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[1] The unstructured-grid Finite-Volume Coastal Ocean Model (FVCOM) is evaluated
using three idealized benchmark test problems: the Rossby equatorial soliton, the
hydraulic jump, and the three-dimensional barotropic wind-driven basin. These test cases
examine the properties of numerical dispersion and damping, the performance of the
nonlinear advection scheme for supercritical flow conditions, and the accuracy of the
implicit vertical viscosity scheme in barotropic settings, respectively. It is demonstrated
that FVCOM provides overall a second-order spatial accuracy for the vertically averaged
equations (i.e., external mode), and with increasing grid resolution the model-computed
solutions show a fast convergence toward the analytic solutions regardless of the particular
triangulation method. Examples are provided to illustrate the ability of FVCOM to
facilitate local grid refinement and speed up computation. Comparisons are also made
between FVCOM and the structured-grid Regional Ocean Modeling System (ROMS) for
these test cases. For the linear problem in a simple rectangular domain, i.e., the wind-
driven basin case, the performance of the two models is quite similar. For the nonlinear
case, such as the Rossby equatorial soliton, the second-order advection scheme used in
FVCOM is almost as accurate as the fourth-order advection scheme implemented in
ROMS if the horizontal resolution is relatively high. FVCOM has taken advantage of the
new development in computational fluid dynamics in resolving flow problems containing
discontinuities. One salient feature illustrated by the three-dimensional barotropic wind-
driven basin case is that FVCOM and ROMS simulations show different responses to the
refinement of grid size in the horizontal and in the vertical.
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1. Introduction

[2] The finite-volume numerical method has been intro-
duced into the ocean modeling community [Marshall et al.,
1997; Ward, 1999; Chen et al., 2003; Cheng and Casulli,
2003]. Unlike finite-difference and finite-element methods,
in a finite-volume discretization, the governing equations of

momentum, mass, and tracers are expressed by their integral
forms over individual control volumes and solved numeri-
cally by flux calculation through the volume boundaries. As
a result, the finite-volume approach has the advantage of
intrinsically enforcing conservation laws in both individual
control volumes and the entire computational domain.
[3] In principle, the finite-volume method can employ

either structured rectangular grids or arbitrary unstructured
grids. Unstructured triangular grids can provide an accurate
geometric representation of complex coastlines and are
amenable to local grid refinement as well as dynamic grid
adaptation schemes. Therefore, the finite-volume ocean
model employing triangular elements is a good alternative
to the traditional ocean models employing structured grids
and combines the advantage of finite-element methods for
geometric flexibility and finite-difference methods for sim-
ple code structure and computational efficiency.
[4] An unstructured-grid, finite-volume, three-dimension-

al primitive equation, coastal ocean model (Finite-Volume
Coastal Ocean Model (FVCOM)) was developed [Chen et
al., 2003, 2006, 2007; Cowles, 2008]. It has been applied to
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a number of estuaries and coastal oceans that are charac-
terized by highly irregular geometry, large areas of intertidal
salt marshes, and steeply sloping bottom topography (see
http://fvcom.smast.umassd.edu for more information). Val-
idations, in which model predictions are compared with
analytical or semianalytical solutions for idealized cases as
well as with in situ data for realistic applications, are
presented by Chen et al. [2003, 2007], Isobe and Beardsley
[2006], Weisberg and Zheng [2006], Frick et al. [2007], and
Cowles et al. [2008]. Previous idealized validation cases
include: wind-induced long-surface gravity waves in a
circular lake; tidal resonance in rectangular and sector
channels; freshwater discharge over the continental shelf
with curved coastline; and a thermal bottom boundary layer
over the slope with steep bottom topography [Chen et al.,
2007]. Comparison between FVCOM and the two struc-
tured-grid finite-difference models (the Princeton Ocean
Model (POM) and the semi-implicit Estuarine and Coastal
Ocean Model (ECOM-si)) illustrates that by employing a
better fit to the curvature of the coastline, FVCOM provides
improved numerical accuracy and correctly captures the

physics of tide-, wind-, and buoyancy-induced waves and
flows in the coastal oceans [Chen et al., 2007].
[5] In addition to the geometric fitting issue, other aspects

of the FVCOM numerics need careful validation as well.
For example, it is important to examine the sensitivity of the
numerical solution to the unstructured mesh topology and
the accuracy of FVCOM’s nonlinear advection scheme. In
view of these validation needs, we address here the follow-
ing questions: (1) is the FVCOM simulation sensitive to
different triangulation methods, and if so, to what degree;
(2) does the convergence of the numerical solution depend
critically upon the configuration of the unstructured-grid
mesh; (3) what are the capabilities of the FVCOM second-
order advective flux formulation with and without a dis-
continuity in the solution; and (4) what is the accuracy of
the implicit treatment of the vertical viscosity term? Three
new test cases, which are selected from the Regional Ocean
Modeling System (ROMS) test suite, are used to evaluate
the numerical accuracy of FVCOM. They are the Rossby
equatorial soliton case, the hydraulic jump case, and the
three-dimensional wind-driven basin case. A model inter-

Figure 1. Illustration of the (a) FVCOM unstructured triangular grid and the three types of grid mesh:
(b) grid A, (c) grid B, and (d) grid C. Variable locations: solid circles (H (undisturbed water depth)), z
(sea surface elevation), D (total water depth), w (vertical velocity component), S (salinity), T
(temperature), and asterisks (u, v (horizontal velocity components)). The solid line triangle represents the
momentum control element in which u and v are calculated, and the dashed-line polygon represents the
tracer control element in which z, w, S, and T are calculated.
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comparison is also made to compare the performance of
FVCOM with that of ROMS, a popular structured-grid
ocean model.
[6] The remainder of this paper is organized as follows.

FVCOM and three types of unstructured triangular grids are
briefly described in section 2. The results of the three
idealized cases are presented in sections 3, 4, and 5,
respectively. Conclusions are given in section 6.

2. FVCOM and Unstructured Triangular Grids

[7] FVCOM is a three-dimensional, free-surface, prog-
nostic ocean model consisting of momentum, continuity,
temperature, salinity, and density equations. The Boussinesq
approximation and hydrostatic assumption are employed in
the model. It is closed mathematically using either the
Mellor and Yamada level 2.5 [Mellor and Yamada, 1982;
Galperin et al., 1988] or the k-e [Rodi, 1987; Umlauf and
Burchard, 2005] turbulence closure schemes for vertical
eddy mixing and the Smagorinsky parameterization for
horizontal eddy viscosity and diffusivity [Smagorinsky,
1963]. A s transformation in the vertical is used to convert
irregular bottom topography into a regular computational
domain. Time stepping in FVCOM is implemented using a
split-explicit approach, in which the free sea surface,
defined as the ‘‘external mode,’’ is integrated by solving
vertically averaged equations with a smaller time step and
the 3-D momentum and tracer equations, defined as the
‘‘internal mode,’’ are integrated with a larger time step.
Following every internal time step, an adjustment is made to
maintain numerical consistency between the modes [Chen
et al., 2006]. A second-order accurate, four-stage Runge-
Kutta time stepping scheme is used for external mode time
integration and the first-order Euler forward scheme is used
for internal mode time integration. A second-order accurate
upwind scheme, which is based on piecewise linear recon-
struction of dynamic variables, is used for flux calculation
of momentum and tracer quantities [Kobayashi et al., 1999;
Hubbard, 1999]. A fractional step method is used in the

calculation of three-dimensional (internal) variables, in
which the advective and horizontal diffusive fluxes are
advanced separately from the vertical diffusive fluxes. The
former is explicit whereas the latter is implicit to remove the
stability constraint deriving from small vertical spacing.
[8] FVCOM subdivides the horizontal computational

domain into a set of nonoverlapping unstructured triangular
meshes. An individual triangle is composed of three nodes,
a centroid, and three edges (Figure 1a). The horizontal
velocity components (u, v) are located at the triangle
centroids and the vertical velocity, as well as all scalar
variables (temperature, salinity, etc.), are placed at the
nodes. The horizontal velocities are computed by net
momentum flux across the momentum control element
(MCE) bounded by three sides of an individual triangle,
while scalar variables at each node are determined by the
net flux across the tracer control element (TCE) that is
enclosed by lines connecting centroids and middle points of
triangle sides in surrounding triangles (Figure 1a).
[9] To test the sensitivity and accuracy of FVCOM

simulations, three types of grids are designed in this study
with different symmetry properties. In grid A (Figure 1b),
triangular nodes and centroids, TCEs, and MCEs are all
symmetric relative to the x axis (y = 0). In grid B (Figure 1c),
only node points are distributed symmetrically relative to
the x axis. Grid C (Figure 1d) is generated by a commercial
grid generation package, SMS8.1 (Surface water Modeling
System version 8.1). The triangles in this mesh are gener-
ated using a Delaunay-based reconnection of a point inser-
tion scheme and do not exhibit a specific pattern. This last
mesh represents a general purpose unstructured grid, nor-
mally employed in realistic FVCOM applications.
[10] The horizontal resolution (dx) in FVCOM is defined

by the length of an individual triangle edge. In comparison,
the horizontal resolution in a structured-grid model, such as
ROMS which employs an Arakawa-C grid, is given as the
distance between two like variables (e.g., between two
temperature points, or between two u points, etc). Hence,
for a given rectangular domain and when FVCOM employs
a structured triangular grid (such as grid A or grid B in
Figure 1), there are more u, v points in FVCOM than in
ROMS even though the number of water elevation points
are the same for both models. Therefore, FVCOM requires
more computational effort than ROMS for a given problem
with the same horizontal resolution.

3. Rossby Equatorial Soliton Case

[11] This test problem considers the propagation of a
small amplitude Rossby soliton on an equatorial b-plane,
which is characterized by a modon with two sea level peaks
of equal size and strength decaying exponentially with
distance away from their centers. This is a good test case
for examining the dispersion and numerical damping of a
given model because the shape preservation and constant
translation speed of the soliton wave are achieved through a
delicate balance between nonlinearity and dispersion.
[12] The model domain consists of a zonal equatorial

channel bounded by rigid vertical walls on northern and
southern sides and open through a periodic condition in the
east-west direction (Figure 2). In nondimensional form, the
channel has a length of 48 (�24 � x � 24) and a width of

Figure 2. Schematic diagram of the Rossby equatorial
soliton test problem. The nondimensional length and width
of the channel are 48 and 24, respectively, with periodic
open boundary conditions in the east-west direction and no-
slip boundary conditions along the north and south
boundaries. The analytical solution predicts that the soliton
propagates westward at a fixed speed and its shape remains
unchanged with time.

C07042 HUANG ET AL.: FVCOM VALIDATION

3 of 14

C07042



24 (�12 � y � 12). Assuming that the water is inviscid, the
shallow water equations with a b-plane approximation are
given as

@Du

@t
þ @Du2

@x
þ @Duv

@y
� fDv ¼ �gD

@z
@x

ð1Þ

@Dv

@t
þ @Duv
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@y
þ fDu ¼ �gD

@z
@y

ð2Þ

@z
@t

þ @Du

@x
þ @Dv

@y
¼ 0 ð3Þ

where u and v are the nondimensional, vertically averaged
horizontal velocities in the x- and y-coordinate, f = fo + by is
the Coriolis parameter with fo = 0 and b = 1.0, z is the free
surface height relative to the undisturbed sea level, H is the
constant water depth of 1.0, D = H + z is the total water
column thickness, and g is a nondimensional gravitational
constant of 1.0.
[13] The zeroth- and first-order asymptotic solutions of

equations (1), (2), and (3), with proper initial and boundary
conditions and assumption that the amplitude of the soliton
is small, were first derived by Boyd [1980, 1985] and given
as

u ¼ u oð Þ þ u 1ð Þ; v ¼ v oð Þ þ v 1ð Þ; z ¼ z oð Þ þ z 1ð Þ ð4Þ

where the superscripts refer to the order of the asymptotic
series and the general form for each term can be found at the
ROMS test problem website (http://marine.rutgers.edu/po/
index.php?model=test-problems&title=soliton).

[14] The initial velocity and sea surface height distribu-
tions in numerical experiments are constructed from the
zeroth- and first-order asymptotic solutions, with the soliton
center initially located at x = 0. The two-term perturbation
solution shows that the equatorial soliton wave has a
constant westward propagation speed c = c(0) + c(1) =
�0.4 and its double anticyclone structure stays unchanged
with time. Hence, the soliton travels over the length of the
channel and returns to its initial position in 120 time units
because of the periodic conditions at the eastern and western
ends. Deviation from shape preservation and uniform prop-
agation speed, however, can arise because of (1) inexact
initial condition due to the asymptotic nature of the analytic
solution and (2) inexact numerical solutions resulting from
approximations used in the finite-volume numerical discre-
tization method. To separate these two errors, a very high
resolution FVCOM experiment with the same initial con-
ditions is conducted (dx = 0.02, see footnote in Table 1),
which shows that the soliton travels 47.18 distance units in
120 time units and its peak height decreases from
0.1672725 at t = 0 to 0.1567020 at t = 120. The error
metrics of numerical experiments are thus constructed by
comparing numerical solutions at other resolutions with the
result of this experiment. Convergence experiments dis-
cussed later suggest that numerical solutions do, indeed,
all approach to this high-resolution numerical solution.
Thus, the error metrics described below contain mostly
the second class of error.
[15] To diagnose the performance of FVCOM, the error

metrics are calculated using the same method used in
ROMS. First the FVCOM solutions are interpolated onto
a reference grid (the dx = 0.02 grid in Table 1), assuming
that the distribution of surface elevation is piecewise linear
in each triangle. Then the maximum surface height value
(hmax) and its location (Xend) at t = 120 are determined on

Table 1. Error Metrics of the FVCOM and ROMS Numerical Solutions for the Rossby Equatorial Soliton Test Casea

dx dt Cr
+ hr

+ Cr
� hr

� khk2
Exact solution 1.000 1.000 1.000 1.000 0.0

FVCOM
Grid A 0.25 0.01 1.001 0.902 1.001 0.902 1.9032 � 10�3

Grid B 0.25 0.01 0.991 0.850 0.991 0.818 3.5165 � 10�3

Grid C 0.25 0.01 0.984 0.867 0.985 0.856 3.8614 � 10�3

Grid A 0.125 0.005 1.001 0.982 1.001 0.982 5.9508 � 10�4

Grid B 0.125 0.005 0.999 0.967 0.999 0.963 6.0900 � 10�4

Grid C 0.125 0.005 1.000 0.974 0.999 0.974 5.7450 � 10�4

Grid A 0.05 0.002 1.000 0.998 1.000 0.998 6.2132 � 10�5

Grid B 0.05 0.002 1.000 0.996 1.000 0.996 1.0149 � 10�4

Grid C 0.05 0.002 1.000 0.997 1.000 0.997 5.2339 � 10�5

Grid C variable 0.002 1.000 0.997 1.000 0.997 7.2883 � 10�5

ROMS
Fourth-order 0.25 0.01 1.011 0.988 1.011 0.988
Fourth-order 0.125 0.005 1.003 0.996 1.003 0.996
Fourth-order 0.05 0.002 1.000 0.999 1.000 0.999

aFVCOM, Finite-Volume Coastal Ocean Model; ROMS, Regional Ocean Modeling System. Note: dx is the nominal horizontal resolution of the grid
(triangle edge length in FVCOM), dt is the time step, Cr(= (48 � Xend)/47.18) is the relative mean phase speed of the soliton wave during the 120 time units
period, hr(= hmax/0.1567020) is the relative peak height at time 120, superscript plus sign represents the value for the northern anticyclone, superscript
minus sign represents the value for the southern anticyclone, and khk2 is the root-mean-square of the differences between predicted surface height and the
‘‘true’’ solution. The method to find Xend and hmax is described in section 3. The ‘‘true’’ solution of this problem is obtained by running a high-resolution (dx =
0.02) FVCOM numerical experiment. ROMS results are cited from the website of the Ocean Modeling Group (Ocean Modeling Group data are available at
http://marine.rutgers.edu/po/index.php?model_=%20test-problems&title_=%20soliton&model=test-problems&title=soliton). The order represents accuracy
of the horizontal advection scheme.

C07042 HUANG ET AL.: FVCOM VALIDATION

4 of 14

C07042



this reference grid. Finally, the L2 norm of pointwise error in
the surface height field, the relative peak height (hr = hmax/
0.1567020), and the relative mean phase speed during the
120 time units period (Cr = (48 � Xend)/47.18) are calcu-
lated from the interpolated field. In this way, the metrics
obtained provide a uniform set of diagnostics for proper
comparison of the FVCOM- and ROMS-computed results.
[16] The Rossby equatorial soliton consists of two anti-

cyclonic eddies. Hence, for each parameter in the error
metrics, there are two values for the northern and southern
anticyclones, respectively. The analytic solution is symmet-
ric, indicating that these eddies are of equal strength and
size and their centers are equidistant from the equator (y =
0). However, numerical solutions obtained using grids that
are asymmetric relative to the equator can lead to nonsym-
metric solutions. To examine this issue, the three types of
grids presented in the last section are all tested. For each
grid, numerical experiments are conducted with horizontal
resolution (dx) of 0.25, 0.125, and 0.05 respectively. The
time step (dt) is scaled accordingly to ensure that the
Courant number (C = c 	 dt/dx, where c is the modon
propagation speed) remains unchanged. The numerical
solution can be considered time step independent at this
Courant number.
[17] This test problem is inviscid: the bottom friction and

horizontal viscosity are set to zero at all time. FVCOM can
be run with zero explicit viscosity.
[18] Metrics for all numerical experiments are summa-

rized in Table 1, where several important aspects of
FVCOM performance are highlighted. First, the FVCOM
error metrics decrease as the grid is refined. This conver-

gence occurs regardless of the type of grid used. For
example, at the lowest spatial resolution (dx = 0.25), the
maximum surface heights after 120 time units are all below
91% of their initial values, while at dx = 0.05 the peak
heights approach more than 99% of the theoretical values
for all three grids. On the other hand, the soliton celerity is
less sensitive to the increase of horizontal resolution. The
translation speeds of the northern and southern anticyclones
are above 98% of the true values at dx = 0.25, and are nearly
equal to the speed of the analytical solution when dx is
reduced to 0.125.
[19] Second, the symmetric grid (grid A) always gives a

solution which is exactly symmetric relative to the equation
(y = 0), while asymmetric grids (grids B and C) yield
solutions that are not symmetric. In addition, the symmetric
grid generally yields better results than the asymmetric
grids. Nevertheless, the asymmetry caused by asymmetric
meshes is reduced as the horizontal resolution is increased.
As a result, the difference among the results of experiments
with dx = 0.05 is negligible (Table 1 and Figure 3). Also
evident in Figure 3 is a pair of trailing Kelvin waves that are
generated through an adjustment process due to the neglect
of higher-order terms in the initial conditions. Similarly, the
difference between the northern and southern Kelvin waves
diminishes as the grid is refined.
[20] It should be pointed out that the asymmetric solution

obtained in FVCOM experiments is related to the asym-
metric numerical grid used in the simulation, rather than the
numerical algorithm. In any numerical model, whether
based on finite- difference, finite-volume, or finite-element
methods, if the grid is asymmetrically distributed with

Figure 3. (a) Analytical and FVCOM-predicted sea surface elevation contours at 40 time units for the
Rossby soliton test problem. Contour interval is 0.015. (b) Sea surface elevation difference between the
analytical solution and the dx = 0.05 FVCOM solutions for various grids. Contour interval is 0.0075.
Negative contours are dashed.
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respect to the equator, the numerical solution must be
asymmetric in a low-resolution case because of the exis-
tence of mismatch in the discrete representation of the
northern and southern anticyclones.
[21] The FVCOM error convergence rate is given as a

function of horizontal resolution in Figure 4, where a log-
log plot of root-mean-square (RMS) sea surface elevation
error versus grid spacing is shown. The convergence trends
for different triangular grids are almost identical. The slope
of the fitting line is 2.24, giving the average FVCOM
convergence rate. Thus, as implemented, the spatial accu-
racy of the horizontal advective flux and pressure gradient
force in FVCOM is formally second-order. The small
disparity may be attributed to the fact that a high-resolution
numerical solution, instead of a true analytical solution, is
used to calculate the RMS error in surface elevation.
[22] The error metrics of ROMS experiments for the

Rossby soliton test problem, with zero explicit viscosity,
are cited from the ROMS website and are reproduced in
Table 1 using the same numerical ‘true’ solution as used in
the analysis of FVCOM. The accuracy of the advection
scheme used in ROMS experiments is fourth-order. Since
ROMS uses a symmetric grid in its simulations, it yields
two identical anticyclones in the northern and southern
channel. From Table 1, it can be seen that when the
horizontal resolution is coarse (i.e., dx = 0.25), the fourth-
order advection scheme used in ROMS shows less anticy-
clone amplitude decay than the second-order advection
scheme used in FVCOM. On the contrary, the phase speed
of the soliton wave is better simulated by FVCOM with the
symmetric grid (grid A). As the horizontal grid size reduces
to 0.125, FVCOM and ROMS results are very close in both
peak amplitude and wave celerity. When the grid size is
reduced to 0.05, FVCOM and ROMS metrics are almost
identical, regardless of the type of triangular grid used by
FVCOM. The convergence of numerical solutions of dif-

ferent models justifies our practice of using a high-resolu-
tion numerical solution as the ‘true’ solution in error metrics
calculation.
[23] FVCOM has second-order spatial accuracy, while

ROMS has several high-order options in its advection
scheme. We believed that second-order is an appropriate
compromise between numerical accuracy and computation-
al efficiency for real ocean applications, even though an
effort is being made to introduce the high-order Discontin-
uous Galerkin Method (DGM) [Reed and Hill, 1973] into
FVCOM. In the presence of large gradients or fronts, the
basic philosophy behind FVCOM model design is to refine
the grid resolution in regions of interest and not elsewhere,
making use of the flexibility provided by the unstructured
triangular grid. As an example, one experiment (Table 1, the
FVCOM experiment with variable dx) is conducted in
which horizontal grid mesh has a resolution of dx = 0.05
in the soliton traverse region and on the order of dx = 0.5
outside that region. It can be seen that the error metrics of
this experiment are exactly the same as the group of
experiments with dx = 0.05 uniformly. However, the com-
putation time for the former is only about one third of the
latter. The saving in computer time in this case is signifi-
cant. In general for problems with localized flow phenom-
ena, significant computational saving can be achieved by an
efficient distribution of mesh resolution.

4. Hydraulic Jump Case

[24] This test problem consists of supercritical fluid flow
through a channel with a constriction. The flow accelerates
when it encounters a sudden change in channel cross
section, resulting in the formation of a straight-line hydrau-
lic jump emanating from the ramp corner [Alcrudo and
Garcia-Navarro, 1993; Choi et al., 2004]. It is a good test
case for examining the numerical model’s advection scheme
in simulating a discontinuous solution.
[25] The model domain is a zonal channel 40 m long and

30 m wide bounded by rigid walls on northern and southern
sides and open through an inflow boundary in the west and
an outflow boundary in the east (Figure 5). There is a
constriction bearing an angle of 8.95� to the horizontal. The
water depth H is 1.0 m everywhere. Initially the along-
channel velocity component u0 is chosen to be the same as
the inflow value (8.57 m s�1), the cross-channel velocity
component v0 and surface elevation z0 are zero. This
corresponds to the Froude number Fr = juj/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g H þ zð Þ

p
=

2.74. At the western open boundary, u, v, z are fixed at
8.57 m s�1, 0.0 m s�1, 0.0 m. At the eastern open boundary
a zero-gradient condition is employed for the three varia-
bles, although no boundary condition is in principle re-
quired because the flow is supercritical. At the northern and
southern solid boundaries, no-normal flow conditions are
used. For this case, the inviscid shallow water equations
without Coriolis force (equations (1), (2), and (3)) are
employed. The steady state analytical solution downstream
of the jump is zd = 0.5 m, ud = 7.956 m s�1, and Frd =
2.074; and the angle of the jump is 30� to the east-west
direction (Figure 5).
[26] The following metrics of the numerical solution are

considered: (1) the minimum z value in the domain (indi-
cating undershooting), (2) the maximum z value in the

Figure 4. A log-log plot of RMS error of sea surface
elevation versus grid size for the Rossby equatorial soliton
test problem. The slope of the fitting line, 2.24, shows the
FVCOM convergence rate.
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domain (indicating overshooting), (3) the mean z value
downstream of the jump, (4) the mean velocity downstream
of the jump, (5) the angle of the jump, (6) the mean
deviation of the simulated jump from the theoretical line,
and (7) the mean thickness of the jump.
[27] These metrics are evaluated in the same way for both

FVCOM and ROMS solutions as follows:
[28] 1. For (1) and (2), the global minimum and maxi-

mum z values are calculated in the computational domain.
[29] 2. For (3) and (4), the mean values are evaluated by

first defining a triangular region, 1 m away from the shock,
ramp and outer boundary and then taking an area-weighted
average of the quantities in this region. Only full grid cells
are used in the mean value calculations after checking that
their centroids lie within this triangle.
[30] 3. For metrics (5), (6), and (7), 101 cross sections in

the y direction are selected that are uniformly distributed
between 3 m after the ramp corner and 3 m ahead of the
outflow boundary. The x, y locations of z = 0.25 m are
searched via linear interpolation on each section. A straight-
line least squares fit is performed on the x, y values, and (5)
is recovered from the line slope. As the exact angle of the
jump (30�) is known, the exact y values of the jump on each

section can be evaluated, from which (6) can be extracted.
The jump thickness (7) is evaluated by searching for the y
coordinates of z = zR and z = zL (zR = 0.375 m, zL =
0.125 m) also via linear interpolation and then taking their
differences.
[31] The error metrics of FVCOM experiments, using a

C-type triangular mesh (Figure 1d), are summarized in
Table 2. As can be seen, with no explicit viscosity there
are finite-amplitude oscillations in surface elevation field
near the hydraulic jump, which cause FVCOM solutions to
overshoot (zmax > 0.5 m) and undershoot (zmin < 0 m).
These oscillations can be clearly seen in the cross-section
view (Figure 6). An increase in the horizontal resolution
does not ameliorate this problem. However, the overshoot-
ing and undershooting do not significantly affect the mean
elevation or velocity magnitude downstream of the hydrau-
lic jump, as they are very close to the theoretical values
regardless of grid refinement. The angle of the discontinuity
shows no obvious improvement with grid refinement either.
Nevertheless, the mean deviation of the jump position and
the jump thickness is greatly improved with increased
horizontal resolution (Table 2 and Figure 6).
[32] It is well known that higher than first-order discrete

schemes generally produce Gibbs oscillations in regions of
unsolved gradients in the solution [LeVeque, 2002]. This is
the reason for the appearance of overshooting and under-
shooting at a discontinuous transition edge in the above
experiments. Without special treatment, spurious oscilla-
tions exist in finite-difference methods [Haidvogel and
Beckmann, 1999], in finite-element methods [Johnson,
1987], as well as in finite-volume methods [LeVeque,
2002]. Two methods are used here to suppress the oscil-
lations near the discontinuity. The first is to introduce
explicitly a numerical viscosity. Though FVCOM uses the
Smagorinsky horizontal viscosity in default, in order to
make the result comparable to ROMS output a constant
coefficient harmonic horizontal viscosity is added to the
shallow water equations (equations (1), (2), and (3)).
Numerical experiments show that the overshooting and
undershooting do indeed reduce with the increased viscosity
(Table 2). Finite-amplitude oscillations become small am-
plitude ripples (Figure 7). However, the mean surface

Figure 5. Schematic diagram of the hydraulic jump test
problem. The constriction angle between the deflected wall
and the x axis is 8.95�; the shock angle between the shock
line and the x axis is 30�.

Figure 6. FVCOM calculated sea surface elevation along the section at (solid line) x = 25 m in the
hydraulic jump test problem. (a) dx = 0.5 m, (b) dx = 0.25 m, and (c) dx = 0.125 m. All three cases are
without horizontal viscosity. Dashed line is the analytical solution.
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elevation and mean velocity downstream of the jump are
somewhat sensitive to the value of viscosity coefficient used
and deviate from the exact solution. The shock angle and
the mean deviation of the jump position are almost unaf-
fected comparing to the zero viscosity case. The most
conspicuous change is in jump thickness, which nearly
doubles with the increase in viscosity (Table 2).
[33] The second method used in FVCOM, which is able

to capture shocks without introducing explicit viscosity, is
called multidimensional slope limiting [Barth and Jespersen,
1989; Hubbard, 1999]. First-order upwind methods are
known to be monotone and resolve discontinuities without
producing any oscillations. However, in smooth portions of
the flow, first-order accuracy is generally not sufficient.
Second-order methods such as those used in FVCOM give
better accuracy in smooth flow, but produce oscillations in
the vicinity of discontinuities. Multidimensional slope limit-
ers are designed to be second-order accurate in smooth
portions of the flow and reduce to a first-order upwind
scheme near discontinuities. In this manner, higher-order
monotone methods are constructed. Applying the slope
limiter described by Hubbard [1999] to FVCOM, numerical
experiments show that the overshooting and undershooting
are completely suppressed near the discontinuity (Figure 8).
In addition, slope limiter method yields similar accuracy on
mean elevation and velocity after the jump, the jump angle,
and the jump location when comparing with the cases with
horizontal viscosity. The main difference lies in the jump
thickness, which is thicker in the former case. For example,
when dx = 0.5 m the jump is 0.773 m thick for a horizontal
viscosity coefficient of 0.6 while it is 0.888 m for the slope
limiter experiment; the thickness is 0.154 m and 0.226 m,
respectively, when dx = 0.125 m.
[34] ROMS numerical experiments for this test problem

as given in the ROMS website are reproduced in Table 2.
All of the ROMS numerical computations listed on that
website require numerical viscosity without which the
steady state cannot be achieved (long-period oscillations
persist in the volume-averaged kinetic and potential ener-
gies). This is different from the FVCOM experiments, in

which a steady state can be reached without any explicit
horizontal viscosity (Figure 9).
[35] With the inclusion of a constant coefficient harmonic

horizontal viscosity, ROMS-computed results also display
overshooting and undershooting that are on the same order
as FVCOM results computed with the same viscosity. For
some other error metrics, ROMS experiments show rela-
tively larger errors than the corresponding FVCOM experi-
ments. For example, the area-mean elevation after the jump:
theoretical value is 0.5 m; in the FVCOM results, the values
lies between 0.497 m and 0.508 m; and in ROMS between
0.478 m and 0.491 m. For the jump angle: the theoretical
value is 30�; in FVCOM results the value lies between
29.960� and 30.129�; and in ROMS ranges from 29.331� to
29.364�.
[36] In this hydraulic jump test case, FVCOM shows

better agreements to the analytical solution than ROMS
does. The difference results mainly from the employment of
slope limiters in the FVCOM flux formulation. When the
test cases were completed with ROMS, slope limiters (or

Table 2. Error Metrics of the FVCOM and ROMS Numerical Solutions for the Hydraulic Jump Test Casea

dx (m) dt (s) zmin (m) zmax (m) (zd)mean (m) (ud)mean (m s�1) Angle (�) jdyj (m) Thickness (m)

Exact solution 0 0.5 0.5 7.956 30 0 0

FVCOM
visc = 0 0.5 0.002 �0.269 0.688 0.500 7.949 29.952 0.111 0.305
visc = 0 0.25 0.001 �0.268 0.697 0.499 7.951 30.030 0.063 0.151
visc = 0 0.125 0.0005 �0.272 0.696 0.500 7.951 30.029 0.037 0.076
visc = 0.6 0.5 0.002 �0.023 0.500 0.497 7.953 29.960 0.106 0.773
visc = 0.3 0.25 0.001 �0.047 0.514 0.508 7.925 30.129 0.129 0.320
visc = 0.15 0.125 0.0005 �0.057 0.515 0.506 7.940 30.093 0.071 0.154

ROMS
visc = 0.6 0.5 0.002 �0.020 0.497 0.478 7.974 29.331 0.133 0.887
visc = 0.3 0.25 0.001 �0.028 0.512 0.487 7.955 29.339 0.098 0.431
visc = 0.15 0.15 0.0005 �0.050 0.541 0.491 7.945 29.364 0.125 0.213

aNote: dx is the nominal horizontal resolution of the grid (triangle edge length in FVCOM), dt is the time step; zmin and zmax are the minimum and
maximum surface elevation in the domain, (zd)mean and (ud)mean are the mean surface elevation and mean velocity downstream of the jump, Angle is the
angle of the jump, jdyj is the mean deviation of the simulated jump from the theoretical line, and Thickness is the mean thickness of the jump. The method
to calculate (zd)mean, (ud)mean, Angle, jdyj, and Thickness is described in section 4. ROMS results are cited from the Rutgers IMCS Ocean Modeling Group
(Rutgers IMCS Ocean Modeling Group data are available at http://marine.rutgers.edu/po/index.php?model=test-problems&title=supercritical). The
parameter visc is the harmonic horizontal viscosity coefficient used in both FVCOM and ROMS experiments.

Figure 7. FVCOM calculated sea surface elevation along
the section at (solid line) x = 25 m in the hydraulic jump test
problem (a) without horizontal viscosity and (b) with
horizontal viscosity. Dashed line is the analytical solution.
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flux limiters) were not available in the coding, although
with some effort they could be implemented. In addition,
ROMS is no longer a finite-volume model when curvilinear
grid is used in this test case because of the inclusion of
curvature terms and the approximation used in the calcula-
tion of area of its control volume. Finite-volume methods
are able to naturally resolve the jump conditions across a
discontinuity exactly when applied to the solution of hy-
perbolic conservation laws [LeVeque, 1990]. It is for this
reason that development of finite-volume methods has been
closely associated with computational fluid dynamics appli-
cations involving sharp discontinuities and shocks. In geo-
physical fluid dynamics problems, true discontinuities are
not normally present, but strong fronts can evolve, and their
accurate solution is a concern. This case illustrates that
FVCOM has some advantages in this regard.
[37] To further illustrate the local refinement capacity of

FVCOM, an experiment with variable grid size is designed
in which the triangle sides are on the order of 0.075 m along
the shock line and gradually increase to 0.5 m away from
the shock (Figure 8b). A slope limiter is used in the
calculation. In this experiment the simulated jump thickness
is less than half of that in the experiment with uniformly dx =
0.125 m (Figure 8a). Using the variable grid size, this
experiment increases the numerical simulation accuracy
while decreasing the total number of triangular cells in the

domain. Thus, the computation time is reduced by more than
half.
[38] One caveat concerning the present FVCOM-ROMS

comparison is that the results represent the capabilities of
the solvers at one point in time. Both models have active
model teams and are thus in constant state of improvement.
Since the completion of the present validation experiments,
a third-order upwind scheme has been added to ROMS as a
spatial flux discretization. This scheme is quasi-monotonic
and weakly dissipative and the performance of the operator
greatly exceeds that of the second- or fourth-order operators
used in this paper [Haidvogel et al., 2008]. However, at the
current time, no updated results for these test cases are
available.

5. Three-Dimensional Wind-Driven Basin Case

[39] This test problem describes a three-dimensional,
linear, homogeneous, wind-driven flow in a rotating basin
[Winant, 2004]. It is a rare case in which an analytical
solution exists for a three-dimensional basin flow and is
used here to verify the accuracy of FVCOM’s implicit
vertical viscosity scheme. Considering a rectangular closed
basin with length 2L (�L � x � L) and width 2B (�B � y
� B) on an f plane (Figure 10), the three-dimensional
linearized governing equations for the steady flow are

Figure 8. FVCOM calculated sea surface elevation with (a) uniform grid size (dx = 0.125 m) and
(b) variable grid size (dx = 0.075 m near shock and dx = 0.5 m away from shock) in the hydraulic jump
test problem. A slope limiter is used in the calculation.
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r 	~vþ wz ¼ 0 ð5Þ

f~k �~v ¼ �grhþ Km

@2~v

@z2
ð6Þ

where ~v(x, y, z) is the horizontal velocity vector and other
variables are conventional. The boundary conditions are
specified as

~vz ¼
~ts
rKm

and w ¼ 0; at z ¼ 0 ð7Þ

~v ¼ 0 and w ¼ 0; at z ¼ �h ð8Þ

Un ¼ 0; at x ¼ �L and y ¼ �B ð9Þ

where ~ts is the surface wind stress and Un is the vertically
averaged volume transport normal to the solid lateral
boundaries.
[40] Equations (5) and (6) can be solved analytically

[Winant, 2004]. The solution procedure consists of two
steps. In the first step, the three-dimensional structure of
the horizontal velocities (u, v) are obtained as a function of
sea surface elevation gradients by solving the Ekman
equations (6) with boundary conditions (7) and (8). To
obtain the surface elevation field in the second step, the

vertically averaged momentum equations and continuity
equation are used to derive the controlling equation for
the transport stream function (equation (23) in Winant,
2004). To solve this equation, one only needs to impose
the condition that the transport across lateral boundaries is
zero (equation (9)).
[41] The bathymetry of this problem is given by

h ¼ h0 0:08þ 0:92  X x=Lð Þ 1� y=Bð Þ2
� �h in o

;

� L � x � L;�B � y � B ð10Þ

where X(x) is a function of the form

X xð Þ ¼
1; xj j < 1�Dx

1� xj j � 1þDx

Dx

	 
2
; xj j � 1�Dx

8<
: ð11Þ

and Dx is a constant specified as 0.3% of the total length of
the basin.
[42] In all numerical experiments, the basin is 200 km long

and 50 km wide (i.e., L = 100 km and B = 25 km). The
Coriolis parameter is taken as a constant value of f = 10�4 s�1.
The vertical eddy viscosity is set to the constant Km = 4 �
10�3 m2 s�1. The maximumwater depth h0 = 50 m. The wind
stress is specified in the x-direction and wind forcing is
linearly ramped up to a constant value of tx = 0.1 Pa over a
2 day period.
[43] The analytical solution is derived on the basis of the

no-slip bottom boundary condition (equation (8)), whereas
there is no corresponding condition in FVCOM and ROMS.
The bottom boundary condition commonly used in ocean
models usually assumes that the bottom stress is propor-
tional to the near-bottom velocity or velocity squared. In
order to make both model simulations conform closely to
the no-slip condition, the bottom stress is parameterized as

t
*
b ¼ rKm

@ u
*

@z
� rKm

u
*
KB � 0

Dh
¼ rKm

u
*
KB

Dh
ð12Þ

where ~uKB is the velocity vector at the lowest model level
and Dh is the distance between the lowest model level and
the ocean bottom. Thus, the linear friction coefficient can be

Figure 9. Time series of volume integrated kinetic energy
and available potential energy in FVCOM experiment of dx =
0.125 m and no explicit viscosity.

Figure 10. Schematic diagram of the three-dimensional
wind-driven basin test problem.
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defined as Km/Dh. Another method, which recovers the no-
slip condition from a linear drag law, is to define the drag
coefficient to be a very large number (M. Iskandarani et al.,
The importance of being viscous; or, how the hydrostatic
primitive equations enforce lateral boundary conditions,
submitted to Ocean Modeling, 2008). However, this method
makes ~uKB approach zero instead of the velocity at the
ocean bottom. Therefore, the deviation from the analytical
solution is larger in the latter case than in the former. The
results reported below are all from numerical experiment
runs with condition (12).
[44] Performance of the FVCOM and ROMS models is

evaluated by comparing to the following characteristics of the
analytical solution: (1) the horizontal structure of the trans-
port stream function, and (2) the vertical cross sections of u, v,
and w in the middle of the basin (x = 0). To explore the
sensitivity of FVCOM simulations to different unstructured
meshes, two kinds of grids are used in the calculations (grid A
and B in Figure 1). ROMS results are computed on a regular
rectangular grid. Numerical experiments for both models
show that the model solution approaches a steady state in
less than 10 simulation days. Hence, the model output at day
10 is used to compare with the analytical solution.
[45] Tables 3 and 4 summarize the FVCOM and ROMS

error metrics for various experiments. The FVCOM solu-
tions are obtained using a symmetric grid (grid A). One
interesting feature worth noting is that for FVCOM the L2
norm of the transport stream function error decreases when

the horizontal resolution is increased and vertical resolution
is fixed (Table 3) while this error is less sensitive to the
change in vertical resolution (Table 4). On the contrary,
the same error for ROMS experiments is more sensitive to
the reduction in vertical spacing (Table 4) and it does not
decrease at all when only horizontal resolution is increased
(Table 3). A similar trend can also be found in the L2 and
L1 norms of the u, v, w errors in the midbasin section, as
well as in FVCOM runs employing the asymmetric grid
(grid B).
[46] The stream functions for analytical and numerical

solutions computed using 25 sigma layers are illustrated in
Figure 11. It can be seen that the structure of the northern
and southern gyres is symmetric for both ROMS and
FVCOM (with symmetric grid). The narrow regions
corresponding to the Stommel boundary layers and the
broad turning areas corresponding to the Sverdrup boundary
layers [Winant, 2004] are qualitatively well reproduced in
both models. The major difference lies in the predicted
maximum and minimum stream function values. The
FVCOM result is closer to the analytical solution than
the ROMS result. Similar conclusion can be drawn from
the comparison of model predicted u, v, andw distributions in
the midbasin cross section (Figure 12 and Table 3). However,
it should be pointed out that the difference between
FVCOM and ROMS results is not significant considering
the fact that, for example, the magnitude of u velocity in the
midbasin section is on the order of 20 cm s�1 and the

Table 3. Error Metrics of the FVCOM and ROMS Numerical Solutions for the Three-Dimensional Wind-Driven Basin Casea

dx (km) dy (km) s
kYk2

(103 m3 s�1)
kuk1
(cm s�1)

kvk1
(cm s�1)

kwk1
(10�3 cm s�1)

kuk2
(cm s�1)

kvk2
(cm s�1)

kwk2
(10�3 cm s�1)

P
(cm s�1)

FVCOM
Grid A

4 2 25 0.403 0.395 0.343 1.603 0.127 0.146 0.466 0.274
2 1 25 0.171 0.164 0.195 0.468 0.068 0.076 0.130 0.144
1 0.5 25 0.122 0.135 0.100 0.251 0.054 0.040 0.063 0.095

ROMS
4 2 25 0.598 0.955 0.527 1.231 0.271 0.166 0.297 0.438
2 1 25 0.567 1.051 0.401 0.759 0.305 0.136 0.201 0.441
1 0.5 25 0.694 1.080 0.400 0.660 0.314 0.129 0.182 0.443

aTwenty-five sigma layers are used for all runs. Note: dx and dy are the horizontal resolutions of the grid in the x- and y-coordinate, respectively (triangle
edge length in FVCOM); s is the number of sigma layer in the vertical; kYk2 is the root-mean-square of the differences between predicted transport stream
function and the analytical solution; kuk1, kvk1, and kwk1 are the L1 norm of u, v, and w error on the midbasin cross section, respectively; kuk2, kvk2,
and kwk2 are the L2 norm (i.e., root-mean-square) of u, v, and w error on the midbasin cross section, respectively;

P
= kuk2 + kvk2 + kwk2.

Table 4. Error Metrics of the FVCOM and ROMS Numerical Solutions for the Three-Dimensional Wind-Driven Basin Case, in Which

the Horizontal Resolution is Fixeda

dx (km) dy (km) s
kYk2

(103 m3 s�1)
kuk1
(cm s�1)

kvk1
(cm s�1)

kwk1
(10�3 cm s�1)

kuk2
(cm s�1)

kvk2
(cm s�1)

kwk2
(10�3 cm s�1)

P
(cm s�1)

FVCOM
Grid A

2 1 13 0.280 0.320 0.216 0.863 0.139 0.085 0.184 0.224
2 1 25 0.171 0.164 0.195 0.468 0.068 0.076 0.130 0.144
2 1 50 0.156 0.161 0.197 0.473 0.054 0.075 0.128 0.129

ROMS
2 1 13 0.808 1.421 0.735 0.968 0.483 0.217 0.248 0.700
2 1 25 0.567 1.051 0.401 0.759 0.305 0.136 0.201 0.441
2 1 50 0.477 0.850 0.273 0.616 0.234 0.109 0.172 0.343

aVariable definitions are the same as in Table 3.
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maximum value in u error (kuk1) is on the order of 1 cm s�1

for ROMS and 0.4 cm s�1 for FVCOM.
[47] In this simple test case, the symmetric grid (grid A)

generally yields better results than the asymmetric grid
(grid B). When the asymmetric grid is used, FVCOM experi-
ments show that the structure of the northern and southern
gyres is not symmetric. As we pointed out in the Rossby
soliton test case, when the horizontal resolution is low, no
matter what type of numerical model is used, the numerical
solution will depend on the grid distribution. The evaluation
of the accuracy of a model should be to test if the numerical
solution with an arbitrary grid will converge to the true
solution as the horizontal resolution is increased. This con-
vergence capability is demonstrated by FVCOM, in which
the asymmetry in the numerical solution in the grid B case is
gradually reduced and the model stream function converges
to the analytical solution as the horizontal resolution is
increased.
[48] The convergence rate estimated from the sum of

RMS errors of three velocity components (
P

in Table 3)
is approximately 0.84 for FVCOM experiments (Figure 13).
Even if we increase the horizontal and vertical resolutions
simultaneously, the corresponding convergence rate is still
significantly less than two (�1.14). The spatial accuracy of
the FVCOM external mode calculation is second-order,
which has been confirmed by the first test problem. By
design, the internal mode of FVCOM is also second-order
accurate. The less than second-order spatial accuracy dem-
onstrated by this test case is probably related to the
approximation in the treatment of the no-slip bottom
boundary condition. The numerical convergence rate for
ROMS experiments is also less than one, probably because
of the same reason.
[49] In this linear barotropic test problem, only the

numerics of the vertical eddy viscosity, the Coriolis force,

Figure 11. Comparison of the transport stream function for the analytical, FVCOM (using grid A) and
ROMS solutions. For both the FVCOM and ROMS experiments, 25 vertical sigma layers are used. The
contour interval is 0.005 � 106 m3 s�1. Solid lines represent positive values, while dashed lines represent
negative values.

Figure 12. Comparison of u, v, and w distributions at the
midbasin section (x = 0) for the analytical, FVCOM (using
grid A), and ROMS solutions. For both the FVCOM and
ROMS experiments, 25 vertical sigma layers are used.
Contour intervals are 5, 2, and 3 � 10�3 cm s�1 for u, v, and
w, respectively. Solid lines represent positive values, while
dashed lines represent negative values.

C07042 HUANG ET AL.: FVCOM VALIDATION

12 of 14

C07042



the barotropic pressure gradient force, the continuity equa-
tion, and the adjustment between the internal and external
mode are included. FVCOM and ROMS both use implicit
schemes similar to that used in POM for the computation of
vertical viscosity. The treatment of the Coriolis force and
the continuity equation are also analogous. Therefore, we
suspect that the difference in model sensitivity to the
horizontal and vertical resolution is probably related to the
numerical treatment of the barotropic pressure gradient term
and the adjustment between the internal and external modes.
Although the cause of this issue deserves further investiga-
tion, the finding from this test case should be instrumental
in the design and interpretation of real world applications.
[50] M. Iskandarani et al. (submitted manuscript, 2008)

pointed out the role played by the horizontal viscous term in
the specification of lateral solid boundary conditions, and
attributes the success of ROMS in simulating this horizon-
tally inviscid, wind-driven basin case to its ability being
‘‘able to tolerate one-grid-point lateral boundary layers.’’
We agree with them in that in order to get a physically
meaningful solution, additional term(s) omitted in the scale
analysis, such as the horizontal viscosity, need to be
included in order to satisfy the no normal flow boundary
condition. However, we do not think that the success of
ROMS in this problem is due to artificial numerical viscos-
ity as they suggest. For this linear problem, the analytical
solution can be derived under a condition of zero vertically
integrated transport normal to the wall, with no need to
enforce the zero normal current at the wall. FVCOM and
ROMS are solved similarly by the split-mode approach,
which automatically satisfies the zero vertically integrated
transport normal to the wall in the external mode. Because
of neglect of horizontal advection and viscosity, the zero
normal flow condition is not enforced in the calculation of

the 3-D velocity (i.e., the internal mode). This is the reason
why these two models can reproduce the analytical solu-
tions derived by Winant [2004].

6. Conclusion

[51] Comparison between the FVCOM-computed and the
analytical solutions for the three barotropic test cases
demonstrate that the unstructured-grid finite-volume method
used in FVCOM provides an overall second-order spatial
accuracy for the vertically averaged momentum equations
and the continuity equation (i.e., external mode). This
model shows the same convergence rate toward the analyt-
ical solutions with the increase of the horizontal resolution
regardless of the type of triangular grids.
[52] Comparison between the FVCOM and ROMS sol-

utions illustrates that for linear problems in simple idealized
domains, the accuracy of the two models is similar. In a
highly nonlinear case such as the Rossby equatorial soliton,
the second-order advection scheme used in FVCOM is
almost as accurate as the fourth-order advection scheme
used in ROMS if the horizontal resolution is relatively high.
Nevertheless, the current version of FVCOM has its advan-
tage over the current version of ROMS in dealing with
discontinuities or large gradients in the solution. Many new
numerical techniques in the field of computational fluid
dynamics can be used in FVCOM to further improve its
performance in this regard.
[53] The three-dimensional wind-driven basin case shows

that FVCOM and ROMS simulations have quite a different
response to the refinement of grid size in the horizontal and
in the vertical. This finding should be taken into account in
model selection and the design of horizontal/vertical reso-
lution for realistic applications.
[54] All three test cases discussed in this study encompass

rectangular or polygonal domains. In general, the flexibility
of the unstructured triangular grid in approximating com-
plex coastal geometry makes FVCOM more suitable to
apply in coastal regions and estuaries characterized by
irregular coastal geometry. This has been demonstrated in
previous FVCOM validation experiments through compar-
isons with POM and ECOM-si [Chen et al., 2007]. In this
study, it is demonstrated that the ability of FVCOM to easily
make local grid refinement allows FVCOM to subsequently
achieve higher numerical accuracy and, at the same time,
higher computational efficiency. These merits are what the
structured-grid ocean models lack and what we believe
represent the future of coastal/estuarine modeling.
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