units because of the high
surface-to-volume ratio of the pilot plant. Better
gas mixing in the pilot scale, especially of the
secondary air, however, tends to reduce the NO, in
the pilot scale. NO, emissions from the EERC pilot

(continued)
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TABLE 20 (continued)

Scalability of Measured Performance Parameters from Pilot-Scale CFBC

N,0, N,0 emissions (continued) plant and Colorado Ute Nucla Station were similar. N0
emissions have been observed by a number of
researchers to be higher in pilot plants than for
full-scale units, probably due to gas residence time
effects, although wall effects may also be important.
Data generated by EERC showed similar trends of N,0
emissions with respect to operating conditions, but
were consistently higher than those from the full-
scale unit,
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