267 research outputs found

    Skeletal muscle transcriptional coactivator PGC-1alpha mediates mitochondrial, but not metabolic, changes during calorie restriction

    Get PDF
    Calorie restriction (CR) is a dietary intervention that extends lifespan and healthspan in a variety of organisms. CR improves mitochondrial energy production, fuel oxidation, and reactive oxygen species (ROS) scavenging in skeletal muscle and other tissues, and these processes are thought to be critical to the benefits of CR. PGC-1alpha is a transcriptional coactivator that regulates mitochondrial function and is induced by CR. Consequently, many of the mitochondrial and metabolic benefits of CR are attributed to increased PGC-1alpha activity. To test this model, we examined the metabolic and mitochondrial response to CR in mice lacking skeletal muscle PGC-1alpha (MKO). Surprisingly, MKO mice demonstrated a normal improvement in glucose homeostasis in response to CR, indicating that skeletal muscle PGC-1alpha is dispensable for the whole-body benefits of CR. In contrast, gene expression profiling and electron microscopy (EM) demonstrated that PGC-1alpha is required for the full CR-induced increases in mitochondrial gene expression and mitochondrial density in skeletal muscle. These results demonstrate that PGC-1alpha is a major regulator of the mitochondrial response to CR in skeletal muscle, but surprisingly show that neither PGC-1alpha nor mitochondrial biogenesis in skeletal muscle are required for the whole-body metabolic benefits of CR

    Inducible and reversible inhibition of mirna-mediated gene repression in vivo

    Get PDF
    Although virtually all gene networks are predicted to be controlled by miRNAs, the contribution of this important layer of gene regulation to tissue homeostasis in adult animals remains unclear. Gain and loss of function experiments have provided key insights into the specific function of individual miRNAs, but effective genetic tools to study the functional consequences of global inhibition of miRNA activity in vivo are lacking. Here we report the generation and characterization of a genetically engineered mouse strain in which miRNA-mediated gene repression can be reversibly inhibited without affecting miRNA biogenesis or abundance. We demonstrate the usefulness of this strategy by investigating the consequences of acute inhibition of miRNA function in adult animals. We find that different tissues and organs respond differently to global loss of miRNA function. While miRNA-mediated gene repression is essential for the homeostasis of the heart and the skeletal muscle, it is largely dispensable in the majority of other organs. Even in tissues where it is not required for homeostasis, such as the intestine and hematopoietic system, miRNA activity can become essential during regeneration following acute injury. These data support a model where many metazoan tissues primarily rely on miRNA function to respond to potentially pathogenic events

    Downregulation of the Longevity-Associated Protein Sirtuin 1 in Insulin Resistance and Metabolic Syndrome: Potential Biochemical Mechanisms

    Get PDF
    OBJECTIVE: Sirtuins (SIRTs) are NAD(+)-dependent deacetylases that regulate metabolism and life span. We used peripheral blood mononuclear cells (PBMCs) to determine ex vivo whether insulin resistance/metabolic syndrome influences SIRTs. We also assessed the potential mechanisms linking metabolic alterations to SIRTs in human monocytes (THP-1) in vitro. RESEARCH DESIGN AND METHODS: SIRT1-SIRT7 gene and protein expression was determined in PBMCs of 54 subjects (41 with normal glucose tolerance and 13 with metabolic syndrome). Insulin sensitivity was assessed by the minimal model analysis. Subclinical atherosclerosis was assessed by carotid intima-media thickness (IMT). In THP-1 cells exposed to high glucose or fatty acids in vitro, we explored SIRT1 expression, p53 acetylation, Jun NH(2)-terminal kinase (JNK) activation, NAD(+) levels, and nicotinamide phosphoribosyltransferase (NAMPT) expression. The effects of SIRT1 induction by resveratrol and of SIRT1 gene silencing were also assessed. RESULTS: In vivo, insulin resistance and metabolic syndrome were associated with low PBMC SIRT1 gene and protein expression. SIRT1 gene expression was negatively correlated with carotid IMT. In THP-1 cells, high glucose and palmitate reduced SIRT1 and NAMPT expression and reduced the levels of intracellular NAD(+) through oxidative stress. No effect was observed in cells exposed to linoleate or insulin. High glucose and palmitate increased p53 acetylation and JNK phosphorylation; these effects were abolished in siRNA SIRT1-treated cells. Glucose- and palmitate-mediated effects on NAMPT and SIRT1 were prevented by resveratrol in vitro. CONCLUSIONS: Insulin resistance and subclinical atherosclerosis are associated with SIRT1 downregulation in monocytes. Glucotoxicity and lypotoxicity play a relevant role in quenching SIRT1 expression

    Cell-specific transcriptional control of mitochondrial metabolism by TIF1γ drives erythropoiesis.

    Get PDF
    Transcription and metabolism both influence cell function, but dedicated transcriptional control of metabolic pathways that regulate cell fate has rarely been defined. We discovered, using a chemical suppressor screen, that inhibition of the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH) rescues erythroid differentiation in bloodless zebrafish moonshine (mon) mutant embryos defective for transcriptional intermediary factor 1 gamma (tif1γ). This rescue depends on the functional link of DHODH to mitochondrial respiration. The transcription elongation factor TIF1γ directly controls coenzyme Q (CoQ) synthesis gene expression. Upon tif1γ loss, CoQ levels are reduced, and a high succinate/α-ketoglutarate ratio leads to increased histone methylation. A CoQ analog rescues mon’s bloodless phenotype. These results demonstrate that mitochondrial metabolism is a key output of a lineage transcription factor that drives cell fate decisions in the early blood lineage

    A role for neuronal cAMP responsive-element binding (CREB)-1 in brain responses to calorie restriction

    Get PDF
    Calorie restriction delays brain senescence and prevents neurodegeneration, but critical regulators of these beneficial responses other than the NAD(+)-dependent histone deacetylase Sirtuin-1 (Sirt-1) are unknown. We report that effects of calorie restriction on neuronal plasticity, memory and social behavior are abolished in mice lacking cAMP responsive-element binding (CREB)-1 in the forebrain. Moreover, CREB deficiency drastically reduces the expression of Sirt-1 and the induction of genes relevant to neuronal metabolism and survival in the cortex and hippocampus of dietary-restricted animals. Biochemical studies reveal a complex interplay between CREB and Sirt-1: CREB directly regulates the transcription of the sirtuin in neuronal cells by binding to Sirt-1 chromatin; Sirt-1, in turn, is recruited by CREB to DNA and promotes CREB-dependent expression of target gene peroxisome proliferator-activated receptor-\u3b3 coactivator-1\u3b1 and neuronal NO Synthase. Accordingly, expression of these CREB targets is markedly reduced in the brain of Sirt KO mice that are, like CREB-deficient mice, poorly responsive to calorie restriction. Thus, the above circuitry, modulated by nutrient availability, links energy metabolism with neurotrophin signaling, participates in brain adaptation to nutrient restriction, and is potentially relevant to accelerated brain aging by overnutrition and diabetes

    Activation of Peroxisome Proliferator-Activated Receptor Gamma by Rosiglitazone Increases Sirt6 Expression and Ameliorates Hepatic Steatosis in Rats

    Get PDF
    Sirt6 has been implicated in the regulation of hepatic lipid metabolism and the development of hepatic steatosis. The aim of this study was to address the potential role of Sirt6 in the protective effects of rosiglitazone (RGZ) on hepatic steatosis.) by stomach gavage for 6 weeks. The involvement of Sirt6 in the RGZ's regulation was evaluated by Sirt6 knockdown in AML12 mouse hepatocytes.RGZ treatment ameliorated hepatic lipid accumulation and increased expression of Sirt6, peroxisome proliferator-activated receptor gamma coactivtor-1-α (Ppargc1a/PGC1-α) and Forkhead box O1 (Foxo1) in rat livers. AMP-activated protein kinase (AMPK) phosphorylation was also increased by RGZ, accompanied by alterations in phosphorylation of LKB1. Interestingly, in free fatty acid-treated cells, Sirt6 knockdown increased hepatocyte lipid accumulation measured as increased triglyceride contents (p = 0.035), suggesting that Sirt6 may be beneficial in reducing hepatic fat accumulation. In addition, Sirt6 knockdown abolished the effects of RGZ on hepatocyte fat accumulation, mRNA and protein expression of Ppargc1a/PGC1-α and Foxo1, and phosphorylation levels of LKB1 and AMPK, suggesting that Sirt6 is involved in RGZ-mediated metabolic effects.Our results demonstrate that RGZ significantly decreased hepatic lipid accumulation, and that this process appeared to be mediated by the activation of the Sirt6-AMPK pathway. We propose Sirt6 as a possible therapeutic target for hepatic steatosis

    Barnase as a New Therapeutic Agent Triggering Apoptosis in Human Cancer Cells

    Get PDF
    RNases are currently studied as non-mutagenic alternatives to the harmful DNA-damaging anticancer drugs commonly used in clinical practice. Many mammalian RNases are not potent toxins due to the strong inhibition by ribonuclease inhibitor (RI) presented in the cytoplasm of mammalian cells.In search of new effective anticancer RNases we studied the effects of barnase, a ribonuclease from Bacillus amyloliquefaciens, on human cancer cells. We found that barnase is resistant to RI. In MTT cell viability assay, barnase was cytotoxic to human carcinoma cell lines with half-inhibitory concentrations (IC(50)) ranging from 0.2 to 13 microM and to leukemia cell lines with IC(50) values ranging from 2.4 to 82 microM. Also, we characterized the cytotoxic effects of barnase-based immunoRNase scFv 4D5-dibarnase, which consists of two barnase molecules serially fused to the single-chain variable fragment (scFv) of humanized antibody 4D5 that recognizes the extracellular domain of cancer marker HER2. The scFv 4D5-dibarnase specifically bound to HER2-positive cells and was internalized via receptor-mediated endocytosis. The intracellular localization of internalized scFv 4D5-dibarnase was determined by electronic microscopy. The cytotoxic effect of scFv 4D5-dibarnase on HER2-positive human ovarian carcinoma SKOV-3 cells (IC(50) = 1.8 nM) was three orders of magnitude greater than that of barnase alone. Both barnase and scFv 4D5-dibarnase induced apoptosis in SKOV-3 cells accompanied by internucleosomal chromatin fragmentation, membrane blebbing, the appearance of phosphatidylserine on the outer leaflet of the plasma membrane, and the activation of caspase-3.These results demonstrate that barnase is a potent toxic agent for targeting to cancer cells
    corecore