47 research outputs found

    The sensitivity and predictability of mesoscale eddies in an idealized model ocean

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution April, 1976Two numerical applications of two-level quasigeostrophic theory are used to investigate the interrelationships of the mean and mesoscale eddy fields in a closed-basin ocean model. The resulting techniques provide a more accurate description of the local dynamics, origins, and parametric dependences of the eddies than that available in previous modelling studies. First, we propose a novel and highly efficient quasigeostrophic closed-domain model which has among its advantages a heightened resolution in the boundary layer regions. The pseudospectral method, employing an orthogonal expansion in Fourier and Chebyshev functions, relies upon a discrete Green's function technique capable of satisfying to spectral accuracy rather arbitrary boundary conditions on the eastern and western (continental) walls. Using this formulation, a series of four primary numerical experiments tests the sensitivity of wind-driven single and double-gyred eddying circulations to a transition from free-slip to no-slip boundary conditions. These comparisons indicate that, in the absence of topography, no-slip boundaries act primarily to diffuse vorticity more efficiently. The interior transport fields are thus reduced by as much as 50%, but left qualitatively unchanged. In effect, once having separated from the western wall, the internal jet has no know1edge, apart from its characteristic flow speed, of the details of the boundary layer structure. Next, we develop a linearized stability theory to analyze the local dynamic processes responsible for the eddy fields observed in these idealized models. Given two-dimensional (x, z) velocity profiles of arbitrary horizontal orientation, the resulting eigenfunction problems are solved to predict a variety of eddy properties: growth rate, length and time scales, spatial distribution, and energy fluxes. This simple methodology accurately reproduces many of the eddy statistics of the fully nonlinear fields; for instance, growth rates of 10-100 days predicted for the growing waves by the stability analysis are consistent with observed model behavior and have been confirmed independently by a perturbation growth test. Local energetic considerations indicate that the eddy motions arise in distinct and recognizable regions of barotropic and baroclinic activity. The baroclinic instabilities deîend sensitively on the vertical shear which must exceed 0(5 cm sec-1) across the thermocline to induce eddy growth. As little as a 10% reduction in |uz|, however, severely suppresses the cascade of mean potential energy to the eddy field. In comparison, the barotropic energy conversion process scales with the horizontal velocity shear, |uy|, whose threshold values for instability, a (2 x 10-6 sec-1), is undoubtedly geophysically realizable. A simple scatter diagram of |uy| versus |uz| for all the unstable modes studied shows a clear separation between the regions of barotropic and baroclinic instability. While the existence of baroclinic modes can be deduced from either time mean or instantaneous flow profiles, barotropic modes cannot be predicted from mean circulation profiles (in which the averaging process reduces the effective horizontal shears). Finally, we conduct a separate set of stability experiments on analytically generated jet profiles. The resulting unstable modes align with the upper level velocity maxima and, although highly sensitive to local shear amplitude, depend much less strongly on jet separation and width. Thus, the spatial and temporal variability of the mesoscale statistics monitored in the nonlinear eddy simulations can be attributed almost entirely to time-dependent variations in local shear strength. While these results have been obtained in the absence of topography and in an idealized system, they yet have strong implications for the importance of the mid-ocean and boundary layer regions as possible eddy generation sites.This research has been made possible by National Science Foundation grant OCE74-03001 A03, formerly DES73-00528, and the National Science Foundation funded National Center for Atmospheric Research

    Numerical modelling in a multiscale ocean

    Get PDF
    Systematic improvement in ocean modelling and prediction systems over the past several decades has resulted from several concurrent factors. The first of these has been a sustained increase in computational power, as summarized in Moore\u27s Law, without which much of this recent progress would not have been possible. Despite the limits imposed by existing computer hardware, however, significant accruals in system performance over the years have been achieved through novel innovations in system software, specifically the equations used to represent the temporal evolution of the oceanic state as well as the numerical solution procedures employed to solve them. Here, we review several recent approaches to system design that extend our capability to deal accurately with the multiple time and space scales characteristic of oceanic motion. The first two are methods designed to allow flexible and affordable enhancement in spatial resolution within targeted regions, relying on either a set of nested structured grids or, alternatively, a single unstructured grid. Finally, spatial discretization of the continuous equations necessarily omits finer, subgrid-scale processes whose effects on the resolved scales of motion cannot be neglected. We conclude with a discussion of the possibility of introducing subgrid-scale parameterizations to reflect the influences of unresolved processes

    John H. Steele, 1926–2013

    Get PDF
    This special issue of Oceanography is dedicated to the memory of John H. Steele, who passed away on November 4, 2013, at the age of 86. John was a seminal figure in the creation of the US Global Ocean Ecosystem Dynamics (GLOBEC) and International GLOBEC programs, and remained involved in them through his scientific endeavors and program leadership. We benefitted from his keen intellect, wide-ranging knowledge, deep insight, and unfailing good humor and gentlemanly manner

    US GLOBEC: Program Goals, Approaches, and Advances

    Get PDF
    This special issue summarizes the major achievements of the US Global Ocean Ecosystem Dynamics (GLOBEC) program and celebrates its accomplishments. The articles grew out of a final symposium held in October 2009 under the auspices of the National Academy of Sciences Ocean Studies Board (http://usglobec.org/Symposium). This special issue updates the US GLOBEC "mid-life" Oceanography issue (Vol. 15, No. 2, 2002, http://tos.org/oceanography/archive/15-2.html), which put forward many of the goals and activities of the program, but was published while field work was still being conducted and results had yet to be synthesized across regional programs. The present special issue highlights the advances in understanding achieved through the synthesis of regional studies and pan-regional comparisons

    Modeling the Dispersal of Eastern Oyster (Crassostrea virginica) larvae in Delaware Bay

    Get PDF
    The interactions of circulation and growth processes in determining the horizontal distribution of eastern oyster (Crassostrea virginica) larvae in the Delaware Bay estuary were investigated with a coupled circulation-individual-based larvae model that used environmental conditions from the spawning seasons (mid-June to mid-September) of 1984, 1985, 1986, 2000, and 2001. Particles, representing oyster larvae, were released at five-day intervals from areas in Delaware Bay that correspond to natural oyster reefs. The simulated larval development time was used to estimate potential larval success, determined by the percent of larvae that successfully reached settlement size (330 µm) within the planktonic larval duration of 30 days. Success rates for simulated larvae released in the upper estuary were less than half of those released in the lower estuary because of the reduction in growth rate from exposure to low salinity. Simulated larval success rates were further reduced during periods of increased river discharge, which produced low salinity conditions. The simulated transport patterns showed a down-estuary drift of oyster larvae during the spawning season, which is consistent with the observed reduction in settlement and recruitment rates in the upper estuary. The simulated transport pathways patterns showed that larvae originating in the middle and lower regions of the estuary had low rates of dispersion and high rates of self-settlement. Larvae released in the upper reaches of the estuary had limited contributions to the Delaware Bay oyster population, in part because of the lower overall simulated larval success in the low salinity regions. The simulated transport patterns suggested that the upper bay exports rather than receives larvae, which has implications for the establishment of genetic traits

    Circulation and Behavior Controls on Dispersal of Eastern Oyster (Crassostrea virginica) Larvae in Delaware Bay

    Get PDF
    The degree of genetic connectivity among populations in a metapopulation has direct consequences for species evolution, development of disease resistance, and capacity of a metapopulation to adapt to climate change. This study used a metapopulation model that integrates population dynamics, dispersal, and genetics within an individual-based model framework to examine the mechanisms and dynamics of genetic connectivity within a metapopulation. The model was parameterized to simulate four populations of oysters (Crassostrea virginica) from Delaware Bay on the mid-Atlantic coast of the United States. Differences among the four populations include a strong spatial gradient in mortality, a spatial gradient in growth rates, and uneven population abundances. Simulations demonstrated a large difference in the magnitude of neutral allele transfer with changes in population abundance and mortality (on average between 14 and 25% depending on source population), whereas changes in larval dispersal were not effective in altering genetic connectivity (on average between 1 and 8%). Simulations also demonstrated large temporal changes in metapopulation genetic connectivity including shifts in genetic sources and sinks occurring between two regimes, the 1970s and 2000s. Although larval dispersal in a sessile marine population is the mechanism for gene transfer among populations, these simulations demonstrate the importance of local dynamics and characteristics of the adult component of the populations in the flow of neutral alleles within a metapopulation. In particular, differential adult mortality rates among populations exert a controlling influence on dispersal of alleles, an outcome of latent consequence for management of marine populations

    Circulation and Water Properties and Their Relationship to the Oyster Disease MSX in Delaware Bay

    Get PDF
    We apply a high-resolution hydro-dynamical model to investigate the role of physical factors influencing infection prevalence of Haplosporidium nelsoni, causative agent of MSX disease in the eastern oyster (Crassostrea virginica), in Delaware Bay, USA. Validation studies conducted for the years 2000 and 2010-2011 confirm that the model, based upon the Regional Ocean Modeling System, has significant skill in the recovery of observed water level, temperature, salinity, and velocity. Multi-year simulations are performed for periods representing temporal and spatial variations in H. nelsoni infection prevalence (1974-76, 1979-81, 1984-86, 1990-92, and 2006-09) to assess the degree to which the variations in water properties and transport are temporally and spatially correlated with infection prevalence variations. Results show statistically significant correlations between the observed prevalence of MSX and multiple physical factors including river flow and salinity (themselves highly correlated), as well as the co-occurrence of elevated temperature and salinity values. Observed occurrences of high H. nelsoni infection prevalence at upbay locations correspond to periods of enhanced cross-bay and upbay transport together with hospitable temperature and salinity conditions

    Oyster food supply in Delaware Bay: Estimation from a hydrodynamic model and interaction with the oyster population

    Get PDF
    To evaluate oyster food supply, water samples were collected at fifteen sites in Delaware Bay nearmonthly in 2009 and 2010. Food was estimated as the sum of particulate protein, labile carbohydrate, and lipid. Delaware Bay shows a typical spring bloom, centered in March and April, with declining food supply thereafter into early fall, followed sporadically by a minor fall bloom. The geographic and temporal structure of food was more predictable in summer to early fall, and considerably less predictable in spring. Five variables each based on temperature and the spatial and temporal variability of temperature were significant contributors to a multiple regression (R2 = 0.28). Cluster analysis on residuals identified two large groups of sites, one comprising most sites on the eastern side of the bay including all of the sites on the New Jersey oyster beds downestuary of the uppermost beds and one including most of the sites along the central channel and waters west. Food values over the New Jersey oyster beds were often depressed by as much as 50% relative to the bay-wide mean. Food values did not follow an upestuary-downestuary trend anticipated from the salinity gradient. Rather, the differential was cross-bay and was distinctive throughout the estuarine salinity gradient, thus explaining the lack of significance of any salinity-related variable in the multiple regression. The consequence is that food supply cannot be sufficiently predicted or modeled based on observed environmental variables or those predicted from a hydrodynamic model. The cross-bay differential cannot be extracted from such datasets. The oyster reefs of Delaware Bay are dominantly sited on the New Jersey side, where food supply was most depressed and where passive particle residence times were longest. While not conclusive, this dataset suggests that oysters can influence food values on the New Jersey side of the bay at present biomass, and this would explain the cross-bay gradient in food values as an outcome of oyster feeding

    FVCOM validation experiments : comparisons with ROMS for three idealized barotropic test problems

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C07042, doi:10.1029/2007JC004557.The unstructured-grid Finite-Volume Coastal Ocean Model (FVCOM) is evaluated using three idealized benchmark test problems: the Rossby equatorial soliton, the hydraulic jump, and the three-dimensional barotropic wind-driven basin. These test cases examine the properties of numerical dispersion and damping, the performance of the nonlinear advection scheme for supercritical flow conditions, and the accuracy of the implicit vertical viscosity scheme in barotropic settings, respectively. It is demonstrated that FVCOM provides overall a second-order spatial accuracy for the vertically averaged equations (i.e., external mode), and with increasing grid resolution the model-computed solutions show a fast convergence toward the analytic solutions regardless of the particular triangulation method. Examples are provided to illustrate the ability of FVCOM to facilitate local grid refinement and speed up computation. Comparisons are also made between FVCOM and the structured-grid Regional Ocean Modeling System (ROMS) for these test cases. For the linear problem in a simple rectangular domain, i.e., the wind-driven basin case, the performance of the two models is quite similar. For the nonlinear case, such as the Rossby equatorial soliton, the second-order advection scheme used in FVCOM is almost as accurate as the fourth-order advection scheme implemented in ROMS if the horizontal resolution is relatively high. FVCOM has taken advantage of the new development in computational fluid dynamics in resolving flow problems containing discontinuities. One salient feature illustrated by the three-dimensional barotropic wind-driven basin case is that FVCOM and ROMS simulations show different responses to the refinement of grid size in the horizontal and in the vertical.For this work, H. Huang and G. Cowles were supported by the Massachusetts Marine Fisheries Institute (MFI) through NOAA grants DOC/NOAA/NA04NMF4720332 and DOC/ NOAA/NA05NMF472113; C. Chen was supported by NSF grants (OCE0234545, OCE0606928, OCE0712903, OCE0732084, and OCE0726851), NOAA grants (NA160P2323, NA06RG0029, and NA960P0113), MIT Sea grant (2006-RC-103), and Georgia Sea grant (NA26RG0373 and NA66RG0282); C. Winant was supported through NSF grant OCE-0726673; R. Beardsley was supported through NSF OCE—0227679 and the WHOI Smith Chair; K. Hedstrom was supported through NASA grant NAG13– 03021 and the Arctic Region Supercomputing Center; and D. Haidvogel was supported through grants ONR N00014- 03-1-0683 and NSF OCE 043557
    corecore