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Circulation and water properties and their relationship to
the oyster disease MSX in Delaware Bay

by Zhiren Wang1,2, Dale B. Haidvogel1, David Bushek3, Susan E. Ford3,
Eileen E. Hofmann4, Eric N. Powell3 and John Wilkin1

ABSTRACT
We apply a high-resolution hydro-dynamical model to investigate the role of physical factors influ-

encing infection prevalence of Haplosporidium nelsoni, causative agent of MSX disease in the eastern
oyster (Crassostrea virginica), in Delaware Bay, USA. Validation studies conducted for the years 2000
and 2010–2011 confirm that the model, based upon the Regional Ocean Modeling System, has sig-
nificant skill in the recovery of observed water level, temperature, salinity, and velocity. Multi-year
simulations are performed for periods representing temporal and spatial variations in H. nelsoni infec-
tion prevalence (1974–76, 1979–81, 1984–86, 1990–92, and 2006–09) to assess the degree to which
the variations in water properties and transport are temporally and spatially correlated with infec-
tion prevalence variations. Results show statistically significant correlations between the observed
prevalence of MSX and multiple physical factors including river flow and salinity (themselves highly
correlated), as well as the co-occurrence of elevated temperature and salinity values. Observed occur-
rences of high H. nelsoni infection prevalence at upbay locations correspond to periods of enhanced
cross-bay and upbay transport together with hospitable temperature and salinity conditions.

1. Introduction

Oysters (Crassostrea virginica) along the east coast of the United States are afflicted
with, and their populations limited by, a lethal disease caused by a water-borne protozoan
parasite, Haplosporidium nelsoni (Ford and Tripp, 1996; Powell et al., 2008). The disease is
called MSX disease after the acronym first given to the parasite (Multinucleated Sphere of
unknown affinity). The first recorded outbreak of MSX disease was in 1957 in Delaware Bay,
USA, where prevalence has continued to display significant spatial and temporal variability
(Ford and Bushek, this issue). Early surveys showed that infection prevalence decreased
along a decreasing salinity gradient (Andrews, 1966; Haskin and Ford, 1982). Subsequent
studies demonstrated that the plasmodial stage of H. nelsoni, which is most common in
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oysters, was very sensitive to low salinity and could be eliminated from oysters at salinities
<10 (Ford, 1985). In contrast, the spore stage of what is presumed to be H. nelsoni is widely
distributed throughout Delaware Bay (Barber et al., 1991) and recent molecular evidence
shows that the parasite can be present in upper bay and upper river sites (Ford et al., 2009;
Ford et al., this issue).

Previous analyses of the relationship between salinity and H. nelsoni infection prevalence
have been based on periodic salinity measurements or river flow records (Andrews, 1964,
1983; Haskin and Ford, 1982; Ford and Bushek, this issue). The availability of circulation
models based upon the Regional Ocean Modeling System (ROMS) now makes it possible to
investigate the relationship of water properties to MSX disease variability in Delaware Bay
more quantitatively than before. Salinity and temperature are the two physical factors most
likely to influence infection patterns in the bay (Ford and Haskin, 1982; Haskin and Ford,
1982). In the ROMS implementation described below, salinity in the oyster-growing area
is simulated from input of six rivers (not just the Delaware), as well as precipitation, evap-
oration, mixing, and advection. Temperature, which is estimated from heating (including
solar radiation), mixing, and advection,is the predominant correlate with seasonal infection
patterns in oysters (Ford and Haskin, 1982).

With ROMS, inter-annual variations in temperature and salinity can be investigated to
explore the effects of these two variables (see, e.g., Ford et al., 1999 and Paraso et al., 1999).
In addition, ROMS permits us to investigate the role of circulation patterns in potentially
moving infective stages from downbay (where prevalence is higher) into upbay regions.
The method of transmission of H. nelsoni is unknown. To date, attempts to experimentally
transmit the parasite from infected to uninfected oysters have failed and an alternate host or a
vector may be involved in the life cycle (Haskin and Andrews, 1988; Ford and Tripp, 1996).
A novel aspect of the circulation model is that it provides a means to test the hypothesis
that H. nelsoni is distributed as a passive particle as opposed to a mobile host or vector with
specific, nonpassive behavior.

The outline of this paper is as follows. In Section 2, the implementation and validation
of the Delaware Bay model is described. Section 3 considers the inter-annual variability of,
and correlations among, H. nelsoni infection prevalence in oysters, river flow, temperature,
and salinity. Section 4 examines variability in particle transport from the lower to the upper
bay. Conclusions and discussion are offered in Section 5.

2. The Delaware Bay model

The circulation model used in this study is the Regional Ocean Modeling System (ROMS,
www.myroms.org). ROMS solves the three-dimensional hydrostatic primitive equations
in terrain-following vertical coordinates using split-explicit time stepping. Computational
features of importance to the simulations described below include greatly reduced pressure
gradient error arising from the terrain-following coordinate, a quasi-monotone advection
algorithm for the temperature and salinity fields, and alias-free coupling of the barotropic and

http://www.myroms.org
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Figure 1. The Delaware Bay model implementation: (a) cross-bay spacing (m) and 11 water level
stations (numbers); (b) along-bay spacing (m), 6 river inputs and 9 Versar salinity-temperature
stations (numbers); and (c) bathymetry (m), locations of Delaware Bay Mooring Deployment
Program (DBMDP) moorings (A, C1–C14, D), the along-bay survey locations (pink dots), and the
atmospheric forcing stations (black dots). The pink boundary lines indicate the open boundaries.
The depths of the water level sampling stations 1 to 11 are 10.2, 6.4, 3.2, 8.2, 5.3, 2.5, 7.4, 17.5,
4.0, 5.1, and 5.5 m, respectively. The depths at the Versar stations 1 to 9 are 6.1, 6.1, 6.5, 6.0, 4.8,
5.9, 5.4, 4.5, and 5.7 m respectively.

baroclinic modes. Shchepetkin and McWilliams (2005) describe in detail the algorithms that
comprise the ROMS computational kernel. ROMS has been developed for, and successfully
applied to, a wide variety of coastal marine applications, including many studies of coastal
and estuarine circulation (e.g., Warner et al., 2005; Liu et al., 2009; Zhang et al., 2009).

a. Model configuration

The Delaware Bay model has the following attributes. A horizontal grid of 98×386 cells
uses orthogonal curvilinear stretching to enhance horizontal resolution in the bay and tidal
river compared to the adjacent coastal ocean where the domain extends to approximately the
50 m isobath (Fig. 1)5. The modeled Delaware River extends as far as Trenton, NJ, the head
of the tidal regime and the location of the USGS river flow monitoring station. For the lower
bay from about the Schuykill (∼39.8◦N) to the mouth of the bay (∼38.7◦N), the depth of
the water column ranges from approximately 3 m to 30 m, and the horizontal spacing ranges
from 300 m to 1500 m. There are 20 vertical levels in a generalized topography-following
coordinate weighted to give highest resolution near the sea surface. The minimum water
depth is 2 m (Fig. 1c). The time step is 60 seconds and the barotropic mode is temporally
integrated 25 times within each baroclinic step. Other settings include: advection via the

5. To minimize the number of “land” cells within the ROMS grid, the river cells above 39.8◦N have been folded
back onto the grid to the south. The results below will be shown in the correct, unfolded geometry.
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recursive MPDATA algorithm (Smolarkiewicz and Grabowski, 1990), turbulent mixing
using the Generic Length Scale (GLS) scheme (Umlauf and Burchard, 2003) with k-kl
closure parameters (Mellor and Yamada, 1982), and radiation conditions (Marchesiello
et al., 2001) at the open boundaries where salinity and temperature are treated using a
zero-gradient condition.

b. Simulations conducted

A total of 19 years of simulation have been conducted for two primary purposes: for
model validation (years 2000 and 2010–2011; see Section 2c and the Appendix) and for
exploration of inter-annual variations in observed H. nelsoni infection prevalence (years
1974–76, 1979–81, 1984–86, 1990–92, and 2006–09; Sections 3 and 4). In addition, various
sensitivity studies have been carried out to assess operative dynamics and the influence of
alternate parametric choices, including the following simulations:

• 2000A) enhanced vertical resolution: A simulation has been conducted for the year
2000 having double the vertical resolution (N = 40). This modification makes neg-
ligible difference to model skill or to the results reported below.

• 2000B) alternative values for the ROMS water type: “water type” regulates the ver-
tical penetration of solar shortwave radiation. After sensitivity studies employing
alternative values for the water type, a water type of 7 was identified as the best
choice. See Section 2c.

• 2008A) no wind: To investigate the role of wind forcing, a simulation for 2008 has
been carried out with atmospheric wind stress removed.

• 2008B, 2011B) increased bottom stress: To examine the role of bottom stress in
regulating the amplitude of the tidal currents, we have re-run years 2008 and 2011
with a bottom resistance coefficient increased by 50%.

Further discussion of these sensitivity studies is offered below.

c. Forcing data

ROMS is forced by the following inputs: 6-hourly atmospheric fluxes (for the 1974–
76 simulation) from the ERA-40 data of European Centre for Medium-Range Weather
Forecasting (ECMWF, http://data-portal.ecmwf.int) and 3-hourly atmospheric fluxes (for
all the other simulations) from the North American Regional Reanalysis (NARR; Mesinger
et al., 2006) input at six locations (Fig. 1c). Daily river transport from US Geological
Survey (USGS, http://waterdata.usgs.gov) is introduced at six locations (Fig. 1b). Annually
averaged river transport from the six rivers varies between 283 to 880 m3/s with the majority
(roughly 75%; Table 1) being contributed by the Delaware River and secondarily by the
Schuykill River (∼18%). Tidal elevation and currents at the domain perimeter with seven
tidal constituents (M2, N2, S2, K1, O1, M4, and M6) are provided from the North Atlantic
regional harmonic tidal simulation (Mukai et al., 2002). No subtidal water level information
is provided at the open boundaries.

http://data-portal.ecmwf.int
http://waterdata.usgs.gov


2012] Wang et al.: Oyster disease MSX in Delaware Bay 283

Table 1. Annual mean freshwater discharge rate into Delaware Bay from the six rivers included in
the model (Fig. 1b). The mean values shown are for the entire period from 1974–2011.

Delaware Schuylkill Brandywine Maurice Rancocas Cohansey Total

year m3/s % m3/s % m3/s % m3/s % m3/s % m3/s % m3/s

1974 385 78.5 79.7 16.3 12.3 2.5 4.1 0.8 5.0 1.0 4.1 0.8 490

1975 449 73.4 123 20.2 20.3 3.3 6.5 1.1 6.2 1.0 6.5 1.1 612

1976 363 77.7 79.7 17.0 12.4 2.7 4.0 0.9 4.0 0.9 4.0 0.9 467

1979 446 73.9 109 18.1 25.4 4.2 7.6 1.3 7.8 1.3 7.6 1.3 604

1980 229 75.3 51.2 16.9 11.5 3.8 4.2 1.4 3.8 1.2 4.2 1.4 304

1981 225 79.3 43.0 15.2 6.7 2.4 2.9 1.0 3.1 1.1 2.9 1.0 283

1984 386 71.6 113 21.0 20.8 3.9 6.3 1.2 6.4 1.2 6.3 1.2 539

1985 249 77.8 53.2 16.6 8.4 2.6 3.4 1.1 2.7 0.8 3.4 1.1 320

1986 354 79.3 70.4 15.8 10.6 2.4 3.7 0.8 3.9 0.9 3.7 0.8 446

1990 387 77.3 86.4 17.3 12.5 2.5 4.7 0.9 5.3 1.1 4.7 0.9 500

1991 243 74.5 60.2 18.5 10.3 3.2 4.1 1.3 4.5 1.4 4.1 1.3 326

1992 266 76.7 61.6 17.8 9.1 2.6 3.1 0.9 4.0 1.1 3.1 0.9 346

2000 339 76 80.9 18.1 14.7 3.3 3.9 0.9 4.1 0.9 3.9 0.9 447

2006 482 77.0 114 18.3 14.8 2.4 4.8 0.8 5.1 0.8 4.8 0.8 625

2007 367 76.3 85.4 17.8 14.5 3.0 4.8 1.0 4.6 1.0 4.8 1.0 481

2008 435 80.2 85.5 15.8 11.6 2.1 3.3 0.6 3.6 0.7 3.3 0.6 543

2009 370 74.7 96.1 19.4 14.7 3.0 4.8 1.0 4.9 1.0 4.8 1.0 495

2010 364 75.4 85.1 17.6 15.9 3.3 6.1 1.3 5.4 1.1 6.1 1.3 483

2011 691 78.5 146 16.6 21.6 2.5 7.7 0.9 5.9 0.7 7.7 0.9 880

Mean 362 75.7 87.8 18.4 14.4 3 4.6 1 4.8 1 4.6 1 478

A summer-time discrepancy in heating rate was traced, in part, to the incoming solar
short-wave radiation. The solar shortwave radiation (hereafter, SSWR) from the North
American Regional Reanalysis was discovered to be systematically higher than concurrent
values given by the Delaware Environmental Observation System (DEOS). Comparing
5-min interval DEOS SSWR and 3-hr interval NARR SSWR within Delaware Bay for
the period 2005–2009 when both DEOS and NARR SSWR are available (Fig. 2) we find
ratios of DEOS to NARR SSWR of 77.4%, 77.1%, 76.7%, 76.2%, and 76.8% respectively
for winter, spring, summer, fall, and the whole year. The systematic difference is nearly
independent of season, so we make a simple correction in the simulations reported below
by reducing NARR SSWR by 20%.



284 Journal of Marine Research [70, 2-3

Figure 2. NARR and DEOS solar short wave radiation (Wm−2): (lower panel) locations of the DEOS
and NARR observing stations; (upper panel) mean annual variation in NARR (grey) and DEOS
(black) SSWR computed as an average over years 2005 to 2009. DEOS: Delaware Environmental
Observation System, NARR: North American Regional Reanalysis.

The temperature of the shallow water column is sensitive to the net heat flux, but also
to the depth scale assumed for solar radiation absorption. In ROMS, this absorption profile
is represented as two exponential functions following Paulson and Simpson (1977) with
parameters determined by an assumed “water type” that defines the fraction of incident
solar shortwave radiation flux penetrating the water column to a specified depth (z < 0):
Aez/B + (1−A)ez/C . Here, A is the relative amount of red light incident on the sea surface,
and B and C are attenuation lengths (m) for the red and blue-green bands, respectively. After
correction of the NARR SSWR data, sensitivity studies (2000B) showed ROMS water type
7 – corresponding to A = 0.5, B = 0.2 m, and C = 0.2 m – to produce the most accurate
hindcasts6. Water type 7 is consistent with the often turbid conditions over much of Delaware
Bay. (See also Cahill et al., 2008.)

6. Water type 7 confines SSWR absorption to a very shallow surface layer, thereby influencing the surface heat
and moisture budgets. When compared to water types 5 and 6, the use of water type 7 reduces summertime water
column temperatures by approximately 0.5 degrees and increases surface salinity by 0.1–0.3.



2012] Wang et al.: Oyster disease MSX in Delaware Bay 285

d. Model validation

We choose observations of water level, temperature and salinity in the year 2000, and
salinity, temperature and currents observed in 2010–2011 as the datasets for model val-
idation. These time periods were chosen because relatively good observations of water
properties and circulation are available.

The year-2000 water level observations are obtained from the National Water Level
Program (NWLP) and the National Water Level Observation Network (NWLON) at
http://tidesandcurrents.noaa.gov. There are eleven stations (Fig. 1a) in Delaware Bay where
the observed water levels are available. The recording interval is one hour.

Observed water temperature and salinity at one-meter from the bottom at the nine oyster
beds (Fig. 1b) in the year 2000 are provided by the Pre-Construction Oyster and Water
Quality Monitoring Study for the Main Channel Deepening Project [prepared by Versar,
Inc., http://www.versar.com]. Their recording interval is 15 minutes for the period 13 May–
12 November 2000 and from 8 March–12 April 2001. The temperature signals are dominated
by the seasonal cycle, while the salinity time series have both tidal and lower-frequency
components (not shown).

More recently, an array of instrumented moorings combined with shipboard surveys have
been deployed seasonally by the Delaware Bay Mooring Deployment Project (DBMDP;
Chant, personal communication, 2012). As shown in Figure 1c, the DBMDP included 16
moorings (A, C1–C14, and D) where salinity, temperature, and currents are observed at
multiple depths and with high temporal resolution. In addition, five along-bay surveys
(12–13 September 2010, 13–14 December 2010, 21–22 March 2011, 3–4 June 2011, and
16–17 September 2011) were conducted to observe the spatial structure of the salinity and
temperature fields from about 38.9◦N to 40.1◦N (Fig. 1c).

The results of the model validation study may be summarized as follows. A more complete
description of the findings is contained in the Appendix.

i. Water level (2000). ROMS does a highly skillful job in simulating water levels. For a
period of 204 days (11 June to 31 December, 2000) with 4896 hourly samples, skill scores
exceed 95% at all eleven water level stations. Tidal excursion, as measured by normalized
standard deviation of the simulated water level, is well predicted in the lower bay, but higher
than observed by approximately 30% in the upper bay. We discuss a possible cause for this
below.

ii. Water temperature (2000). Temperature time series at the nine Versar sampling sites
are dominated by the seasonal cycle. ROMS reproduces temperatures at the Versar sites
with great accuracy. Skill scores exceed 99% at all locations, and temperature variability
is also highly accurate. Bias in the temperature time series is within 0.4◦C, and typically
much less. The high skill reflects the fact that the temperature is dominated by the seasonal
cycle. The correlation coefficient between the observed and simulated temperature is above
0.99. It is reduced to 0.6∼0.95 (station-dependent) with the annual cycle removed. For the
shallow coastal water column, different incoming solar radiation levels make a significant
difference. The original NARR SSWR was initially observed to make the bay too warm by
about 0.6 to 1.4◦C (not shown).

http://tidesandcurrents.noaa.gov
http://www.versar.com]
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iii. Salinity (2000). Salinity time series at the nine Versar stations show strong contribu-
tions at both tidal frequencies and at longer periods associated with variations in freshwater
inputs. Salinity values decrease towards the upper bay and are closely tied to river inputs,
as shown more quantitatively below. The correlation coefficients between simulated and
observed salinities are higher than 0.8 at all but one station; the outlier is at station 1, the
most downbay location. Skill scores vary between 88% and 93%, except at station 1 (78%).
The standard deviations of simulated salinity are close to those observed. Finally, the sys-
tematic bias in salinity exceeds 1 at only one station; it is 1.1 at station 9, the most upbay
Versar station.

iv. Along-bay currents (2010–2011). For purposes of analysis, the simulated and observed
vector currents have been decomposed into their along- and across-bay components, as
determined by principal component analysis of the depth-integrated currents at each moor-
ing site. Statistical comparison of the observed and simulated depth-integrated, along-bay
currents at nine locations (moorings A, C1, 2, 6, 8, 9, 11, 14 and D – see Appendix) shows
high correlation (>0.85), high skill (>0.88%) and low bias (<0.10 m/s). However, current
variability is systematically high by between 10 and 40%, except at the upbay mooring A.
This is consistent with the over-estimation of water level variability noted above. If the bot-
tom resistance coefficient is increased by 50% (experiment 2011B), the comparison between
observed and simulated current variability is improved in the lower bay, but degraded in the
upper (not shown). A properly chosen spatially dependent bottom stress coefficient would
be required to simultaneously improve currents everywhere in the bay.

v. Along-bay structure of the temperature and salinity fields (2010–2011). In addition to
proper reproduction of temporal variability at points within the bay where time series are
available, it is important to examine the fidelity of the spatial structure of the simulated
fields. One such metric is the along-bay distribution of temperature and salinity, and their
vertical differences (i.e., the stratification). The data from the 5 along-bay DBMDP transects
in 2010–2011 allow us to examine these spatial issues. We are particularly interested to
determine if ROMS shows skill in the recovery of the along-bay location and vertical
(top-to-bottom) salinity difference in the salt wedge. This comparison shows that ROMS
again displays high correlation and skill, and low bias in the recovery of along-bay salt
stratification (Appendix, Fig. A2).

vi. Interpretation. The foregoing validation is reassuring. But are these results “good
enough?” The answer to this question is dependent on the purposes to which the simulated
tracer and velocity fields will be applied. In this issue, the simulated fields from the Delaware
Bay model are used for two types of studies. First, we utilize the simulations to inquire
into the relationships between water properties and the observed prevalence of MSX (this
contribution) and between those properties and observed food resources (Powell et al., this
issue). Second, model outputs (temperature, salinity, and currents) are used as inputs to the
oyster larval behavior studies of Narváez et al. (this issue, a,b). It is perhaps the latter larval
individual-based modeling (IBM) studies that place the greatest burden on the fidelity of
the simulated temperature and salinity fields. In the IBM, larval success depends sensitively
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on the ambient temperature and salinity values which the larvae encounter. Successful
reproduction of larval growth and behavior will depend on many factors, but environmental
fields accurate to within 1◦C in temperature and 1 in salinity would be a reasonable tolerance
to require given the details of the IBM (Narvaez et al., this issue, a). The validation studies
carried out here show the ROMS simulations to satisfy this requirement. We have already
noted above that tidal current amplitudes are dependent on the value of the bottom stress
coefficient. This is one area where an alternative formulation (e.g., a spatially dependent
stress coefficient) could offer an improvement. Nonetheless, as will be seen from sensitivity
study 2008B (Section 4), variations in the bottom stress do not materially alter the primary
transport pathways in the model.

3. Inter-annual changes in Haplosporidium nelsoni infection prevalence, river flow,
temperature and salinity

Haplosporidium nelsoni infection prevalence (hereafter, MSXP) has been assayed one to
two times per year on 5 sites in Delaware Bay (Arnolds, Cohansey, New Beds-Bennies, Egg
Island and Leased Grounds) since 1958, shortly after the initial outbreak. Between 1958
and 2010, all beds were assayed in fall (October/November). From 1958 through 1991 the
beds were also assayed in spring (May). These months represent annual infection peaks
(Ford and Haskin, 1982). Figure 3 shows a time series of MSXP at five locations within the
bay, accompanied by a similar time series for Delaware River discharge at Trenton, New
Jersey. General patterns of MSXP include a systematic downbay increase, where higher
salinity favors the parasite, with lower values at the upbay locations. Freshwater inflow at
Trenton is larger in winter/spring by a factor of about two over summer/fall. Lastly, note
the reduced downbay prevalence of MSXP associated with the development of increased
resistance after 1987 (Ford and Bushek, this issue).

Prior studies (Andrews, 1964; Haskin and Ford, 1982) suggest that the upbay prevalence
of H. nelsoni is highly correlated with fluctuations in salinity, and therefore with freshwater
inflow. This relationship is strongest in the spring, when typically high freshwater inflow
depresses or eliminates H . nelsoni infections from oysters in the upper bay (Haskin and
Ford, 1982). When the spring runoff does not occur, infections persist, sometimes causing
catastrophic mortality (Ford and Bushek, this issue).

Rather than a single determining factor, we hypothesize that MSXP at upbay locations
is related to the co-occurrence of three factors. These are: (1) the availability of infective
elements (mostly likely from a downbay source), (2) a transport mechanism from lower-
to upper-bay locations, and (3) environmental conditions (i.e., temperature and salinity)
conducive to H. nelsoni survival and ability to proliferate in oysters. If any one of these
factors is lacking, then upbay MSXP will be reduced. For instance, if a source of infective
elements is not present, neither favorable transport nor favorable environmental conditions
will lead to significant MSXP in upbay oysters.

To investigate these hypothesized relationships, we have selected five multi-year periods
for study. The periods selected for simulation represent temporal and spatial variations of H.
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Figure 3. Time series of spring (Dec–May, column 1) and fall (Jun–Nov, column 2) Delaware River
flow (m3/s, row 1) and Haplosporidium nelsoni prevalence (MSXP, %) at Arnolds, Cohansey, New
Beds-Bennies, Egg Island, and Leased Grounds (rows 2–6). The highlighted periods 1974–76,
1979–81, 1984–86, 1990–92, and 2006–09 are the five scenarios used for our comparison. MSXP
is defined as 100× number of infected oysters/number of oysters sampled.

nelsoni infections in oysters at these locations in relation to Delaware River flow measured
at Trenton, New Jersey (Table 2). The five periods, and their respective overall properties,
are: 1974–76 (average/above average river flow, low upbay MSXP), 1979–81 (average river
flow, low upbay MSXP), 1984–86 (average river flow, high upbay MSXP [especially 1985–
86]), 1990–92 (average river flow, high upbay MSXP [especially 1992]), and 2006–09
(average/above average river flow, elevated upbay MSXP in 2008). The particle transport
is simulated for period 2007–2009 and the effects on particle transport from winds and
enhanced bottom drag are further explored for 2008 when the MSXP is elevated upbay.

Mean wind vectors in spring (May–June, not shown) vary rather little across the 16 years
studied here. They are directed cross-bay from southwest to northeast at speeds of ∼1–2
m/sec in all but one year (1992, in which mean spring winds are weak and directed to the
northwest). The strongest cross-bay spring winds in our five periods occur in 1976 and 2008.
Mean winds in the fall (September–October) are weaker than in spring and more variable
in direction, though with a westerly component in all years but two (1984, 2009). As will
be shown below, particle transport in these simulations is primarily due to the combined
effects of riverine and tidal forcing, with wind forcing of secondary importance.

By contrasting these five periods, we hope to address several questions. These include
the following. How much variability in MSXP can be accounted for purely on the basis of



Ta
bl

e
2.

R
at

io
na

le
fo

r
se

le
ct

io
n

of
m

od
el

si
m

ul
at

io
n

pe
ri

od
s

ba
se

d
on

H
ap

lo
sp

or
id

iu
m

ne
ls

on
i

pr
ev

al
en

ce
(M

SX
P)

in
oy

st
er

s
in

D
el

aw
ar

e
B

ay
co

m
pa

re
d

to
D

el
aw

ar
e

R
iv

er
flo

w
m

ea
su

re
d

at
T

re
nt

on
,

N
ew

Je
rs

ey
.

Pr
ev

al
en

ce
w

as
as

se
ss

ed
us

in
g

tis
su

e-
se

ct
io

n
hi

st
ol

og
y

fo
r

th
e

fir
st

fo
ur

pe
ri

od
s

an
d

us
in

g
bo

th
hi

st
ol

og
y

an
d

po
ly

m
er

as
e

ch
ai

n
re

ac
tio

n
(P

C
R

)
fo

r
th

e
la

st
.

Pe
ri

od
19

74
–1

97
6

19
79

–1
98

1
19

84
–1

98
6

19
90

–1
99

2
20

06
–2

00
9

Pr
ev

al
en

ce
el

ev
at

ed
in

lo
w

er
ba

y,
re

du
ce

d
in

up
pe

r
ba

y
(S

am
e

as
in

19
74

–1
97

6)
ve

ry
hi

gh
w

ith
ex

tr
em

e
m

or
ta

lit
y

ve
ry

hi
gh

on
up

pe
rm

os
t

be
ds

in
19

91
–1

99
2,

lo
w

el
se

w
he

re

el
ev

at
ed

on
up

pe
r-

m
os

t
be

ds
in

fa
ll2

00
8

-s
pr

in
g2

00
9

R
iv

er
flo

w
av

er
ag

e
or

ab
ov

e
av

er
ag

e
be

lo
w

av
er

ag
e

19
80

–1
98

1
dr

ou
gh

tS
ep

19
84

-A
ug

19
85

be
lo

w
av

er
ag

e
fa

ll1
99

1
-s

pr
in

g1
99

2
av

er
ag

e
or

ab
ov

e
av

er
ag

e



290 Journal of Marine Research [70, 2-3

salinity variations, temperature, or both? Is there any evidence for the hypothesized role of
upbay passive transport? And finally, is there any evidence for limitation due to the absence
of a downbay source?

a. Variations in physical properties

Simulations of the water properties and circulation in Delaware Bay for the five multi-
year periods (1974–76, 1979–81, 1984–86, 1990–92, and 2006–09) have been conducted.
Subsequent statistical analysis was then employed to explore the quantitative relationships
among the variations of prevalence and physical conditions in the bay.

In addition to investigating the individual roles of salinity and temperature, we explore
a combined index, the “salty-warm water area” (SWA), which we define as the area of the
bay whose bottom salinity is higher than 17.5 and whose bottom temperature is higher than
12.5◦C. These values represent conservative estimates of the lower thresholds for H. nelsoni
proliferation in oysters (Ford and Haskin, 1982; Haskin and Ford, 1982). It will be noted
below that salinity and temperature are negatively correlated; therefore, the co-occurrence
of warm and salty conditions, while potentially beneficial to the proliferation of MSX, is
expected to be rare but did occur in 1984–1986.

Figure 4 displays time series for our five multi-year periods (16 years in total) of the
following physical properties: the total freshwater inflow of the six river inputs, the bottom-
average salinity at several locations within the bay (Arnolds, Cohansey, Egg Island, as shown
in Fig. 5), bay-average bottom temperature7, and salty-warm water area. Also shown are
anomalies for each of these quantities. Anomalies for temperature and SWA are obtained by
removal of a 16-year mean seasonal cycle; anomalies for salinity and river flow are formed
by removal of a 16-year mean value (i.e., by removal of a constant from the time series at
a given location).

Considerable inter-annual variation in the physical environment is evident. A brief sum-
mary of these variations is as follows:

• 1974–76: River input is the second highest among the five multi-year periods (47 m3/s
higher than the long-term mean of 478 m3/s). Salinity is slightly below the 16-year
average, with the most negative anomalies at Arnolds (−0.6) and Cohansey (−0.5),
the two uppermost sites sampled. The three-year-mean temperature is close to the
longer-term mean. SWA is near the long-term average.

• 1979–81: River flow is low (81 m3/s below the long-term mean) for an extended
period from May 1980 to January 1981 and from August to October of 1981. Mean
conditions in 1979-81 are both the saltiest (Arnolds, +1.6; Cohansey, +1.3; Egg
Island, +1.1) and coolest (−0.8◦C) of our five time windows. SWA is the smallest
of any of the multi-year periods.

7. Bottom temperature is highly correlated (0.98) with concurrent air temperature, and varies little across the
bay, except in the deep channel where it is somewhat warmer (0.5◦C) in winter and colder (2–4◦C) in summer.
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Figure 4. Ten-day-averaged time series (left scales) and their anomalies (right scales) for: a) the
total river discharge (m3/s); b,c,d) the simulated bottom salinity averaged within beds; e) bottom
temperature (◦C) averaged within the bay; and f) the salty-warm water area (SWA, km2). In (f),
the SWA (blue lines) refers to the area of the bay whose bottom salinity/temperature is higher than
17.5/12.5◦C. The anomalies are relative to the means within the sixteen years (1974–76, 1979–81,
1984–86, 1990–92, and 2006–09) with seasonality deducted only for temperature and SWA. Within
each frame, during yellow/green-shaded periods the anomaly is positive/negative continuously for
over twenty days. The blue number in each frame indicates the total mean within each scenario.

• 1984–86: River input in this three-year period is near the 16-year mean and both salin-
ity and temperature are “spot on” the 16-year mean values. SWA is high (+23 km2

larger than the long-term mean of 901 km2). Although the three-year means are near
the long-term average, there are identifiable periods of above- and below-average
salinities. Of particular significance is an extended period of above-average upbay
salinity from approximately July 1984 to September 1985 corresponding to a period
of reduced river inflow. An eight-month period, the longest of any of the multi-year
periods, of both warmer and saltier conditions starting from April till November
1985 was not broken by a significantly cold or fresh phase as they were in the other
four multi-year periods, making SWA persistently higher than average during this
period.
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Figure 5. Locations of the major oyster collection sites (black squares), released floats (colored
shapes), and transport/retention regions (separated by straight lines). There are 141, 194, 106, 59,
and 50 releasing grid points within the five circular areas (1–5, respectively). On each grid point ten
floats are released (five at bottom, five near bottom, at three-hour intervals) on each of the release
days: 1, 15 and 29 May, 12 and 26 June, 15 and 29 August, 12 and 26 September, and 10 October.
The color bar indicates the releasing depth (m) averaged between the two releasing layers. Six
regions (A, B, C, D, E, and F) are used to locate floats.

• 1990–92: On average, this three-year period is a bit warmer (+0.2◦C) and saltier
(Arnolds, +0.5; Cohansey, +0.5; Egg Island, +0.3). The latter is associated with
drier conditions (3-year mean river flow 86 m3/s below the long-term mean). SWA
is near normal.

• 2006–09 is the warmest period (+0.5◦C), and is accompanied by the largest river flow
(+55 m3/s). Given the increased river inputs, salinities are lower than in any other
period (Arnolds, −1.0; Cohansey, −1.1; Egg Island, −0.8). The averaged SWA is
enhanced above the long-term mean (+38 km2); however, no positive SWA anomaly
phase lasts longer than eight months as in 1985–86.

b. Correlation analysis

To examine the quantitative relationships between MSXP and accompanying environ-
mental conditions, we have performed a systematic correlation analysis, seeking significant
correlations between factors including: fall (June–November), spring (December–May) and
yearly MSXP; monthly, seasonal (DJF, MAM, JJA, and SON), and yearly river discharge
and simulated salinity and temperature. Correlations of total river flow integrated from the
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six rivers whose locations are shown in Figure 1b with MSXP are based upon seasonal
observations in 1958–2009, with the sample size being 52. The simulated salinity, tempera-
ture and SWA in 1974–76, 1979–81, 1984–86, 1990–92, and 2006–09 are used to correlate
with each other and with river discharge and MSXP with the sample size being 12 in spring
and 16 in fall. (Spring samples of MSXP are not available for the 2006–2009 period.)
The data availability of MSXP and the rationale for selection of model simulation periods
(Table 2) together dictate our data sample sizes.

Correlations among these variables have been computed for five locations within the bay:
Arnolds, Cohansey, New Beds-Bennies, Egg Island, and the Leased Grounds as shown in
Figure 5. Values for salinity and temperature have been obtained from the simulations by
averaging in a 2-by-2 km area centered on these locations. The seasonal cycles have been
removed from the bottom temperature and SWA since they are dominated by the seasonal
cycle.

We note that resistance of oysters to MSX develops after the early 1990s (Fig. 3; Ford
et al., this issue). The correlations described below have been obtained using all years for
which MSXP data are available; i.e., we have included MSXP values from the contemporary
period during which disease resistance appeared. The primary conclusions of the correlation
analysis are unchanged if the contemporary period is omitted.

i. Physical properties. Correlations have been obtained between the river flow (the sum
of the six rivers included here) and the 16-year simulated bottom salinity and bottom tem-
perature averaged in a two-by-two kilometer square around each of the above-mentioned
five areas. As expected, river flow and simulated salinity are highly negatively correlated
at all locations (mean correlation at the five beds −0.80). There is also a statistically sig-
nificant positive correlation between river flow and temperature in both winter/spring (five-
bed mean 0.62) and summer/fall (0.49), presumably a reflection of a positive relationship
between temperature and winter/spring snowmelt and summer/fall convection and precip-
itation. The negative river flow/salinity and positive river flow/temperature correlations
dictate a negative temperature/salinity correlation (five-bed mean −0.64).

ii. MSXP. Several correlations between the physical environment and MSXP are sta-
tistically significant at either the 90% or 95% confidence level (Table 3). We anticipate
that H. nelsoni proliferation will be discouraged by unfavorable concurrent environmental
conditions. In particular, lower values of salinity, or the associated enhanced river flow,
should be closely related to observed MSXP. From Table 3, we see that this assumption is
confirmed. Statistically significant negative correlations between spring (December–May)
MSXP and December–May river flow hold at three of the five beds (Cohansey, New-Bennies,
Leased Grounds). The correlation between MSXP and simulated salinity is also significant
at Arnolds.

New H. nelsoni infections are acquired, and residual infections begin to proliferate, in
late spring. Therefore river flow in the spring must also correlate with MSXP measured
in the fall of that year. Significant, though small, negative correlations with river flow in
the preceding spring are shown to hold for MSXP observed in the fall at two beds (Arnold
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Table 3. Correlation coefficients (Corr.), effective degrees of freedom (EDF), and confidence of
the correlations between Haplosporidium nelsoni infection prevalence (MSXP) and total river
flow input from the six rivers whose locations are shown in Figure 1b, and with salinity and
salty-warm water area at the Arnolds, Cohansey, New-Bennies, Egg Island, and Leased Ground
locations shown in Figure 5. The bold black and grey-shaded numbers indicate the correlations with
rejecting probability 5% or less and 5∼10%, respectively. The correlation coefficients have been
obtained using the Matlab functions corr and corrcoef. The effective degrees of freedom (Emery
and Thomson, 2004) are evaluated using the general formula given by Chelton (1983).

Spring river flow Spring salinity Spring river flow Directly preceding fall
/ Spring MSXP / Spring MSXP / Fall MSXP SWA / Spring MSXP

Locations Corr. EDF Corr. EDF Corr. EDF Corr. EDF

Arnolds −0.31 15.8 0.71 7.0 −0.29 32.1 0.01

Cohansey −0.46 14.0 0.48 8.3 −0.39 31.5 0.91 4.0

New Bennies −0.52 10.3 0.59 5.9 −0.29 29.5 0.92 4.2

Egg Island −0.48 7.3 0.46 5.3 −0.16 0.55 5.2

L. Grounds −0.27 36.0 0.38 9.0 −0.10 0.52 4.1

and New-Bennies; Table 3). In contrast to the highly significant correlation of river flow
(and therefore salinity), especially at the upbay locations, the correlation analysis indicates
that temperature by itself does not appear to play a significant role in MSXP variation. The
apparent explanation for this result is that temperature also negatively influences salinity
(64% negatively correlated). Elevated temperatures, by themselves, are generally conducive
to MSXP for the prevailing spring and summer temperature ranges in Delaware Bay (Ford
and Haskin, 1982). However, higher water temperatures are also associated with higher
riverine input (68% positively correlated) and reduced salinities, which are detrimental to
proliferation. The two effects counteract, with the result that temperature is not, by itself,
well correlated with MSXP.

Finally, the co-occurrence of warmer temperatures with more saline conditions is rel-
atively rare. However, when these conditions arise, as in 1984–86, the environment is
especially conducive to elevated MSXP. Indeed, from Table 3 we see that SWA is highly
correlated with MSXP at both Cohansey (0.91) and New-Bennies (0.92) and of somewhat
less significance at Egg Island and Leased Grounds. The elevated correlation with SWA
at mid-bay locations is due to the fact that variations in salinity about the value 17.5 are
greatest at mid-bay. The SWA metric has essentially zero explanatory power at upper-bay
sites such as Arnolds because salinity values rarely, if ever, exceed 17.5 at these locations.
(That is, the area covered by the salty and warm water never reaches the most upbay sites.)
Likewise, salinity values typically exceed 17.5 at the most downbay locations. There, the
correlations with the SWA metric are reduced because the water is always salty enough for
proliferation.
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c. Relationship to enhanced upbay MSXP

We have a particular interest in the occurrences of enhanced MSXP at upbay sites such as
Arnolds, and the mechanisms responsible for them. Among the fall surveys covered in our
16 years of simulations, there are three occasions in which noticeable year-to-year increases
in MSXP occur at Arnolds. These years are 1985, 1992 and 2008 (Fig. 3).

The significant correlations between MSXP and local environmental conditions detailed
above suggest that these three periods of elevated MSXP might correspond to years in
which conditions were particularly suitable to H. nelsoni proliferation. And indeed, the
time series shown in Figure 4 confirm that this was indeed the case for the fall 1985 and fall
1992 surveys. In both instances, the surveys were preceded by a lengthy period (>1 year)
of reduced river flow and correspondingly elevated salinity. While other causative agents
cannot be ruled out, it seems likely that conducive local conditions were responsible for
the upbay outbreaks in 1985 and 1992. (Note also that downbay sources of H. nelsoni, as
inferred from MSXP, were abundant in 1985. Lower downbay MSXP in 1992 is related to
the development of resistance to MSX disease after 1987, although this does not necessarily
mean a lack of infective elements, as discussed below.)

Unfortunately, the explanation of favorable environmental conditions does not so easily
fit the observations from the fall 2008 survey. While salinity is somewhat elevated in fall
2008, the preceding spring is anomalously wet and fresh. As in 1992, the low downbay
MSXP (Fig. 3) is a reflection of resistance not absence of H. nelsoni. In fact, the use of a
very sensitive molecular detection assay, polymerase chain reaction (PCR), showed a spike
in the presence of H. nelsoni in the environment in fall 2008, even though MSXP was only
marginally elevated (Ford et al., this issue). Different, or perhaps additional, mechanisms
besides beneficial environmental conditions must have been at work in 2008.

4. Particle transport between the lower and upper bay

Above, we have hypothesized that factors in addition to temperature and salinity – such
as the availability of an effective lower-bay source region, and an efficient upbay transport
mechanism – might also be related to the presence or absence of H. nelsoni in upper-bay
regions. Conversely, there could be an effective source and sufficient upbay transport, but
a lack of adequate environmental conditions or other factors necessary to produce and/or
maintain H. nelsoni infections (e.g., another host; Haskin and Andrews, 1988).

During a 3-year (2007–2009) study of potential disease refuges in the upper bay, the
presence of H. nelsoni was monitored using both histological and molecular methods (Ford
et al., this issue). The increased sensitivity of the PCR assay permitted detection of a partic-
ularly striking example of upbay incursion of H. nelsoni that occurred in summer/fall 2008.

Although the average upbay conditions in the overall period 2006–2009 were some-
what fresher and warmer than their respective longer-term means, the summer/fall months
(June through November) of 2008 were relatively salty (Fig. 4). These conditions would be
hospitable to H. nelsoni if a source to the upper bay were available.
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Here, we explore the simplest possibility: that the pulse of H. nelsoni infective elements
apparently introduced into the upper bay in the summer of 2008 is related to enhanced upbay
transport of passive particles8. To do so, we simulate the trajectories of passive particles9

released near and at the sea bed at the horizontal locations shown in Figure 5. The particles
are released at five locations within the bay (labeled 1 through 5 in Fig. 5), and during each
of three years (2007–2009) on ten different days (1, 15 and 29 May; 12 and 26 June; 15
and 29 August; 12 and 26 September; and 10 October). On each of these days the particles
are released five times at three-hour intervals to cover approximately one M2 period. The
number of particles released in each location 1–5 is proportional to the number of circles
shown in Figure 5.

The passive particles are tracked from their release time to 31 October of the year unless
they leave the water of the bay. The result is a set of time series of particle locations for
passively redistributed water parcels. These time series may then be subjected to analysis
to determine the likelihood that particles released at a given location will be transported
by either advection or mixing into other regions. The sub-regions for which this analysis
is performed are labeled A through F in Figure 5. We are particularly interested in the
pathways by which, and effectiveness with which, particles reach the upbay regions labeled
E and F.

a. General patterns of passive particle movement

Figure 6 summarizes the general patterns of particle redistribution in the passive particle
release experiments. The two panels display the three-year average (2007–2009) for particles
released on 1 May (left) and 29 August (right) and subsequently tracked for 60 days. We
choose these release dates to represent early- and late-season dates when infective elements
might be released during the infection period (∼June through early October) for H. nelsoni
in Delaware Bay (Ford and Haskin, 1982). Three-year mean passive particle trajectories
may be summarized as follows.

Particles released in the lower bay (at site 1 on the New Jersey side, and site 2 on the
Delaware side) are retained to a far greater extent than particles released from more upper-
bay sites. For example, of the particles released from site 1 in the Leased Grounds 46%
(May) and 43% (September) remain in the surrounding region B after 60 days. The retention
percentages for site 2 are comparable: 55% (May) and 36% (September). The relatively high
retention rates in the lower bay are explained by the circulation patterns that develop as the
bay widens. As the width increases in the lower bay, the strongest along-bay flows are found
to be confined to approximately the middle third of the cross-bay width. Regions of weak

8. We do not know if MSX is passive or neutrally buoyant because the infective stage or any free living stages
have not been identified. It is plausible that other factors may account for its movement such as buoyancy or
perhaps an intermediate host that can migrate to some degree.

9. Passive particles are both transported by the simulated three-dimensional velocity field, and mixed vertically
by a random walk process whose amplitude is obtained from the ROMS turbulent closure sub-model. The passive
particles have no active behavior.



2012] Wang et al.: Oyster disease MSX in Delaware Bay 297

Figure 6. Particle transport and retention percent on the 60th tracking day since release dates 1 May
(left) and 29 August (right). The numbers in the squares show the percent of particles released at
each of the sites 1–5 that reach each of the 6 sub-regions A–F after 60 days. Arrows with numbers
are the 60-day-average river discharge rates (m3/s) over the same period. Each panel is a three-year
average over the years 2007, 2008 and 2009. The colored squares are used to highlight the larger
numbers with an interval of 10%: grey 0–10, yellow 11–20, green 21–30, light blue 31–40, dark
blue 41–50, blue 51–60, and red 61–70%, respectively.

flow develop on either flank, increasing the residence times of particles released at these
locations. The increased residence times of passive particles in region B is consistent with
the hypothesis, based on elevated MSXP in Leased Ground oysters, that H. nelsoni infective
elements are concentrated in the lower bay and become diluted in an upbay direction (Ford
and Haskin, 1982).

The effectiveness of upbay particle transport varies considerably with the location of
particle release. Direct communication of particles from the lower bay to the upper bay
(e.g., from release site 1 to regions C through F) is inefficient. Rather, delivery of passive
particles to the upper-bay (regions E and F) is primarily from the Delaware side of the bay
at release location 4, with a lesser contribution from release sites 2, 3 and 5. The fact that
sites 2 and 5 are closest neighbors to site 4 suggests that passive particles from 2 and 5 that
successfully reach upbay locations may do so by first passing through the Delaware side of
region D near release site 4. This is clearly the efficient upbay path for particles released
at site 2, immediately downbay of site 4. But do particles released at site 5 reach upbay
regions via the New Jersey or the Delaware side of the bay? This will depend on the net
transverse circulation.
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Figure 7. Cross-bay sections of time-averaged currents for July 2011: (a) observed (DBMDP) cross-
bay component of vector current (m/s), (b) observed (DBMDP) along-bay component of vector
current (m/s), and (c) simulated vertical current (mm/s).The mooring locations C7–C12 are indi-
cated in Figure 1c. Positive values of the color-bar correspond to transport from Delaware towards
New Jersey [in (a)], upbay transport (b), and upwards transport (c).

Figure 7 shows the time-mean circulation July 2011 in the cross-bay plane at the location
of the DBMDP moorings (Fig. 1c). The time-mean circulation in the plane of the mooring
array is determined to be in the counter-clockwise sense. This residual circulation is con-
sistent with the primary route for simulated passive transport to the upper bay. Particles
released on the Delaware side of the bay are preferentially transported across and down
into the shipping channel, where transport upbay is enhanced. It also suggests that particles
from both sites 2 and 5 reach upbay locations, at least in part, via site 4.

Figure 8 shows the monthly cross-bay particle exchange between sites 4 and 5 in region
D, showing the percent of particles released at site 5 that successfully transit to the New
Jersey side of the bay, as well as those released at site 4 that arrive on the New Jersey side.
There are approximately net 8∼15% particles successfully transported from NJ side (site
5) to Delaware side (site 4).

Powell et al. (this issue) report on the spatial distribution of seston food resources for
oysters in Delaware Bay in 2009–2010. These analyses reveal that bay locations fall into
two primary groups, one covering the bulk of the sites on the New Jersey side of the bay
where seston values tend to fall below the bay-wide average and the other covering the sites
on the Delaware side of the bay where seston values are routinely higher. However, sites
associated with the uppermost New Jersey oyster beds [Arnolds and upbay; Powell et al.
(this issue, Fig. 1)] are consistently more similar to sites down-estuary on the Delaware side
of the bay than down-estuary on the New Jersey side. This similarity is consistent with the
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Figure 8. Monthly cross-bay particle exchange in region D. The solid (dashed) line shows the percent
of particles released at site number 4 (5) that successfully transit to the NJ (DE) side of the shipping
channel.

finding here of the tendency for passive particles released on the Delaware side of the bay
to preferentially reach upbay regions.

Lastly, it may be noted from Figure 6 that the patterns and percentages of passive transfer
display a substantial degree of spring-to-fall variation. For example, the net transport of
particles to upper-bay regions is enhanced by approximately 30% in fall (September) relative
to spring (May). This is qualitatively consistent with the normal seasonal variation in river
inflow, which is characterized by enhanced input in the spring. Interestingly, export of
passive particles from the Delaware side (site 2) to the open ocean is significantly greater
in fall than in spring despite the seasonal patterns in river discharge.

b. Inter-annual variability in particle redistribution

The type of information shown in geographical perspective in Figure 6 can be compactly
summarized in the form of a location probability matrix (LPM). In the LPM, the probability
that particles released at each of the five sites (1 through 5) will terminate in one of the six
Delaware Bay sub-domains (A through F) is tabulated in a 5-by-6 matrix. Figure 9 shows
a suite of LPMs for particle releases on May 1 and August 29 for each of the years 2007,
2008 and 2009.

As noted above, the primary route for passive particles to reach upbay regions is via
release site 4. However, a strong temporal dependence in the effectiveness of this transfer
pathway is indicated. If we use as a metric of net transfer effectiveness from site 4 the
combined percent of arrivals at regions E and F on days 30 and 60, then the periods of
the most successful upbay transfer are Fall 2007, Spring 2008 and Fall 2009. Spring 2008
is also anomalous in other respects. Note in particular that it displays the most significant
direct upbay transfer from release area 1 of any of the other years and seasons.
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Figure 9. Percent of particles released at each of the sites 1–5 (x-axis) that terminate in each of the 6
sub-regions A–F (y-axis) after 30 (columns 1 and 3) or 60 days (columns 2 and 4). The years labeled
2008A and 2008B are the no-wind and increased bottom stress cases, respectively. Particles were
released on 1 May, 1 May, 29 August and 29 August for the columns labeled 31 May, 30 June, 30
September and 31 October, respectively. Circled numbers correspond to the regions within which
the particles of the respective groups were released, i.e., to retention percentages. The colored
squares and circles are used to highlight the larger numbers with an interval of 10%: grey 0–10,
yellow 11–20, green 21–30, light blue 31–40, dark blue 41–50, blue 51–60, red 61–70%, pink
71–80, and purple 81–90%, respectively.

The sensitivity experiments 2008A and 2008B are both instructive. With the wind forcing
removed (2008A), the anomalous direct communication from release site 1 to the upper-bay
in May/June 2008 is lost (Fig. 9). Although not the dominant mechanism for particle redis-
tribution, the wind was apparently consequential in enhancing upbay transport in May/June
2008. As discussed above, the mean spring winds are directed cross-bay from the southwest,
and were particularly strong in 2008. Although other dynamical explanations are possible,
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the enhanced upbay communication of particles in spring 2008 is consistent with upbay
geostrophic flow arising from an enhanced wind-induced cross-bay pressure gradient (i.e.
sea surface tilt).

Small reductions in upbay transport of passive particles from release site 4 accompany
both the removal of wind forcing and an increase in the bottom stress coefficient (Fig. 9;
experiments 2008A and 2008B respectively). Nonetheless, transport via site 4 remains the
primary transport route. The decrease in upbay particle transport with increased bottom
drag is consistent with the reduced amplitude of the tidal circulation that results from the
enhanced bottom stress (section 2.d.iv).

Finally, we note that summer 2008 is also a period of strong cross-bay particle exchange
in region D with approximately net 15% particles successfully transported from NJ side
(site 5) to Delaware side (site 4) in June 2008 (Fig. 8). In other months of 2007–09, the net
percent is below 10%. The anomalous period of high upbay MSXP in Fall 2008 therefore
does correspond to a year in which both cross-bay and upbay transport of passive particles
was enhanced in May and June.

5. Summary and discussion

We have developed a high-resolution hydro-dynamical model for the Delaware Bay
forced by hydrological inputs from six rivers and atmospheric inputs of momentum, heat
and moisture. Model validation against intensive in situ datasets in the years 2000 and 2010–
2011 shows the model to possess significant skill in predicting variations in water level,
temperature, salinity and currents. Both seasonal and tidal-frequency signals are accurately
reproduced with little bias.

The resulting Delaware Bay model has been applied to quantify the relationship between
observed Haplosporidium nelsoni infection prevalence (MSXP) and concurrent physical
conditions in the bay. To do so, simulations of circulation and environmental conditions in
Delaware Bay were performed for five multi-year periods that displayed different combi-
nations of MSXP and environmental conditions, and that covered a total of sixteen years.
Subsequent statistical analysis and passive particle releases were used to explore the connec-
tions between MSXP and (e.g.) salinity and temperature. The hypothesis under-lying these
analyses has been that elevated levels of MSXP at low-salinity, upbay locations depend
upon a source of infective stages, an effective means of upbay transport, and environ-
mental conditions hospitable to the parasite. We further hypothesized that the source of
infection comes from lower-bay regions where infection prevalence (until the onset of
resistance in the oyster population in the late 1980s) was relatively high and that the abun-
dance of infective stages in any given year was proportional to that prevalence. In subse-
quent years, molecular assays have demonstrated that H. nelsoni remains pervasive in the
bay and continues to show an upbay to downbay increase in prevalence (Ford et al., this
issue).
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Results from the correlation analysis suggest that MSXP may be related to multiple
physical factors, depending on location and time of year. As has been hypothesized (but
not quantified) previously, MSXP is significantly correlated with river flow and salinity,
especially at upbay locations. In addition, at mid-bay locations the combined influence
of temperature and salinity – via the salty-warm water area index – is particularly well
correlated with observed levels of MSXP.

We can examine our three-part hypothesis (i.e, that MSPX in the upper bay depends
on availability of infective element, an effective upbay transport mechanism and favorable
temperature and salinity conditions) by inspecting disease and water properties in 2007–
2009 when we have data on the prevalence of H. nelsoni in the upper and lower bay regions
from both molecular (PCR) and histological assays (see Ford et al., Figs. 1 and 4, this
issue for prevalence details) as well as particle transport simulations. In 2007, the relative
abundance of H. nelsoni at two lower-bay sites where the parasite has always been present
(New Beds and Cape Shore) was moderately high. Transport potential to Region E was
strong and prevalence in that region, represented by Arnolds Bed, was also moderately
high.

More instructive is a comparison between 2008 and 2009. In 2008, downbay prevalence
was very high, upbay transport potential was strong to upbay Regions E and F, and H.
nelsoni prevalence spiked in both regions. In contrast, H. nelsoni was not detected in either
upbay region in 2009, despite moderate upbay transport potential that year (Fig. 9). As
judged by the near absence of infections at the Cape Shore site during the summer and fall
of 2009 and in September and November at New Beds, we conclude that infective stages
were relatively scarce in the lower-bay in 2009, which would have limited their availability
for upbay transport even though the mechanism existed. In addition, salinity on the upper-
bay sites was considerably lower in 2009 than in 2008 so that the environment was less
conducive to H. nelsoni survival and its ability to infect and proliferate in oysters.

Although the above comparison appears to be consistent with a scenario in which “free”
infective stages are moved upbay from a lower-bay source, we urge caution in coming to
such a conclusion. For instance, another host, such as a weakly swimming zooplankter,
could equally well be transported upbay in the same manner and infective stages could
be released “on site.” Alternatively, there may not be a single source region, but sources
throughout the bay that respond similarly to factors that influence the abundance of infective
particles in all areas at the same time. In this regard, it is important to note that Figures 6
and 9 show relative potential transport from release locations rather than absolute values.
The absolute transport potential will depend upon the abundance of particles released at a
particular location.

Another unknown factor complicating the understanding of H. nelsoni transmission
within the bay is the life-span of whatever stage is transported. The parasite develops a
spore, which appears to be designed for distance transmission and the ability to survive
for extended periods outside a host. It has a thick wall (Rosenfield et al., 1969) and fila-
mentous appendages (Burreson and Reece, 2006), which should protect it and minimize
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sinking, respectively, during transport. In addition, we have found evidence of spore stages
throughout Delaware Bay (Barber and Ford, 1992) and have kept spores refrigerated in
seawater for months without visible damage to the sporoplasm and nucleus inside (Ford,
unpublished).

Lastly, future changes to the thermal and hydrologic conditions may be expected to have
a profound influence on MSXP in Delaware Bay. A warming climate is expected to be
accompanied by changes in both precipitation patterns and ice and snow cover (Rudolf
et al., 1994; Lemke et al., 2007). All of these effects will mutually combine to establish
future levels and distributions of MSXP. A natural next step is to inquire into the potential
impacts of future climate variability on circulation, tracer fields, and MSXP in Delaware
Bay using the modeling tools developed here. A sequence of climate sensitivity studies
addressing these issues is underway.
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APPENDIX

Quantitative model validation

The Delaware Bay hydrodynamic model has been validated against a number of inde-
pendent data sets (described in Section 2d). Quantitative evaluation of model simulations
for the years 2000 and 2010–2011 has been performed using several metrics, including the
Taylor diagram (Taylor, 2001), the system bias, and the skill score utilized by Warner et al.
(2005). The latter varies from zero (no skill) to 100% (perfect agreement) and is given by
the formula:

WSK =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 −

Ns∑
n=1

|Xmod(n) − Xobs(n)|2

Ns∑
n=1

[|Xmod(n) − Xobsm| + |Xobs(n) − Xobsm|]2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

× 100%

where Xmod and Xobs are the simulated and observed time series, Xmodm and Xobsm are the
respective temporal means, and Ns is the number of samples.
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Figure A.1. Taylor diagrams (Taylor, 2001) showing model-data comparisons for: (a) water level (m)
at the 11 stations shown in Figure 1a, computed from hourly data from 11 Jun to 31 Dec 2000; (b)
and (c) temperature (◦C) and salinity observed and simulated at stations 1–9 shown in Figure 1b,
based on 4416 hourly data from 13 May to 12 November 2000; (d) vertically averaged along-bay
current at nine moorings (A, D, C1–2, C6, C8–9, C11 and C14; Fig. 1c) with sample sizes 1808-
6903 from July 2010 to September 2011. The two rows of numbers below each Taylor diagram
are the bias (mean of observations minus mean of simulation; upper row of numbers) and the skill
score (lower row of numbers).

All of these metrics may be summarized on a single modified Taylor diagram. Figure A1
shows the resulting diagrams for water level, temperature and salinity observed in the year
2000, and for along-bay currents measured in the years 2010–2011. There are several statis-
tical quantities summarized in the resulting Taylor diagrams: (1) the correlation coefficient
(correlation) between data and simulation indicated on the azimuthal axis; (2) the standard
deviation normalized to data (NSTD) expressed by the radial distance from the origin to
the “test” points; and (3) the centered-pattern RMS difference (the square root of the mean
square difference between the observed and simulated de-meaned time series) given by the
distance from the pink star to a “test” point. Finally, 94) the system bias (mean of data minus
mean of the simulation) is shown in the first row of numbers below the Taylor diagram; and
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Figure A.2. Observed (grey line) versus simulated (black line): (a, b, c) surface and bottom salinity,
and their difference; and (d, e, f) surface and bottom temperature, and their difference. The data
cover five seasons from September 2010 to September 2011 from left to right frames and span from
low (38.9◦N) to up (40.1◦N) Bay. In each season, there is one survey lasting a few days (indicated
on the last line of this Figure) to observe once on each of the twenty-one locations (latitude range
is given on the last but one line of this Figure). There are 105 salinity and temperature samples for
the five surveys on the twenty-one locations. These 105 salinity samples are concatenated to form
one “time-space” series for statistical analysis.
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5) the skill score (%) is shown by the numbers on the second line. For a perfect simulation,
correlation = 1, NSTD = 1, centered-pattern RMS difference = 0, bias = 0 and skill = 100%.
A summary of the primary results from these statistical time-series comparisons has been
given in Section 2d.

The statistical measures shown in Figure A1 refer to temporal variability at single spatial
points. Another important measure of model fidelity pertains to the spatial distribution of
properties in both the horizontal and the vertical. The vertical gradients in temperature and
salinity (i.e., the stratification) are of obvious dynamical interest. Fortunately, the along-
bay surveys of T and S made in 2010–2011 provide an opportunity to assess how well the
model simulations recover the along-bay variations in salinity and temperature as well as
the resulting vertical stratification.

As shown in Figure A2, the simulations recover the top-to-bottom salinity difference with
great skill. Both the along-bay location of the salt wedge and its strength are recovered.
Temperature stratification is also recovered with some skill; however, the model is shown
to be too cold in the summer months at the mouth of the bay. We conclude from this that
the model omits (or misrepresents) some aspect of the heat budget as we progress downbay
and out onto the shelf. Candidate explanations include the absence of heat input through
the open cross-shelf boundaries and/or a poorly chosen parameter in the heat budget. One
possibility for the latter is the water type. The single value applied everywhere in these
simulations has been chosen to be appropriate for the Bay proper and may be less well
suited to the water column in the lower Bay. In particular, note from our sensitivity studies
that the use of water type 7 reduces the temperature of the water column. That the model is
too cold in the lower bay is therefore at least consistent with the hypothesis that water type
7 becomes a decreasingly appropriate choice as we move downbay and out onto the shelf.

REFERENCES

Andrews, J. D. 1964. Oyster mortality studies in Virginia. IV. MSX in James River public seed beds.
Proc. Nat. Shellfish. Assoc., 53, 65–84.

—— 1966. Oyster mortality studies in Virginia V. Epizootiology of MSX, a protistan pathogen of
oysters. Ecology, 47, 19–31.

—— 1983. Minchinia nelsoni (MSX) infections in the James River seed-oyster area and their expulsion
in spring. Estuar. Coast. Shelf Sci., 16, 255–269.

Barber, R. D., S. A. Kanaley and S. E. Ford. 1991. Evidence for regular sporulation by Haplosporid-
ium nelsoni (MSX) (Ascetospora: Haplosporidiidae) in spat of the American oyster, Crassostrea
virginica. J. Protozool., 38, 305–306.

Barber, R. D. and S. E. Ford. 1992. Occurrence and significance of ingested haplosporidan spores in
the eastern oyster, Crassostrea virginica (Gmelin, 1791). J. Shellfish Res., 11, 371–375.

Burreson, E. M. and K. S. Reece. 2006. Spore ornamentation of Haplosporidium nelsoni and Hap-
losporidium costale (Haplosporidia), and incongruence of molecular phylogeny and spore orna-
mentation in the haplosporidia. J. Parasitology, 92, 1295–1301.

Cahill, B., O. Schofield, R. Chant, J. Wilkin, E. Hunter, S. Glenn and P. Bissett. 2008. Dynamics of
turbid buoyant plumes and the feedbacks on near-shore biogeochemistry and physics. Geophys.
Res. Lett., 35, L10605, doi:10.1029/2008GL033595.

http://www.ingentaconnect.com/content/external-references?article=0022-3921(1991)38L.305[aid=10036203]
http://www.ingentaconnect.com/content/external-references?article=0022-3921(1991)38L.305[aid=10036203]
http://www.ingentaconnect.com/content/external-references?article=0022-3921(1991)38L.305[aid=10036203]
http://www.ingentaconnect.com/content/external-references?article=0272-7714(1983)16L.255[aid=10035754]
http://www.ingentaconnect.com/content/external-references?article=0272-7714(1983)16L.255[aid=10035754]
http://dx.doi.org/10.1029/2008GL033595


2012] Wang et al.: Oyster disease MSX in Delaware Bay 307

Chelton, D. B. 1983. Effects of sampling errors in statistical estimation. Deep-Sea Res., 30, 1083–
1101.

Emery, W. J. and R. E. Thomson. 2004. Data Analysis Methods in Physical Oceanography, Elsevier,
638 pp.

Ford, S. E. 1985. Effects of salinity on survival of the MSX parasite Haplosporidium nelsoni (Haskin,
Stauber, and Mackin) in oysters. J. Shellfish Res., 5, 85–90.

Ford, S. E., B. Allam and Z. Xu. 2009. Using bivalves as particle collectors and PCR detection
to investigate the environmental distribution of Haplosporidium nelsoni. Dis. Aquatic Org., 83,
159–168.

Ford, S. E and D. Bushek. 2012. Development of resistance to an introduced marine pathogen by a
native host. J. Mar. Res., 70, 205–223.

Ford, S. E. and H. H. Haskin. 1982. History and epizootiology of Haplosporidium nelsoni (MSX), an
oyster pathogen, in Delaware Bay, 1957–1980. J. Invertebr. Pathol., 40, 118–141.

Ford, S., E. Powell, J. Klinck and E. Hofmann. 1999. Modeling the MSX parasite in eastern oys-
ter (Crassostrea virginica) populations. I. Model development, implementation, and verification.
J. Shellfish Res., 18, 475–500.

Ford, S. E., E. Scarpa and D. Bushek. 2012. Spatial and temporal variability in disease refuges in an
estuary: implications for the development of resistance. J. Mar. Res., 70, 253–277.

Ford, S. E. and M. R. Tripp. 1996. Disease and defense mechanisms, in The Eastern Oyster: Cras-
sostrea virginica, V. S. Kennedy, R. I. E.Newell and A. F. Eble, eds., Maryland Sea

Haskin, H. H. and J. D. Andrews. 1988. Uncertainties and speculations about the life cycle of the
eastern oyster pathogen Haplosporidium nelsoni (MSX), in Disease Processes in Marine Bivalve
Molluscs, W. S. Fisher, ed., American Fisheries Society, 5–22.

Haskin, H. H. and S. E. Ford. 1982. Haplosporidium nelsoni (MSX) on Delaware Bay seed oyster
beds: a host-parasite relationship along a salinity gradient. J. Invertebr. Pathol., 40, 388–405.

Lemke, P., J. Pen, R. B. Alley, I. Allison, J. Carrasco, G. Flato, Y. Fujii, G. Kaser, P. Mote, R. H. Thomas
and T. Zhang. 2007. Observations: Changes in Snow, Ice and Frozen Ground, in Climate Change
(2007), The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning,
Z. Chen, M. Marqis, K. B. Averyt, M. Tignor and H. L.Miller, eds., Cambridge University Press,
996 pp.

Liu, Y., P. MacCready, B. M. Hickey, E. P. Dever, P. M. Kosro and N. S. Banas. 2009. Evaluation of a
coastal ocean circulation model for the Columbia River plume in summer 2004. J. Geophys Res.,
114, C00B04, doi:10.1029/2008JC004929.

Marchesiello, P., J. C. McWilliams and A. Shehepetkin. 2001. Open boundary conditions for long-term
integration of regional ocean models. Ocean Model., 3, 1–20.

Mellor, G. L. and T. Yamada. 1982. Development of a turbulent closure model for geophysical fluid
problems. Reviews of Geophysics and Space Physics, 20, 851–875.

Mesinger, F., G. DiMego, E. Kalnay, K. Mitchell, P. C. Shafran, W. Ebisuzaki, D. Jovi, J. Woollen,
E. Rogers, E. H. Berbery, M. B. Ek, Y. Fan, R. Grumbine, W. Higgins, H. Li, Y. Lin, G. Manikin,
D. Parrish, and W. Shi. 2006. North American regional reanalysis. Bull.of Amer. Meteor. Society,
87, 343–360.

Mukai, A. Y., J. J. Westerink, R. A. Luettich and D. Mark. 2002. East coast 2001, a tidal constituent
database for the western North Atlantic, Gulf of Mexico and Caribbean Sea, Tech. Rep. ERDC/CHL
TR-02-24, 196 pp.

Narváez, D. A., J. M. Klinck, E. N. Powell, E. E. Hofmann, J. Wilkin and D. B. Haidvogel. 2012a.
Modeling the dispersal of eastern oyster (Crassostrea virginica) larvae in Delaware Bay. J. Mar.
Res., 70, 381–409.

http://www.ingentaconnect.com/content/external-references?article=0034-6853(1982)20L.851[aid=9237883]
http://www.ingentaconnect.com/content/external-references?article=0034-6853(1982)20L.851[aid=9237883]
http://www.ingentaconnect.com/content/external-references?article=1463-5003(2001)3L.1[aid=10036206]
http://www.ingentaconnect.com/content/external-references?article=1463-5003(2001)3L.1[aid=10036206]
http://www.ingentaconnect.com/content/external-references?article=0022-2011(1982)40L.388[aid=10035755]
http://www.ingentaconnect.com/content/external-references?article=0022-2011(1982)40L.388[aid=10035755]
http://www.ingentaconnect.com/content/external-references?article=0022-2402(2012)70L.253[aid=10035883]
http://www.ingentaconnect.com/content/external-references?article=0022-2402(2012)70L.253[aid=10035883]
http://www.ingentaconnect.com/content/external-references?article=0022-2402(2012)70L.205[aid=10035761]
http://www.ingentaconnect.com/content/external-references?article=0022-2402(2012)70L.205[aid=10035761]
http://dx.doi.org/10.1029/2008JC004929


308 Journal of Marine Research [70, 2-3

—— 2012b. Circulation and behavior controls on dispersal of eastern oyster (Crassostrea virginica)
larvae in Delaware Bay. J. Mar. Res., 70, 411–440.

Paraso, M. C., S. E. Ford, E. N. Powell, E. E. Hofmann and J. M. Klinck. 1999. Modeling the MSX
parasite in eastern oyster (Crassostrea virginica) populations. II. Salinity effects. J. Shellfish Res.,
18, 501–516.

Paulson, C. A. and J. J. Simpson. 1977. Irradiance measurements in the upper ocean. J. Phys.
Oceanogr., 7, 952–956.

Powell, E. N., K. A. Ashton-Alcox, J.N. Kraeuter, S.E. Ford and D. Bushek. 2008. Long-term trends
in oyster population dynamics in Delaware Bay: Regime shifts and response to disease. J. Shellfish
Res., 27, 729–755.

Powell, E. N., D. E. Kreeger, J. M. Morson, D. B. Haidvogel, Z. Wang, R. Thomas and J. E. Gius.
2012. Oyster food supply in Delaware Bay: Estimation from a hydrodynamic model and interaction
with the oyster population. J. Mar. Res., 70, ???–???.

Rosenfield, A., L. Buchanan and G. B. Chapman. 1969. Comparison of the fine structure of spores of
three species of Minchinia (Haplosporida, Haplosporidiidae). J. Parasitology, 55, 921–941.

Rudolf, B., H. Hauschild, W. Rueth and U. Schneider. 1994. Terrestrial precipitation analysis: Oper-
ational method and required density of point measurements, in Global Precipitations and Climate
Change, M. Bubois and F. Désalmand, eds., NATO ASI Series I, 26, Springer Verlag, Berlin,
173–186.

Shchepetkin, A. F. and J. C. McWilliams. 2005. The regional ocean modeling system: A split-explicit,
free-surface, topography-following coordinate oceanic model. Ocean Model., 9, 347–404.

Smolarkiewicz, P. K. and W. W. Grabowski. 1990. The multidimensional positive definite advection
transport algorithm: nonoscillatory option. J. Comput. Phys., 86, 355–375.

Taylor, K. E. 2001. Summarizing multiple aspects of model performance in a single diagram. J.
Geophys. Res., 110, C11021, doi:10.1029/2005JC002902.

Umlauf, L. and H. Burchard. 2003. A generic length-scale equation for geophysical turbulence models.
J. Mar. Res., 61, 235–265.

Warner, J. C., W. R. Geyer and J. A. Lerczak. 2005. Numerical modeling of an estuary: A compre-
hensive skill assessment. J. Geophys. Res., 110, C05001, doi:10.1029/2004JC002691.

Zhang, W., J. Wilkin and R. Chant. 2009. Modeling the pathways and mean dynamics of river plume
dispersal in New York Bight. J. Phys. Oceanogr., 39, 1167–1183.

Received: 24 October, 2011; revised: 25 July, 2012.

http://www.ingentaconnect.com/content/external-references?article=0022-2402(2003)61L.235[aid=10036211]
http://www.ingentaconnect.com/content/external-references?article=0022-2402(2003)61L.235[aid=10036211]
http://www.ingentaconnect.com/content/external-references?article=0022-3670(1977)7L.952[aid=8789514]
http://www.ingentaconnect.com/content/external-references?article=0022-3670(1977)7L.952[aid=8789514]
http://dx.doi.org/10.1029/2005JC002902
http://dx.doi.org/10.1029/2004JC002691

	Old Dominion University
	ODU Digital Commons
	2012

	Circulation and Water Properties and Their Relationship to the Oyster Disease MSX in Delaware Bay
	Zhiren Wang
	Dale B. Haidvogel
	David Bushek
	Susan E. Ford
	Eileen E. Hofmann
	See next page for additional authors
	Repository Citation
	Original Publication Citation
	Authors


	tmp.1457984705.pdf.mu1eZ

