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ABSTRACT

Two numerical applications of two-level quasigeostrophic theory
are used to investigate the interrelationships of the mean and mesoscale
eddy fields in a closed-basin ocean model. The resulting techniques
provide a more accurate description of the local dynamics, origins, and
parametric dependences of the eddies than that avallable in previous
modelling studies.

First, we propose a novel and highly efficient quasigeostrophic
closed-domain model which has among its advantages a heightened reso-
lution in the boundary layer regions. The pseudospectral method,
employing an orthogonal expansion in Fourier and Chebyshev functions,
relies upon a discrete Green's function technique capable of satisfying
to spectral accuracy rather arbitrary boundary conditions on the
eastern and western (continental) walls. Using this formulatiom, a
series of four primary numerical experiments tests the sensitivity of
wind-driven single and double-gyred eddying circulations to a transi-
tion from free-slip to no-slip boundary conditions. These comparisons
indicate that, in the absence of topography, no-slip boundaries act
primarily to diffuse vorticity more efficiently. The interior transport
fields are thus reduced by as much as 50%, but left qualitatively un-
changed. In effect, once having separated from the western wall, the
internal jet has no knowledge, apart from its characteristic flow
speed, of the details of the boundary layer structure.

Next, we develop a linearized stability theory to analyze the
local dynamic processes responsible for the eddy fields observed in
these idealized models. Given two-dimensional (x, z) velocity profiles
of arbitrary horizontal orientation, the resulting eigenfunction
problems are solved to predict a variety of eddy properties: growth
rate, length and time scales, spatial distribution, and energy fluxes.
This simple methodology accurately reproduces many of the eddy
Statistics of the fully nonlinear fields; for instance, growth rates
of 10-100 days predicted for the growing waves by the stability
analysis are consistent with observed model behavior and have been



3.

confirmed independently by a perturbation growth test. Local energetic
considerations indicate that the eddy motions arise in distinct : and
- recognizable regions of barotropic and baroclinic activity. The baro-
clinic instabilities depend sensitively on the vertical shear which
must exceed 0(5 cm sec™ ™) across the thermocline to induce eddy growth.
As 1little as a 10% reduction in [u I, however, severely suppresses the
cascade of mean potential energy to the eddy field. 1In comparison,
the barotropic energy conversion process scales with the horizontal
velocity shear, lu I, whose threshold values for instability,
0(2 x 1076 secl),”is undoubtedly geophysically realizable. A simple
scatter diagram of lu | versus lu l for all the unstable modes studied
shows a clear separation between the regions of barotropic and baro-
clinic instability. While the existence of baroclinic modes can be
deduced from either time mean or instantaneous flow profiles, baro-
tropic modes cannot be predicted from mean circulation profiles (in
which the averaging process reduces the effective horizontal shears).

Finally, we conduct a separate set of stability experiments on
analytically generated jet profiles. The resulting unstable modes
align with the upper level velocity maxima and, although highly sensi-
tive to local shear amplitude, depend much less strongly on jet
separation and width. Thus, the spatial and temporal variability of
the mesoscale statistics monitored in the nonlinear eddy simulations
can be attributed almost entirely to time-dependent variations in local
shear strength. While these results have been obtained in the absence
of topography and in an idealized system, they yet have strong implica-
tions for the importance of the mid-ocean and boundary layer regions as
possible eddy generation sites.

Thesis Supervisor: Robert C. Beardsley

Title: Lecturer, Massachusetts Institute of Technology
Research Scientist, Woods. Hole Oceanographic Institution
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(I) Introduction

There is a long history of attempts, both theoretical and numeri—.
cal, to model and predict ocean circulation features. The earliest
studies, those of Sverdrup (1947), Stommel (1948), and Munk (1950), for
instance, began by investigating the combined roles of wind stress,-
planetary vorticity, and ffictiongl effects in determining-the large-
scale flow. Some of the ﬁéén properties of the western boundary cur-
rent and the associated broad return flow were thereby deduced from
these early linear models.1 Except for'the free inertial solutions of
Fofqnoff (1954) and Charney (1955), however, the inclusion of first-
order nonlinear effects awaited the advent of the numerical model as.a
recognized tool in the simulation of geophysical flows. The first numer-
ical experimeﬁts, carried out by Bryan (1963) and Veronis (1966), were
simple extensions of the original Stommel and Munk frictional theories
to include significant nonlinearity, a more complete dynamic formula-
tion than was tractable analytically. In a barotropic'system; the cor-
responding results incorporated features of both frictional and inertial
boundary layers; flows intensified towards the west (beta effect) and
north (inertial effect). In addition, an inertial recirculation adja-
cent to the western boundary current developed which could be made un-
stable f;r suitable parameters and boundary conditions (Bryan, 1963;
Blandford, 1971). More complicated dynamical formulations, including
the effects of topography and baroclinicity, were soon shown. to repro-
duce the qualitative features of the mean 1arge;sca1e ocean circulation

rather well (Holland, 1966 and 1973).

1For an overview of the theories of the wind-driven ocean, see Robinson
(1963). : .




(I.1) Evidence for an energetic and dynamically active eddy field

These early analytic andvnumerical models fail because they resolve
only the grossest dynamical scales of the ocean circulation and treat
subgridscale motion as a turbulent, dissipati&e field. Such a
representation does-hot take account of the possibility of mean flows
driven by sméller scale, time-varying motions, a mechanism of some
importance in the maintenance of the atmospheric general circulation
(Starr, 1968). 1In fact, observational evidence collected over the past
decade reveals a rather energetic and well organized mesoscale field
which may actually support, rather than inhibit, the mean circulation
of the ocean. Swallow‘and Crease first documented the presence of the
eddies in what had been believed to be a relatively quiescent deep mid-
ocean environment (Crease, 1962). Recent field data confirm the
persistant and ubiquitous existence of an eddy field in not only the
North Atlantic (Koshlyakov and Grachev, 1973; Gould, Schmitz, and
Wunsch, 1974), but in the Pacific Ocean as well (Bernstein and White,
1975); the preferred spatial and temporal scales of these motions are
typically 100 km and 15-25 days respectively. These measurements sug-
gest that the mesoscale may contribute substantially to the local
maintenance of the mid-ocean mean circulation.

Theoreticians soon identified sgveral dynamic processes which might
populate the mid;ocean with eddies ofvthe observed characteristics. For
instance, meandering of the Gulf Stream can result in the shedding of
cyclonic rings whose effects can be felt well into the oceanic interior..

Using the historical records summarized by Parker (1971), Flierl (1975b)
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has shown that ring spindown and subsequent wave radiation may drive a
mid-ocean velocity field of several centimeters per second. Eddies can
also arise directly in the mid-ocean through the agency of baroclinic
instability which acts to convert the potential energy of the large-
scale flow into eddy kinetic energy at the radius of deformation. The
potential eﬁergy field of the world's oceans is quite sufficient to
account for the eddies in this mannér (Gill, Green, and Simmons, 1974).
In fact, the growth time scales for infinitesimal baroclinic eddies caﬁ
be as short as 50 déys for rather modest values of the ambient vertical
shear (Robinson and McWilliams, 1974). Finally, interaction of the mean
circulation with topography may play an important role in sustaining

the baroclinic eddy field both in the intense western boundary layer
(and its seaward extension) where topographic variabilities can very
often destabilize the mean circulation and induce meandering and energy
radiation_into the interior (Orlanski, 1969), and in the .open ocean.
where topographic scattering maintains the baroclinicity of the eddy
field against the forces of two-dimensional turbulence (Rhines, 1975).

A complete dynamical treatment of these instability processes and the
accompapying eddy-mean flow interactions hinged upon the formulation of
more sophisticated analytic and numerical models which took explicit

account of the dynamic consequences of an active mesoscale.
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(I.2) The preliminary results of numerical eddy simulations

Two distinct but related approaches have been adopted in an attempt
to_numerically simulate mesoscale eddy behavior. The simplest, and
that yielding fhe most easily interpretable results, is the so-called
process model in which local dynamic processes are studied in a
periodic,.unfofced domain. Starting from some initial circulation,
the dynamic equations are iﬁtegrated forward in time and the evolution
of the field statistics monitored. Perhaps the most convincing compari-
son of model results to a collection of field data has been made in
thisvway By Bretherton and Owens whose multileveled quasigeostrophic
regional model accurately simulates the mesoscale statistics of the
MODE-I region (Owens, 1975).. At the same time, related analytic and
numerical studies reveal a great deal of the generalized nonlinear be--
havior of waves and turbulence, for éxample, the fundamental instability
of a baroclinic Rossby wave (Kim, 1975), the halting of the two-
dimensional cascade of energy towards low wavenumber, barotropic cur-
rents by wave radiation and topographic scattering (Rhines, 1975), and‘
the evolution of a two-dimensional turbulent field above topography
towards a state of minimum enstrophy characterized, on a beta-plane,
by predominantly westward flow (Bretherton and Haidvogel, 1976). Since
these models rely heavily on the powerful Fourier expansion techﬁique,
they have the advantage of predicting the spectral as well as the
physical space energy transfers occurring during these nonlinear
interactions.

A second type of model attempts to simulate an entire oceanic gyre
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rather>than just a locaiized mid-ocean region. Consequently, in
addition to a turbulent eddy field these models include idealized rep-
resgntations of the intense western boundary current and associated
(often unstable) westward return flow.‘ Such an isolated gyre is
neqessarily enclosed by impermeable walls, thus complicating both the
boundary éondifions and the numerical techniques that must be applied

to solve the problem. 1In co;trast to the spindown experiments mentioned
above, the fluid is spunup from rest to an equilibrium state by some
hypothesized distribution of wind stresses. The presence of a driven
meaﬁ flow complicates the interpretation, especially the spectral trans-
fer properties, of the closed-basin simulations. The results do
indicate, however, that for cértain parameter ranges, mesoscale eddies
can spontaneously appear during the spinup phase (Holland and Lin,
1975a). Following this initial perioa of instability the model
generally settles into an oscillatory equilibrium in which the eddy
streamfuﬁction and energy fields, superimposed on the steady, large-
scale flow, vary periodically. At this stage, the finite-amplitude
eddies contribute substantially to the mean dynamic balances. For
instance, in the absence of vertical momentum transport, only thé
Reynolds stresses induced by the eddies can sustain a nonzero mean flow
at thé lower levels. Although model behavior varies c0nsiderably'with
the values of the envirommental parameters, the predictions of these
closed-basin simulations - including eddy space and time scales, phase
speeds, and source and sink regions - can closely correspond to observed

mesoscale statistics (Holland and Lin, 1975b). With the addition to
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these preliminary models of continentality, bottom topography, and a
less coarse vertical decomposition, dynamically accurate eddy general
circulation models for the world's oceans may be realizable in the near

future.
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(I.3) A global eddy modelling strategy.

One of the most important limitations of these closed-basin models
is their sensi;ivity to small parametric changes. Thus, even given a
perfect physical model, we would still have to examine its response
throughout a multidimensional space of unknown parameters and boundary
conditioné; that is, the model must be "tuned". This is perhaps a
straightforward, but nontrivial, task. The large block of computer
resources needed to run even a single nonlinear eddy simulation effec-
tively limits the number of such rums that we can realistically
envision. Though essentially a trial-and-error approach, this simple
but costly methodology has nevertheless formed a basis for much of our
modelling of global eddy behavior.

This investigation addresses twq separate problems central to the
issue of model sensitivity and predictability. TFirst, we derive and
construct a highly accurate two;level quasigeostrophic closed-basin
model in which the boundary constraints on the eastern and western walls
may be arbitrarily specified (Chapters II and III). With this model,
we make a preliminary evaluation of the effects of lateral boundary
conditions on eddy generation (Chapter 1IV). Second, we devise a
procedure by which the energetic balances of the local mean flows and
accompanying eddies can be explored. The method, based én a linearized
stability theory, predicts eddy features such as growth rate, finite ampli-
tude spatial.and temporal structure, and mean to eddy energy conversions
given velocity profiles for. the upper and lower layer flows (Chapter V).

The predictions of the linearized stability analysis compare favorably
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with the fully nonlinear results over a large range of parameters
(Chapter VI). 1In addition to their diagnostic capabilities, such
stability analyses can be used as an exploratory tool in parametric
ranges where fﬁlly nonlinear simulations are unavailable. Consideration
of the local stability properties of simple mean flows also allows us

to generaiize about the signatures of barotropic and baroclinic eddy
generation regions. Of particular interest is a determination of the
mean fiow features that induce wave growth, and the energy flux
quantities that may locally identify energy sources and sinks for the

mesoscale eddy field.
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(II) Formulation of the Quasigeostrophic Model

An accurate numerical simulation of the dynamics of mesoscale eddies
in a suitably large domain.requires very fine spatial and temporal
resolution, and consequently a high degree of numerical sophistication.
To insure that such simﬁla;ions be economically feasible, however, a
viable model can re#ain only the most essenfial physical processes.
With such a simplification in‘mind, we will_firét ignore the irregu-
larity of the continental boundaries. The planar representation of
these boundaries does not disturb the fundamental dynamics of the en-
clqsed.fluid,‘although quaiitative mean flow features may be lost.
Rectilinear coastlines also facilitate the implementation of efficient
numerical techniques, as we will see. Similarly, we replace the upper
_bounding surface by a rigid 1id in the traaitional manner. The con-
comitant filtering of surface gravity waves relaxes the restrictive
Courant-Friedrichs-Lewy (CFL) condition on the magnitude of the time
step permissible during thé numerical integration of the hydrodynamical
equations. The remaining bounding surface, the oceén bottom, must be
treated more explicitly, thereby preserving the well known effects of
topography on the strength and stability of oceanic circulations
(Orlanski and Cox, 1973; Holland, 1973). The necessity of the
retention of an idealized baroclinic structure arises as a consequence
not only of the highly stratifiedvnatﬁre of the mid-ocean environment,
but of ocur anticipation that a céscade of available potential energy
into baroclinically unstable waves will be one of the eddy generation

mechanisms. The effects of the sphericity of the earth will be
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adequately modelled by adopting the conventional mid-latitude /6—plane

approximation

F o= g e py = K 1+ Yatne,)

where fO is the local value of the Coriolis parameter at some central
latitude, ©, ;5 a the mean,rédius of the earth; and L the hbrizontal
basin dimension. Nonlinearity is presumably also important in
conjunction with the dynamics of planetary waves in directing energy
transfers between differing scales of motion (Rhines, 1973). Finaily,
the approach to statistical equilibrium will require the inclusion of

some dissipation though its correct parameterization remains a matter

of considerable uncertainty.
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(1I1I.1) The potential vorticity equation

As have many in the past, we will make a quasigeostrophic approxi-
mation to the full equations of motion. This formulation incorporates
all the essential physical and environmental factors mentioned in the
previous section and, fortunately, accords well with observations made
in the mid-ocean (Gould, Schmitz, and Wunsch, 1974; Bryden, 1975).

Take the local cartesian Qé?iables x', y', and z' (positive upwards)
as the eastward, northward, and vertical coordinate directions§ u', v',
and w' the corresponding components of the vector velocity Xﬂ; and

(-H +‘h(x','y')) the total dépth measured downwards from the rigid sea
surface (z' = 0). The idealized fluid system, contained between

impermeable vertical walls at x'=0, X and y'=0, Yo obeys the equations

of fluid motion

g—:’,_l. + givu + :’-‘;', - ‘Su.' = "—° gﬁ:-i- K“Vu. + K, iz:;-
%%: + g o+ w’&’-;; + £ = “'71:)-7%: -.I.-K"v{,-'_,_Kv%f,
:,T:: + ngco, + ur’j—‘:: = :ﬁ'—:j /, - //0_0:)3

;F% + 0' V?o + uJ‘, ! = O

I’ de’ . Juo’ - o

d—)(.’ + ;\’al JZ’

R
where V denotes the horizontal gradient operator, VY the two-

dimensional Laplacian, and KH and KV the horizontal and vertical

B et L TR



coefficients of eddy diffusivi.ty.1 Note also the traditional and

Boussinesq approximations. Decompose the density field such that

’

- ’ ’ ’ s/ ’ 7l

/o = /ao + /.(-1 ) +/0°? C";‘Q,"‘yt )
s .I. > ?
where | /{% /q /22.

4

o
Similarly, P = 'ﬁ’cz’) + Py Oy 2t

whe;e | f%;' = - 3 (/Azqul).

Together, these field assumptions define the mean hydrostatic states

and the deviations therefrom. Choosing the non-dimensionalization .

t = (£t

(xy) = L(xy)
2’ = H=z

(u:v') = Vigu)
/

w' = (V) = H

$ = £ CI+ay) o« = Sl

18.

The corrresponding terms are therefore assumed to adequately model the
subgridscale turbulent diffusion of momentum. Other such formulations

in current use are the fourth-order frictional mechanisms of the pro-

cess models (Rhines; Bretherton and Owens), and cascade models deduced

from simple turbulence arguments (Leith; Holloway).
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PALLAN I

the equations can be rewritten

' R
-
€ %{_ + (ltoyluw = —& + E, Vo + E, U,y
2 Dw _
5% =

‘?a "ﬂz

& % - Bw = ©
“w, + V‘j + CO'Z = O
D wid 3
where 5'_{: - L&)Jt + gV o+ wgy o
The nondimensional parameters are then
= VY | =
€ = AN = KOSSL): numbew
2 9, | 2
T = ¥ 2 = N, .
4 3 = s
B = (rH) = au-\f‘qev‘ rumber
) boﬁion’tod
E, * K"/.gc 2 * Ekman number
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vertical
Ekman numbev .

"

K .
and E, = Ve u?

v T H
Quasigeostrephy is insured by setting

[ w

o «
< :; - = 03; + E; ':; + (:)(E?)
) P :F . 'p

Lf / r

and adopting the parametric orderiﬁg

(i) o) < T « ow
(ii) xy = §F w O(E)_
and (1ii) E\% = & ¢ o).

Physically, st;tement (i) is equivalent to the requirement that the
thermocline in a two-layer model not intersect the surface; (ii) demands
that the domain have small lateral scales compared to variations in f
(and even smaller vertical dimensions), and that the mofions be

characterized by the advective time scale; lastly, (iii) restricts
Y3

frictional action to lateral boundary layers of thickness CJF,= (E"‘/o‘)

Under these conditions, the lowest order balances become

O,
- (V2 = ‘.Px

o'u. = - O'Pj
°Pz = - o/a X
O‘AJ.‘ - o

o ° ° - 9, ] =
Uy + 0y + Pwy Wy + 77y 0.
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To lowest order the fields are geostroﬁhic and hydrostatic, an approxi-

mation consistent with the results of the MODE-I field experiment

(Bryden, 1975). To next order

da) - - (U = T+ () o

—:—t (%) + o+ CVe)ow = =~ 'Rg + (Q/E)Va(°u)
' o
Pe = -f (2.1)

'u, * ‘cr: + 'w, = O
IR i S o ]_
gg(lo) - B W) = O |
where é‘l_t - (%’) 3{: + °g. % .

Eﬁuivalently, the vorticity equation may be written as
' R0 ' _
:T'_ECg) - 'qfi + (d/s) °% (E“/a) v(°g). = O(E+S+o{wj+€u+w)
where the error in this formulation, represented by the right-hand side,

is assumed to be everywhere small. Though this may be the case in the

e -

mid-ocean enviromment, the approximations leading to the quasigeo-
strophic potential vorticity equation are less accurate in the narrow |
inertiofrictional boundary layers where the scaling arguments break
down. (Recent numerical results suggest that this oversimplified
treatment of the boundary layers does in fact run into trouble during
the spinup of a stratified fluid model; however; the steady4or oscilla-
tory equilibrium attained subsequent to the spinup period seems to be

relatively insensitive to whether primitive or quasigeostrophic dynamics
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are used.) Returning to dimensional form and dropping the prime

notation

g 3 _
=t a = 39zt Ky V™€ e

where the streamfunction,_%g , and vorticity, f', assume their

standard definitions
o = B
= /Qﬁ;

and < = OO'x"' O“.i = V"??l.

The statement of the problem is completed by specifying an appropriate
~set of boundary conditions. At z=0, we assume the existence of a known
wind stress, jg(ﬁifﬂ, while along the bottom the normal component of
velocity vanishes. In anelogy to the well known homogeneous spinup
pfoblem, we anticipate the action of thin Ekman boundary layers at the
upper and lower surfaces. These must exisf so as to adjust the interior
flow to the prescribed boundary conditions.> The boundery layers may be
turbulent, but the net suction velocities into the interior are assumed
to be related to a constant Ekman veering (independent of the interior
flow); hence, the-equivalent constraints on the interior assume the

dimensional form

A
(i) w, = «r(zso) = '%‘g— = -‘7_&, (2.3)
and (i) ap = o (2 f'"'**‘) = S“:\”V“f'(sszi,_”fh (2.4)

.where KE < (KV/Q?{:O)I/«R' |



In the horizontal,

w® 0O X,
(iii) %=0 il

to disallow flow through the impermeable boundaries.

23.

(2.5)
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(11.2) Conservation principles

A fluid system conforming to the above dynamics quasiconserves

both vorticity and energy. Applying the vector identities

@ Y ogwn) = v-(°gEQ) - (°0-vH) - Fp(v-g)
= V- (°g¥p)

and (ii) ’%l V"?Z/t =

gﬁ.(2¥‘73a:) _ § (v#)% %1:

where GL is an arbitrary>sca1ar function, equation 2.2 can be

integrated to yield
j‘;ﬂ(fdv = K, yﬁv%dv + ST{T"FoKeg}dxdj

v L[S ey o [Phoka

- Sg { "’T,zm - 3C°Kez/gl 2 =~ H+h } e ety -

whefe use has been made of the dimensional form of (2.1). Note that

in a closed basin the global integral of the advective terms vanishes.

(va)* 2 ()R
. . ., . a . . *
‘Identlfylng the quantities -:F— and 2:?;737— with the kinetic

and potential energy densities respectively, these equalities demonstrate
that both the integrated vorticity and energy density are conserved in
the absence of wind stress and viscous forces. In a similar fashion,

other quadratic invariants, such as enstrophy, can be shown to exist.
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(II.3) Vertical discretization and the resulting system of equations

The importance of baroclinicity has already been mentioned.
Fortunately, observational evidence suggests that the physical responses
we seek may be adequately modelled by a very coarse vertical decomposi-
tion. In fact, we choose to retain only two degrees of freedom in the
vertical dimension, a discretization entirely analogous to the assump-
tion of two immiscible fluid layers in stable stratification. 1In a
meteorological context, such two-level models have been known for some
time. to retain many of the essential features of fhe baroclinic insta-
bility processes observed in continuous systems (Phillips, 1951). This
formulation also agrees moderately well with the actual mid-ocean
situation ih which the upper and lower weakly stratified layers are
separated by the highly stable thermocline, and relies on the observed
dominance of the barotropic and first baroclinic modes in the mid-ocean
environment during the MODE experiment (Gould, Schmitz and Wunsch,
© 1974). Since both these modes are uniquely recoverable from a two-
level model (Flierl, 1975a), such a scheme, while offering the conve-
nience of being simplé, yet retains a high degree of dynamic similarity
to the real ocean. |

Diagramatically, the vertical grid system is shown in Figure 1.
Assuming we know the fields of 2#’(and hence €:) at twd nonuniformly
spaced levels in the vertical,vsecond-order finite-difference approxi-

mations to equation 2.2 at levels 1 and 3 yield

-SLARNS IS R Tl



Figure 1: Vertical discretization of the continuous problem.
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{22} e

and cls ({ ) + /g“% = K, v'?fs +£
where .subsc.ripts denote a given reference level. Note that the
equations are coupled through the vertical velocity at level 2, a level
taken to correspond to that of the main thermocline in the open ocean.

Using (2.1) 1n dimensional form and the upper and lower boundary condi-

tions 2.3 and 2.4 , thé ébupling can be made more explicit; that is,

i}

<
W

+
=

d, oy
G (5HE) + B 2 (h-H)

o dy o |
and | &—:-(g;;) - F‘3 d?a‘(_m;}-gl'—) = KBHV‘?a - ngq - C%/Hs) gy Zh

R .
where F. = °?-?‘VN°?H H. (i243)
[ 5

(9

Y
and Kg = (K"ﬁ/‘,?ﬂ;? <
The Rossby radius of deformation, Rd’ in this formulation becomes

d - .
Ry = (E+FOT o (o2, )R

The problem is closed by making the approximations

Rt S L 2 ST T

1) %h = g vh KgS, = Kg33

H

1) Ky = Koy = Ky

. LW I,
and (1) Zp = (=Yg, + (5 ) s

which equate the independent variables at level 2 to a linear combina-

‘tion of those at levels 1 and 3, and the bottom‘velocity to that at
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level 3. Note also that the coefficient of eddy diffusivity is now

strictly constant. Finally,

L’_

ke H(Fereraple T s
ama | % ;Tc#,/ )ﬁ_{_v"#,ff’—f-‘,(#;%f){ = K% (2.9)

- KBVJ43 -~ (‘s’/,,h) T( 43}"") .

The only esfimate of the mean stratification enters through the
parameters -F1 and F3 which each contain a factor of N2= .?soi"é evaluated
at level 2. In practice, the value of the Brunt-Vaisala frequency is
not a thermocline (that is a point) value, but some mean str#tification
representafive of the entire water column lying between levels 1 and 3.
Subject to some appropriate horizontal discretization and the boundary

conditions 2.5 , these coupled equations can be solved for ﬁf and Gé .

The numerical details are reserved for Chapter III.
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(1I.4) The mean field equatiomns

In anticipation of solutions which exhibit both mean and time-
dependent features, consider the usual decomposition of the stream-

function into mean and perturbation fields

' .
where ¥ = x gz/ dt

and by definition
2% = O

L
and can be realized from nume;ical or observational data if to>D"CF,
the integral scale for the eddy field. The vorticity and vertical
velocity fields may be similarly decomposed. Insofar as we wish fo
approximate an average over an ensemble of realizations, these opera-
tions are assumed to commute wiéh both spatial and temporal differential
operators. Given these definitions, the equivalent mean field analogugs

of (2.6) and (2.7) are

R =0 = AT+ Mu oS F AT

- —_ (2.11)
'/ﬂi<ﬂ‘7;f, - T + f}uﬁ
and ‘.J.gs = O T AU 'V? +~ A U’-;'V‘g, + /'/3' '\5"
3 X 3 3~ 3 3 (2.12)

—HiKa VG, + HiKeSy + £ 5 Vh - £

The mean vorticity dynamics are then seen to arise from a local balance
of advective, Reynolds stress, and planetary vorticity effects, lateral

and bottom viscous dissipationm, wind forcing, and the stretching of
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vortex lines due to the vertical motions induced at the level of the

thermocline (level 2) and at the bottom (level 4).

Defining the mean and eddy energy densities as
= _ g (WFR
Ki = Hi ==
¢ o=y CRE)T (2.10)
ki = o, OH) ..
— = = & £
P = (%-%)%s< X c= T3

ama P = e ($#-%) = k7

equations 2.1, 2.6 , and 2.7 combine to give the mean energetic
balances

LRy =0 = 4v{a%g g + T 5% (2.13)

v <FaRY + CT=R> +<k/=RY - <=1

sl

ol
~
|

w
~
¥

0 = Hy V| F 55+ $hg + G + B IbE Feas

+ CPaRyd + <K=RyY = <R3aDyd = <KaoDgd

mi K (F)=0= -2y ) §-‘ZC?)+’7;—"?% L (2.15)
- <P=K> - <B-Ky> + P>PF)
were  (F=RD> = £Fam,
<P=Ky> = -‘fo;/:,‘a'?:.z
<KImK> =~ é:—:; v_q_l‘: (L=73)
<MD —_

[}
)
N
35

R
<
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(Ry=Dg> = =HiKg#hT, 22

and <\_J'U—"'E,> = "-5‘;27':!-".

The eddy energy balances can be cast in a similar form:

%K) =0 = 4y T+ S0 +g V'S *'F"”"’% (2.16)

I wt

+ KPR - KKK +XwnKD = <GaDyY

- (K;) = 0= Hs v-{@ﬂ;'%’*- ?-, g;?’; + _\{;z/;?; + {‘z/;gsl }

, , - , , L (2.17)
+ Py = KKy Ky) = <Ky=Dy) = {Ky=»dg)

. . - ¢ & 12 -—-'—__
and %{;CP,.) = 0 = _ac_iga?t{).,g;(%)—«gz%'% (218)-
— LP=KY ~ KPRy - <P-TS> |
where <’P,“'-’ K|’> = fo%?‘c—?l
<'P,~= K-;) = ‘Fo 1/3’”-?‘
<KDY = Ak HTE G
<K3=Dg> = phKg 7S
and <W=K'S = <&y’

Ignoring the advective'terms which do not contribute to the global
energetics, the remaining terms reflect the transfers of energy between
the components of kinetic and potential energy. Also rebresented are the
sources and sinks of energy arising from the mechanical action of the
wind at the éea surface ( <W=K,? ), lateral dissipation ( <Ei"’.bﬂ> ),

and bottom drag effects (<I7<-3"'DB) ). A summation of (2.13) through

(2.18) readily shows that quasiconservation of mean total energy is
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maintained in this vertically quantized version of the original continu-
ous problem. As in the case of a double-layered fluid model, the
components of mean potential energy as defined in (2.10) are interpret-
able precisely in terms of the concept of available potential energy
(Lorenz, 1955). Under our assumptions, the lowest order (unavailable)
potential emergy corresponds to a state of no motion, 9{5(), and is of

little dynamical significance.
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(III) Numerical Solution Techniques

Because we have restricted our attention to a rectangular domain,
equations 2.8 and 2;9 can be integrated via pseudospectral approxima-
tion,.a variant of the Galerkin (spectral) method which is highly
efficient in simulafing indompressible flows within simple geometries
(Orszag, 1971a). Both techniques use truncated spectral series to
approximate the primary variables and their derivatives, which can be
accurately evaluated in the spectral domain; however, pseudospectral
approximation imposes the governing differential equations at selected
collocation points in physical space, whereas the Galerkin procedure
distributes the error'mbre uniformly by making the error in the
(discretized) differential equation orthogonal to the expansion func-
tions (Orszag,_1972). In comparison to the more traditional finite-
difference techniques, spectral and pseudospectral methods possess
several advantages, most notably that they are not subject to first-
differencing (phase), second-differencing, or incompresgibility errors
(OrSzag, 1971b). Moreover, if a problem has an infinitely differenti-
able solution, then spectral and pseudospectral approximation with an
N term spec;ral series converge faster than any power of (1/N) as |
N> w.l Since spectral schemes are also efficiently implementable via
fast transform methods, they offer substantial gains in accuracy over
finite—differenceltechniques. On the other hand, spectral and

pseudospectral methods seem to be equally accurate in the simulation of

%

1l . . P . . :
Such series are said to possess "infinite" order accuracy in analogy
to simple finite-difference schemes whose error decreases as some
finite power of As, the mesh size (Orszag, 1971b).



35.
many geophysical turbulénce problems despite aliasing "errors" in the
pseudospectral approach (Fox and Orszag, 1973). For these reasons, and
bec§use of its twofold advantége in efficiency, pseudospectral predic—v'

tion is preferred in most applications, as indeed it will be here.
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(II1.1) Lateral boundary conditions and choice of the expansion series

In order to completely speéify the problem, conditions on the
latgral boundaries must be chosen in addition to (2.5). For our
problem, in which both inflow and outflow have been ignored, the eastern
and western boundaries will be modelled either as "slippery" or "rigid"
surfaces;'that‘is, flows tangential to the lateral walls either suffer

no frictional retardation whatsoever, in which case

/) ©

(#i)xx = O X0 X (i=43) (3.1)
or are allowed no slippage at all, whereby Yy must vanish and
(%), = © x=0x, ci=r3). | (3.2)

The northern and southern walls are thought of as the boundaries between-

adjacent oceanic gyres that exchange neither mass nor momentum; hence, -

('40“ = O 4=°Y, (i=/3) (3.3)
wiil be assumed to hold in all cases.

We have yet to choose an appropriate set of horizontal expansion
functions. Clearly, the suitability of a particular series depends
critically on the choiqe of boundary conditions. If, for instance, our
domain were periodic,‘a two~dimensional Fourier series would be conve-
nient. Let us suppose first that the constraints (3.1) and (3.3), as
well as (2.5), apply. Then, not only the streamfunction, %Y , but the

2 .
vorticity, _‘<= V % , must vanish on all four walls. A convenient

expansion for this behavior might be

Mz

N

h*o

a, ., Sin Ckx) sin uzn) (3.4)

0 w

3
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_nT
where k. X,
and =27

identically satisfy the boundary conditions. This series is again
implementable via the fast_Eourier transfo?m (FFT) algorithm. Unfor-
tunately, this series representation fails due>to the presence of the
planetary vorticity term. In particular, 3% must formally be a
truncated series of cosine functions. These, in turn, can be asymptoti-
cally repreéented by an équifalent sine expansion, but not without the
appearance of a Gibbs effect near x = 0, X, where the summation of sine
modes vanishes and cannot model a nonzero:first derivative field. 1Imn
this sense, qu sin(kx) is not a "natural" expansion for a problem in
which /8 is nﬁnzero; even for an initial field completely describable
by (3.4), non-sinusoidal terms are immediately generated in the x
direction. Physically, this can be most easily visualiéed in the Munk
model of the wind-driven ocean circulation (Munk, 1950) in which lateral
viscous stresses Ck%‘gg) arise to balance the planetary vorticity
effect in the western boundary layer region. The maximum diffusidn of
vorticity occurs at x = 0 and clearly canmnot be simulated by ?Ax sinCksx).
Note, however, that sinusoidal expansion of 2/ in the y direction
suffers no such defect since all aynémical terms can be exactly repre-
sented as a north-south sine éeries. This antisymmetry about =y,
together with the constrain that ?V be real, makes it possible to

utilize highly efficient fast Fourier sine transforms (FFST) which
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require approximately one quarter the number of operations of a conven-
tional FFT on the same array (Appendix A).» (In addition, we have used
machine language progremming for all fast Fourier transforms, thereby
incneasing effieiency by a factor of two over the comparable FORTRAN
codes.)

Now suppose that the streamfunction fields satisfy (3.2)_and (3.3).
Since the boundary conditinne along the northern and southern extrem-
ities remain unchanged, a FFST can again be applied in the y direction.
As we approach the eastern and western walls, however, frictional
effects must bring the flow to rest. Such a boundary layer velocity
profile clearly cannot be represented in general by an expansion of
the type (3.4). This consideration, together with that mentioned in

connection with the planetary vorticity effect, dictates that we choose.

an extremely flexible expansion in the x direction. We therefore let

aMz

Y (2y4) = Z

n=9

: Av
A, TR sintly) (3.5)
where §=(2x—xo)/xo,and Tn(§)=Tn(cos€?)=cos(n€9) is the Chebyshev

polynomial of degree n, a function of the linearly stretched coordinate

N

%. If we now choose the collocation points
A ™ zj
er,‘jB) = écos(‘,\}e), ~ } ’

then #L(QP,‘;) ) = % % a._  cos zf nz[ tin g_%——i

B n=o Mo LN

In other words, a series in Tn(ﬁ) is identical to a cosine transform

on a nonuniformly stretched grid of points. This equivalence
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underscores two important nume?ical advantages of the Chebyshev tech-
nique, namely,
(i) a Chebyshev expansion can be implemented using a fast Fourier
cosine transform (FFCT, Appendix A), and
(ii) the nonuniformly spaced collocation points Qp are more
denseiy packed near X = + 1, thereby insuring increased
resolution at thé>ﬁestern and eastern walls where the most

highly structured flows are anticipated (Table 1).

A more detailed account of the solution technique is given in the

following sections.



Table 1:

The location and separation of the equivalent
collocation points (Nc) for a 32-term Chebyshev
expansion in a 1000 km domain.

40.



Nc x (km) Ax (km)
0 0.0 -
1 2.4 S,
2 9-6 11.9
3 21.5 71
4 38.6 20.4
5 59.0 25.3
6 84.3 29,2
7. 135S 32.9
8 146. 4 26.4
9 182.8 39.4

10 222.2 421

11 264.3 "

12 308.7 46.2

13 354.9 476

14 402.5 4.5

15 451.0 45.0

16  500.0

N x (km)  Ax (km)
17 549.0 45
18 597.5 W76
19 645.1 462
20 691.3 "o
21 735.7 2.1
22 777.8 294
23 817.2 2.4
24 853.6 32,9
25 886.5 29.2
26 915.7 25.3
27 941.0 20,4
28 961.9 171
29  978.5 1.9
30 990.4 oy
31 997.6 -
32 1000.0

41.
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(I11.2) The decoupled equations

The equations to be solved are (2.8) and (2.9), subject to some
suitable expansion of the time derivative terms. 1In crder to treat the
diffusion terms semi-implicitly, we use the modified Adams-Bashforth
scheme described in-Appendix C. Under this second-order approximation,

the dynamic equations become, in the usual notation,
['(d‘%'zju) v S+ R (%-%)] !
[6+F Gt TR+ ()R, (£)( 4 25") = R ixy
and - (= o?K )ng; + <y "Fs(?"'a'z'tn)]kﬂ =

[€3- BT () 88 + ()(H5- £5') < Rty

_ ) )
where { = - Ti‘q’/ §.+?+F,"43} + T/H

!

k

&
g;( = - T { 1{,3) gg";'stz}l + (‘%/H'S)h% - KB‘?‘S

T A
and /é.‘k = KNV '4; : ci=/3),

To further simplify the numerical analysis, we decouple the equations
by isolating the equivalent barotropic and baroclinic modal equations

"in the new variables

qﬁ. = 4 (H!‘/H.) Uy
and : ‘ Qé%. = 16 -.4¥3 . ‘
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Stability considerations dictate that the resulting uncoupled fourth-
order equations be solved in a two-step procedure when using the tau
method to be described shortly. Therefore, the resulting equations take

the form

Lo-Ga )R < re ()R
v < () R

and [ vof,+ 4%, 1™ = g - R,
k+ | ke
{ Va(@" (Aix,, +G) Cﬂs] * -(ASK..) 3k '

where G--: { -/ + [/—- /:aflt:"]!,a§ /.dtK” .

In analogy to (3.5), we expand the independent variables as

N M
qﬂ;_(,?’%) = 2 2 a _ T&) stn(ij)

n®o mTo wm n

N
and afi (Q/a) = 2

n<o

Mz

o Dimy ToG) 30 (Uy)
Since the Ri are defined at previous time levels and hence presumed
known, the sine expansion in the'north—south direction decouples the
y-dependence from the problem. In n-m (wavenumber) space, reached by a
simultaneous FFST in y and a FFCT in x, the problem may be solved
independently for each mode number W in the truncated y expansion.

For ™ fixed, the equations reduce to the following
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"

[b'II~ A'b‘( '*,Q‘z)'b k-H [R,"’ .(Hs/Hl)R;]nm 0<PEN (3.6a)

L L AL kt! 3.6b
[q'l - L a|] nm = AtKH) 'me oshs N ( )

['b + (G-K‘ﬂ 63] !

{Q,-R‘s]m osnsN (3.7a)

K+t )
kﬂ osnsN (3.7b)

I q3 N + G+l'z) ] (A't Ky 3nm

where a double prime refers to a coefficient in a second derivative

series (Appendix B).
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(I1I1.3) Solution technique - free-slip boundaries

We now outline the method of»solution.for a system entirely en-
cloFed by free-slip boundaries, a constraint which together with the
requirement of-no normal flow through the boundaries, implies that

#i = {.t =0 (4‘_:/,3) on ;\(=‘.".l - equations 2.5 and 3.1. Néte that no

further régard‘need be paid to the northern and southern walls, since
the expansion in SinClﬂ)ﬂtidentically satisfies the free-slip con—
straiﬁts at y=0,yo. The solution technique we adopt has been alluded to
in the previous section; it is an approximation called the tau method,
and.consiéts merely of neglecting the two highest order dynamic
equations in each of 3.6a, 3.6b, 3.7a, and 3.7b. The remaining
equations are then supplementéd by eight boundary conditions to close
the system. Rewrlting the boundary conditions in terms of their
Chebyshev series equivalents (Appendix B), the final problem becomes,

for fixed m,

o K k4| H
- (== % - 3 .
[b, (&Kutﬁ )ﬁ,‘] o = [R,+( /H')R,]nm ~ O<nsN-Z
N K+ ‘ N
ket
Eg; *%nn1 - hggé £>u5n1 = O
n €ven N odd
” 2 K41 2 k+!
[‘2’ = £, nm = _'(ZH;Kh) hm O N-R
N ' N
— K+! k+})
2_ (oW T Z_ a = ')
nxo nm n=o nm
n eveh n odd



and fb:+ (Gv@}“)bJ f: = { R, — R,] o s g A-g 3-8

nm

A K+) N ik} ' . 3.8b
E b =T b= O (3.8b)
nTo 3Inm nee MM

n even n odd ’

” 2 2 k+! 2 K+)

[q, -(MKA+G+’( )qs]nm T (AtKu)bSnm : osn € N-2
% e g_ ks - o
ns dom  pT% q3hm

n even n odd

By expanding ay '' and bi ''" in terms of the equivalent'ai and bi

series expansions (Appendix B, equation b.2), the resulting upper
diagonal matrix equations are repeatedly solved via standard matrix
inversion techniques for each mode number m in the discrete north-south

expansion. A pair of inverse Fourier transforms (IFFST and IFFCT) then

: k+? k
yields ?ﬁr% and gcéz

at t = (k+l) At is exactly known.

(i=/43) from which the state of the system

It has been brought to our attention fhat an even more efficient
matrix solution technique exists. Consider equations b.4 and b.5 of
Appendix B. These expressions show that, rather than using the cumber-
some sefigs rep?eéentation for ai" and bi", we can write the second B
derivative terms in a much more compact form. For eiample, we can
expand (3.8a) according to (b.4) an& (b.5) to get the following series

of relations:

Iﬁ;’n"' CG"Ld)bsn]::' = {Rm—RM’]m -
” - i s k+ )
[ bsn + (Go?r:(a){ cﬂ-l b!in-' ‘_ bsln-n.i ]m'_ = [_ Rm— QSn )
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[ b /4 + n=-t { c N _ - b } )
n dn (n-1) n-a 3 0-Q n

(G-2R) ]kﬂ ~'
‘dn Cn+l) ic'n b3vr> SVHQ } [Rm an]m >
z G-22 ” (628 ey (G—x‘?)c,..% 7
[ $n(n+r) b3/W+°'\' + {'— tn (n-1) Y¥n (n-'n). n

L
{(Giz:"a)‘m_‘( L3V)a] r:' = [Rm'Ran]m)

or, finally,

[ {aemtbona +f o - 32555 - = Fbon

Sn-1 S kel | [Rynya~Rinralm (3.8¢)

* {c“‘/"':(':l;l } b3 n-3 ] m i dn (nt1) (&-2°)
Cpey [ Rin~R3n Im Cn-r Sn-2 } [Rin-»=R3 n-2 Im
ntn-1) ‘fnfn*')} -2y *+ L Watwn) G-2)  °

Thus, for fixed m, the equation for mode n can be written in terms of

the known quantities Ri (i=1,3) and the unknown coefficients b3 o2°

b , and b . Together with the boundary conditions 3.8b, the :
3,n 3,n_2 i

dynamic equations in the new representation 3.8c clearly decouple into
two independent problems, one for n even and another for n odd. In

th mode involves only modes n+2,

addition, since the equation for the n
n, and h-2, the matrix equations are tridiagonal and diagonally domi-
nant (except for the boundary condition which involves the sum> of the
b3 coefficients). Matrices of this form (as opposed to the more general

- upper diagonal matrices considered above), can be inverted more effi-

- ciently and with less round off error. Ih its future applications, the
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pseudospectral model will be modified to take advantage of this tri-
diagonality.

As in finite difference schemes, care should perhaps be taken to
quasi-conserve such quadratic quantities as energy and entrophy. In
analogy to the well known Arakawa schemes (Arakawa, 1966), there exist a
set of equivalent forms fqy'pseudospectral'nonlinear operators that can
be shown to approximate the desired conservatiﬁe properties (Appendix D).
For instance,. it is quite easy to prove that one such energy preserving

form is
AT = [ 2ot W)1E
is gl —Sn {41 T Jx | Ix 'QH)]PZ,

with ? an arbitrary scalar function. This form has been used through-
out except in the case of the planetary vorticity terms, J( 1{, f),
which are given their correct pointwise valués, /QUE s, 1 =1, 3.1 Note
also a further advantage of the pseudosbectral technique, namely, both
the advective terms and the boundary conditions are implemented to
infinite order accuracy. As webshall'see, this is not only true for
rather simple boundary constraints, as in the case of free-slip walls,

but also when more complicated conditions must be imposed.

1This points out the choice that must be made in all spectral /g—plane
models. The planetary vorticity term may be included in one of two
ways: as J( ?};, £) which though identically comservative may not be
poeintwise equal to /3 4% Ax, or as AV¥./Nx which though locally cor-
rect. is not globally conservative. ese differences arise from the
properties of the pseudospectral technique and the implicit assumption,
valid only in the limit of infinite resolution, that £ = f + 4y can be
exactly expanded in analogy to (2.5) in a Chebyshev-sine seriés.
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(I1I.4) Solution technique - no-slip boundaries

Retaining the free-slip conditioms on y = 0, Yo» let us modify
those on the eastern and western walls to disallow slippage along
X =+ 1. Referring to Appendix B, this requirement (equation 3.2) can

be compactly restated in terms of the Chebyshev coefficients:

N 2 - N 2 i

'§° na, = ngo na,,. = O (3.9a)

even n oclof
ne (m fixed):

and N N
o 1 .
= = O

Z " m = T 08y, - (3.9b)

neven h odd

In addition, we once again require '?2 =0((1=1, 3) on & =‘t 1.

To satisfy these somewhat more cumbersome conditions, we adopt.
what is best described as a discrete Green's function approach. This
is necessitated by the fact that all four constraints are given in
terms of the ainm; we have no conditions to apply on either of the
Helmholtz equations for vorticity. We circumvent this problem by em-

ploying a two-step procedure in which we solve two related problems:

(Step I)

[‘rﬁf" G, +2°0, 8, s [ ()R], ownsng

N

K+t nd k+!
"Z,.o PBmm = 3;0 F Blnm = 0
n even ) odd

[ PA'”° ﬂ“rA. ] kat - (_4%_‘(_”) PB'::: o SnsN-R

il k+ N K+
Z, A = Z phm = O

n even n odd

I R

ST,



[PB + (G-D 33]:;‘

- K+ K+/
nz=o PBSnm = nz'n FB3nm
N even n odd
” R k ’
LpAy - (e G""“)ﬁ"ﬂ .
N k+! » N - ke ) )
nz=o PASnm Z PASnm
N ewen odd
(Step II)

[L87- (G2 +2?)u8, %!

nm
5 k+1 o k+!
"Z"’ 8"""" = 2 h Bmm
westn ey
Y/ k..,,
[WA" - 23 A o
N N
k+' k.','
v%o ‘\AMM = Z bA.lnm
nzo
» even v odd

k+!
[LB + CG-£%),8, ] .

N
ke
nz*o hginm Z’ lnB '
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Evidently, the first problem determines the particular solution we are
2
seeking subject to V‘-/i =0 (@l =1, 3) on%=+1. In the second step,

we isolate an independent homogeneous solution by requiring

O ' "
k4t k+1 .
ngo hGlmw = %kginm = i (=4 3),
n W nnodd

We have yet to satisfy (3.8a,b); therefore, choose

: quV\ = PA;,V,M + o (BAinw\)
and (l..=/ 3 ).

binm = ¢ Binm + dl(kBinm)

Neediess to.say, the free constraints cll and ‘3% are chosen to satisfy
3.9a and 3.9b. (There are actually a total of four ocfs, one pair for
n even and another for n odd; ;ince the odd and the even modes are not
coupled, these problems are solved independentlyrfor maximum efficiency.
At each time step then, we apply the Gfeen's function technique 0(4M)
‘times -,twice for i=1, 3, twice for n odd and n even, and M times for
‘m=0, M.) The problem is then solved.

Although this procedure appears to require twice as many matrix
solutions as the scheme for a free-slip basin, this is in fact not the
case. Step II does not depend on the state of the system at previous
time levels and need be preprocessed only once ét the beginning of a
simulation. Conceptually, the scheme is somewhat more COmplicatea, but
the efficiency is negligibly affected, the only additional calculations
being those required to fix “(1 and 045. As in the case of slippery
walls, these calculations conserve energy in the absence of dissipation

and time differencing errors (in the sense outlined in Appendix D).
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(IV) Eddy Sensitivity to Western Boundary Layer Structure

The recent work of Holland and Lin (henéeforth referred to as HL)
exemplifies the prevailing eddy modelling strategy.which is to investi-
gate eddy behavior under-a large range of frictionalvand topographic
parameterizations, and driving and boundary conditions. The péeudo—
spectral model developed in Chapter III has been designed to make such
parametric studies and in particular to address the previously un-
answered question of the sensitivity of mid-ocean eddy dynamics to
changes in boundary layer structure. (Enhanced boundary layer flexi-
bility makes the Chebyshev formulation particularly attractive for such
studies.)

In order to make our comparisoné, we will draw heavily oa the
results of two previous quasigeostrophic simulations conducted in basins
bounded entirely by stress-free walls (HL, 19765;»fThé former,
henceforth to be referred to as e#periment 1, or El, is driven by a
single~gyred wind stress distribution identical to that adopted origi-
nally by Stommel (1948), and the 1qtter, experiment 2 (E2), incorporates
a double-gyred stress in a basin of twice the north-south extent. For
comparison, an analogous pair of experiments (EIR apd E2R) have been
performed which differ from their counterparts solelyvin tﬁat they are
now bounded on the east and west by rigid (no-slip) walls. These sets
of simulations allow us to.déduce the effects of the westefn boﬁndary
layer on the stébility of the mid-ocean environment.

It must be noted at the outset that our initial éimulatibns have

all been carried out in a flat-bottomed domain. This is, in itself, a
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severe constraint on the sysfem; topographic variations are well known
to be responsible for destabilizing strong mean flows (Orlanski, 1969;
Orlanski and Cox, 1973) and for impeding the two-dimensional cascade
toward low-wavenumber, barotropic flows (Rhines, 1975). Thus, we
acknowledge immediately that the physics of our model remains incomplete
at this stage, essentiallybso that we may initially addréss the most
tractable version of the Béﬁhdary layer queétion.r Our conclusions,
therefére, must be tempered by a recognition that a primary dynamic
mechanism may have been ignored. The introduction of an idealized topo-

graphic variation is being planned in a future set of experiments.
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(IV.1) Experiment 1

The values of the model parameters for E1 (Table 2) have been
chosen to coincide with those adopted by Holland and Lin for‘tﬁeir
primary finite-difference wind-driven ocean simulation. Since the
results of this experiment have been so thoroughly studied, we select
this experiment as our benchmark in two ways. In addition to the
boundary layer comparison to be made shortly, the results and equilib-
rium statistics obtained for experiment 1 by HL serve as a test
problem for the verification’ of ;he nonlinear pseudospectral model.l
(Alternétively, we can regard‘the small differences between the
predictions of the two formulations as an evaluation of the finite-
difference model relative to the theoretically more accurate pseudo-
spectral technique. Since that is not our present concern, such a
comparison will be elaborated elsewhere.) |

Briefly, the time-dependent model behavior in El has three distinct
phases: spinup, onset of instability, and eventual statistical equilib-
rium. Thus, after a three-year spinup from a state of rest, HL noted
that the resulting highly inertial circulation went spontaneously
unstable, generating a field of mesoscale eddies of 340 kilometer (km)
wavelength. After an additional, but shorter, period of integration,
the mean and perturbation fields (Figure 2) settled into an oscillatory
equilibrium characterized by a well defiﬁed periodicity of 57 days in

both the pointwise streamfunction amplitude and the global energy

1The linear version of the model has been tested against the known
analytic solutions to the two-level versions of the Stommel and Munk
frictional theories; the agreement was perfect in all cases.



Table 2:

The environmental parameters, forcing functions, and
boundary conditions adopted for the four primary
simulations. In addition to the nondimensional
groups mentioned in the text, we have included Re,
W./L_, and W_/L_; these are the Reynolds number of
tﬁe %nterior flgw, and the relative widths of the
inertial and frictional western boundary layers,
respectively.

55.



El EIR E2 E2R 56.
L (cm) 1.0x108 1.0x108 1.0x10% 1.0x108
Ly (cm) l.OxlO8 l.OxlO8 2.0x108 2.0x108
H, (cm) 1.0x10° 1.0x10° 1.0x10° 1.0x10°
(4 Je=
H, (cm) 4.0x10° &.0x10° 4.0x10° 4.0x10°
£ (sec™h) 8.3x107° 8.3x10° 9.3x10™° 9.3x10™°
(em sec)™d [2.0x10713 2.0x10 13 2.0x10713 2.0x10713
N2 (sec™?) 8.0x10® 8.0x10™® 8.0x10~° 8.0x10°%"
R, (cm) 4.8x10° 4.8x10° 4.3x10"° 4.3x107°
d "5 4 6 "6 6 6
KH (em™ sec 7)|3.3x10 3.3x10 1.0x10 1.0x10
Ky (sec™ 1y 0.0 0.0 0.0 0.0
fg=xc - cos j =2 -cosj o2 - cos {‘?l‘i - <os -z'ﬂ}
= Cdyaes cn?) SL, ] '-3} “q } ! Cy
. Fs FS FSs FS
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conditions F$ F3 s s
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FS =« FREE-SLIP Fs Fs
NS ® Ao~ S¢P
numerical spectral spectral finité difference spectral
model 32x32 32x32 50x50 32x64
v <. -5 -5 -5 -5
E=5r= IR 6.8x10 6.8x10 5.4x10 5.4x10
°ox . e
-6 -6 6 -6
= K, 4 . . . .
Ex=¥u/s1 2 |4.0x10 4.0x10 1.1x10 1.1x10
ge=*°?m K 15 15 50 50
) R
Ray, 4.8x102 4.8x102 4.3x1072 4.3x1072
y _ _ s -
e ( 1 6x10 2 1.6x10 2 1.6x10" 2 1.6x1072
Lx ~\HL83 )/ 1e .
Wi . (Kw)y, 12 6x10 "2 2.6x102 1.7x102 1.7x1072
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Figure 2:

57.

Experiment 1 from Holland and Lin (1976).2

(a) mean upper layer streamfunction (average

over 600 days; contour intervals = 2.4 Sverdrups).
(b) mean lower layer streamfunction (average

over 600 days; contour interval = 1.6 Sverdrups).
(¢) instantaneous upper layer eddy streamfunctlon
contour interval = 0.8 Sverdrups).

(d) instantaneous lower layer eddy streamfunction

~ (contour interval = 3.2 Sverdrups).

Lines have been drawn along x = 320 km to indicate
the phase relationship between the upper and lower
layer eddies. Lows (L) and highs (H) indicate
cyclonic and anticyclonic flow respectively.
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components. The set of equilibrium eddy statistics is summarized in
Table 3.

In the manner of section (II.4), the mean field energies and the
accompanying fluxes can be calculated and the global means of these
quantities conveniently entered on a "six-box diagram". . The energy
budget resulting from the_HL;simulation éppears in Figure 3. The
global energetics indicate a predominant baroclinic cascade of mean
potential energy to the equilibfium eddy field which maintains the meso-
séale e€ddies in the presence of latefal dissipation. The primary enefgy

transfer path is

W-*El—»‘f-»l(é—rDH. (FP1)

In the localized region of intense baroclinic activity, confined to the
iﬁtense westward return flow (Figure 2a, c), the upper and lower layer
eddies bear the 90° phase relationship indicative of béroclinic in-
stability (Robinson and McWilliams, 1974).- Contouring the levels of
the three mean eddy energy components also effectively demarcates the
area of baroclinic activity (Figure 9). In the southern half basin,
removed.from the intense currents of the north, the eddies are nearly
barotropic, thus confirming the efficiency of the trend towards baro-
tropy observed by Rhines (1975) in flat-bottomed local eddy interaction
simulations; only in the region of persistent energy cascade is the
baroclinicity of the eddy field preserved. Finally, note the contri-
.bution of the Reynolds stresses to the maintenance of the mean flow

- field; this is most clear in the lower layer where forcing by the

Sttt et U



Table 3:

The equilibrium eddy statistics from the four primary
simulations.,
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El El E1R E2 E2R
(Holland) (Haidvogel)
wavelength (km) 340 380 400/680 360
period (days) 57 64 110/56 64/51
phase speed (cm sec 1) 7.0 6.8 4.2/13.9 | 8.9
global energy transfer baroclinic| baroclinic [stable| barotropic | mixed
(FP1) (FP1) (FP2) (FP3)




Figure 3: The experiment 1 global energy budget from Holland
and Lin (1976). Energ§ fluxes are in ergs/cm2/sec;
energies in 10° ergs/cm”.
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transient eddies is, in the abéence of Vertical momentum diffusion, the
only mean flow generation mechanism.,
" When integrated from a state of rest with the same values of the
environmental parameters chosen by HL, the.pseudOSpectral model dis-
plays an identical behavior. Figure 4 shows the mean energy components
as a function of time; thé-spinup; onset, and statistical equilibrium
phases,afe again evident. The mean streamfunction fields and represen-—
tative (insﬁantaneous) eddy streamfunction fields are plotted in Figure
5. -The similarity to the finite-difference results (Figure 2) is
striking, if not for all intents and purposes exact. The eddy statis-
tics collected from the pseudospectral simulation compare fa&orably to
their finife difference analogues (Table 3) and the eddy phase relations
noted above recur. As before, the equilibrium eddy field has well
defined temporal as well as spatial features. The frequency spectra of
the upper and lower layer streamfunction amplitude (Figure 6) shéws the
dominant periodicity to be 64 days (and its higher harmonics). An x-t
diagram taken through the latitude of most active eddying displays a
uniform phase propogation consistent with these scales (Figure 7).
Energetically, fhé primary cascade (FPl) occurs as in the HL model
though a quantitative comparison of the finite—differénce‘and pseudo~
spectral models reveals some systematic differences in the predicted
global energy budgets (Figuresv3 and 8). The mean energy levels and
fluxes are everywhere lower in the pseudospectral approximation, by as
much as 50% in some of the smaller terms. Tﬁe primary energy fluxes

are uncertain to only 0(10%), however, and the pathway itself is



Figure 4:

The experiment 1 globally averaged energy components
as a function of time from the pseudospectral model.
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Figure 5:

Experiment 1 from the pseudospectral model.

(a) mean upper level streamfunction (average over
500 days; contour interval = 3.0 Sverdrups).

(b) mean lower level streamfunction (average over
500 days; contour interval = 1.6 Sverdrups).

(c) instantaneous upper level eddy streamfunction
(contour interval = 1.0 Sverdrup).

(d) instantaneous lower level eddy streamfunction
(contour interval = 4.0 Sverdrups).

Lines have been drawn along x = 430 km to indicate
the phase relationship between the upper and lower
level eddies.
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(d)

(b)



Figure 6:

T

Composite frequency spectra for the -upper and lower
level streamfunction fields of experiment 1. The
spectra have been obtained by averaging 25 separate
frequency spectra of the streamfunction amplitude
taken at 25 equally spaced points,
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Figure 7: .

Experiment 1 x-t diagrams.

(a) upper level streamfunction.

(b) lower level streamfunction.

The profiles have been taken along the
latitude of most active eddying

(y = 750 km).
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Figure 8: The experiment 1l global energy budget according to
the pseudospectral model. Energy fluxes are in
ergs/cm?/sec; energies in 109 ergs/cm?.
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Figure 9:

The experiment 1 mean eddy energy components.
(a) upper level eddy kinetic energy (contour
interval = 0.3 x 10° ergs/cm?).
(b) lower level eddy kinetic energy (contour
interval = 0.7 x 100 ergs/cm?).

(c) eddy potential energy (contour interval =
0.3 x 10° ergs/cm?).
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unambiguous. Such errors as these are perhaps not unreasonable consid-
ering the modest physical differences between a two-layer model which
takes account of the small variations in layer thicknesé_due to
undﬁiations in the thermocline and our two-~level formulation which does
not, and the inherent dissimilarities-between the finite-difference and
pseudospectral methods. TFor our purposes here, however, the overall
results are sufficiently similar to confirm the HL experimental find-

ings and to validate the ChebysheV™model, which we now extend to the

no-slip analogue of experiment 1.
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(IV.2) Experiment 1R

Starting from rest, the quasigeostrophic equations. (2.8, 2.9) are
integrated in time as has been described for El except for the imposi~
tion of rigid boundary conditions, equation 3.2, on the eastern and
. western walls. The spinup phase proceeds as before, taking approximate-
ly 1,000 déys, but here thgd§imilarity ends. Instead of entering a
period‘of rapid energy cascade from the mean field to a set of growing
waves, EIR is stabilized by the effects of the rigid boundary and soon
reaches a steady equilibrium circulation characterized by velocities
confined to the upper level (Figures 10 and 11). (The absence of both .
instabilities and viscous coup;ing between the layers guarantees that
the equilibrium flow at level 3 must vanish, altbough small amplitude
transients do exist near t = 0; these are quickly damped by friction.)
The energy flow diagram for El1R, Figure 12, demonstrates the resulting
steadiness very well. Within thé measurément error, energy inﬁut from
. the wind is just sufficient to drive the upper level cifculation against
the forces of lateral dissipétion. No significant amount of energy
leaks to any of the other components once the mean potential energy
field has been established during the spinup phase. Thus, EI1R follows
a two-stage process ~ spinup followed by a rapid approach to steady
flow. The mid-ocean eddy generation witnessed in El has apparently
been suppressed by some direct or indirect action of the now modified
dynamic balanées near the western boundary.

In contrast to the rather strong differences in equilibrium

behavior detailed above, the corresponding mean circulation patterns of
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Figure 10: The experiment 1R globally averaged energy
components as a function of time.
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Figure 11:

The experiment 1R equilibrium upper level stream—
function (contour interval = 2.0 Sverdrups).
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El and EIR are qealitatiVely similar in many respects (Figures S5 and
11). The boundary layer scale thicknesses along the western and north-
ern walls are comparable in both instances, as is the tendency towards
smoefh inertial recirculation after the separation of the northera
boundary from the coast. The advent of the semi-rigid domain in EIR
has, however, reduced the upper layer kinetic energy by a factor of two
(Figures 8 and 12), although the beundary layer transport suffers by
only 0(10%), a consequence of the Sverdrup balance over the bulk qf the
interior. The immediate effect of this weakening is a premature trun-
cation, relative to El, of the inertial boundary layer along the
northern wall. Though delayed in El, however, the redistribution of
the bounda:y layer flow into the interior is no more ebrupt in one ex-
periment than the other. Boundary layer profiles taken through El and
EIR - Figures 24 and 31 - establish this similarity, apart from a
scaling factor, very nicely. The important point to be noted is that
the adjustment from a no-slip to a free-slip vorticity profile is made
very quickly once the circulation leaves the western boundary layer
region and proceeds along the northern margin of the basin. A distance
of only two or three_frictional boundary layer widths (wF) is sufficient
for the flow profiles to lose any memory of the dynamics to which they
were so lately subject. Of course, there has been an increased dif-
fusive constraint placed upon ;he overall circulation. Rigid boundaries
offer resistance to flow tangentiallyras well as normally and must a
priori increase viscous effects. This is precisely the case in EIR
where the regional influence of vorticity diffusion has been strengthened

and the circulation'greatly retarded. The interior flow senses the
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details of the boundary layer vorticity balances only.indirectly through
the modified energy and transport levels dictated by the increased
dissipation. We must‘once again remind ourselves, however, that the
flat-bottomed assumption effectively precludes topographic instabili-
ties associated with the western boundary layer. With appropriate
topography, such instabilities can be quite‘generally induced in highly
structured jets similar to-éggse connected here with rigid boundary
conditions (Orlanski and Cox, 1973) and might be supposed to enlarge
the region over which the western boundary layer dynamics directly’
affecté the ihterior. Thus, éubject to this one restrictibn of vanish-
ing topographic influence, the comparison of El and E1R supports the
hypothesis that the immediate effect on the mid-ocean circulation of a
~rigid western wall - the dynamical consequénces of rigidity along the
eastern boundary are trivial in this case - is an increase in the local
and global diffusive loss of vorticity and an attendant reduction in
flow strength. If this conclusion is valid, it follows that the
stability properties of the equilibrium states in Ei and El1R, in which
the jet structure itself remains approximately invariant, are explicable
primarily on the basis of the local amplitude of the mid-ocean circula-
tion. In Chapter VI we will see that this is indeed an interpretation

consistent with the stability properties of these flow fields.
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(Iv.3) Experiment 2

In El, the dominant, and as will be shown shortly the only, un~’
stable energy transfer occurs in the Westwafd flowing inertial recir-
culation. Though the localization of this instability conforms with the
known vulnerability of westward flowing zonal currents (Robinson and
McWilliams, 1974), this flow feature does not accord well with the ob-
served circulation pattern of, say, the Gulf Stream té which this model
might attempt to claim felevancé. It would be more pieasing to observe
instability in the eastward flowing region, not only because the Gulf | f.'
Stream has a strong meéndering eastward jet, but also because eddy
interactions with an eastward current are more favorable for mean flow
intensificafion (Rhines, 1975). Gulf Stream measurements (Webster, 1965)
have indeed documented this behavior in some narrow regions adjacent to
the coast; perhaps similar procésses are at work in the mid-ocean
extension of tﬁe stream as well. In an attempt to create a flow pattern
at once more realistic énd more susceptible to instability, HL have in-
vestigated the equilibria induced by double~gryed wind stresses. These
can be thought of as the antisymmetric reflection of the classical single

gyre about the northern latitude of the (1000 km x 1000 km) basin used

e St MO

in El, thus creating a doubly sized domain (1000 km x 2000 km). In so
doing, we relax the requirement that the eastward jet flow, at least
initially, along a northern wall where the vorticity must vanish and
allow the eastward flow to separate into the interior in a manner some-
what more analogous to the trajectory ofvthé Gulf Stream (given that we
have ignored continental and topographic variabilities).

An initial double gyre experiment (E2) has been carried out by HL

as part of their own mesoscale studies; the authors have generously
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made the following results available for inclusion here. The para-
metric values chosen for E2 (Taﬁle 2) are>identica1 to those of El and
E1R except for a slightly smaller Rbssby radius of deforﬁation, Rd,
and iateral diffusivity, KH' As before, integration proceeds from a
state of rest using the HL finite-difference model which is enclosed,
as in El, entirely by free-slip walls. Since the relaxation of the
constraiht on the separated flow iﬁplies a greater range of adﬁissable
unstable response, it is not surprising that the three phases of flow
development noted in El recur in E2. Onset of instability occurs after
a long period of spinup during which the velocity field remains complete-
ly symmetric aBout the mid-latitude, and an oscillatory, but now more
complicated? equilibrium follows in which this symmetry has beeﬁ
relaxed via the appearance of the unstable modes. Figure 13 documeﬁts
the equilibrium fields that result. They were formed by an average over
»1050 days of streamfunction fields taken at two-day intervals, a length
of fime barely sufficient to define a stable set of associated statis-
tics. (There is some evidence that long time scale changes are indeed
still going on after a cumulative time in excess of 10 years.) Even so,
the mean flow patterns clearly differ from those of the single-gyred
ocean; in particular, not only has the eastward flowing internal jet
developed well defined meanders, but the westward redistribution of
mass into the noninertial interior is broader and less intense. The
nonzero lower level mean flow, compriéed of two weak primary gyres
underlying, and in the same sense as, the upper level circulation has
again been driven by eddy-eddy interactions. Thus, the energy transfers

taking place on the mesoscale not only tend to reduce local horizontal



Figure 13:

Experiment 2 (Holland and Lin, 1976).

(a) mean upper layer streamfunction (average over
1050 days; contour interval = 3.0 Sverdrups).

(b) mean lower layer streamfunction (average over
1050 days; contour interval = 3.6 Sverdrups).

(¢) instantaneous upper layer eddy streamfunction
(contour interval = 4.0 Sverdrups).

(d) instantaneous lower layer eddy streamfunction--

(contour interval = 8.0 Sverdrups).
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shears (in the mean due to meandering) but also local vertical shears
(in the mean due to lower layer current generation). We will return to
this observation again upon consideration of the local stability |
propérties of these flows.

The instantaneous eddy fields of E2 (Figures 13c, d) are more
incoherent than those noted in El Fhough the mean eddy statistics
(Table 3) differ very littiéwfrom their El counterparts. The path of
the eastward flowing jet is now the favored location for eddy prcduc-
tion; indeed, the meandering of the stream occasionally sheds closed
circﬁlationé which migrate for short distances before eventual reab-
sorption. The eddies embedded in the jet and ité reciréulatipn cannot
be clearly characterized as bafotropic or baroclinic; 5oth types of_
instability are assumed (and will be demonstrated) to be locally active.
The far field eddies, uninfluenced by local forcing, are highly baro-

‘trqpic as in El. |

A global estimate of the energy transfers - Figure 14 - reveals
the dominance of an intense barotropic cascade of mean kinetic energy
to the equilibrium eddy field; the barotropically unstable jet has the

primary energy circuit

w+1'<l+Ki——f . (FP2)

w DI o 11
fPV ,,K3-——ﬂ>DH

In E2, energy supplied to the eddies cascades from Kl to Ki, rather
than from P to P' as in El. Note also that a greater fraction of the

energy is lost directly to lateral dissipation of the mean upper level

circulation in El (Figures 3 and 14) so that the equilibrium levels of



Figure 14:

The experiment 2 global energy budget.

are in ergs/cm”/sec; energies in 10° ergs/cm®.
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eddy energy are correspondingly lower. Calculations in Chapter VI will
verify that the instabilities at work in E2 are many times more vigorous
than those in El; Though barotropic instabilities are néw active, the
regiéﬁs of concentrated westward return flow (one to the north, the
other to the south) again exhibit baroclinic énergy transfers; the mean
poteﬁtial to eddy potential energy transfer pathway (FP1) is undoubt-
edly locally operational evéﬁ“though it is dominated by the bafotropic
cascade in the global statistics. This observation underscores an
important failing of a global energy budget: secondary (and sometimes

even'primarY) instabilities may not be identifiable from a basin-wide

analysis.
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(Iv.4) Experiment 2R

We now test the generality of the conclusions of section IV.2 by
redoing E2 in a semirigid domain. The environmental parameters are
listed in Table é for reference. For our tentative ideas to carry
through to thisvdouble—gyred experiment, we expect the mean fields of
E2R to be Qualitatively similar to .those of E2 but quantitatively re-
duced as a result of increased western bbundary layer diffusion. The
flow may be stabilized in consequence (as in E1R), resulting in a steady
rathgr than an oscillatory equilibrium, but whether or not this is the
case the final state of the system is predicted to be dgpendent only on
the local amplitude of the interior calculation and not on direct
boundary layer influences.

Figure 15 shows the time history of the mean energy components.
Obviously, instability héé occurred, és in E2, even though the mean

‘fields (Figure 16) are substantiélly weakened as has been predicted on
the basis of Ei and E1R. However, despite a boundary léyer transport
reduced by 50% relative to E2, the qualitative characteristics of both
the upper level (wind-driven) and lower level (eddy-driven) circulations
in E2R closely mimic‘the mean state in the free-slip experiment. Note
that a 500-day statistical average is sufficient in E2R to produce a
smooth mean flow field while a 1050-day time series was'réquired in E2
where the meandering is more intense and less "clean". The instantane-
ous eddies in E2R are also more coherent than their counterparts in
E2; Figure 16d is reminiscent of the El eddy patterns (which were

observed to align with the westward flowing branch of the inertial



Figure 15: The experiment 2R globally averaged energy
components as a function of time.
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Figure 16:

Experiment 2R.

_(a) mean upper level streamfunction (average over

500 days; contour interval = 4.0 Sverdrups).

(b) mean lower level streamfunction (average over
500 days; contour interval = 1.6 Sverdrups).

(c) instantaneous upper level eddy streamfunction
(contour interval = 1.0 Sverdrup).

(d) instantaneous lower level eddy streamfunction
(contour interval = 4.0 Sverdrups).
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100.
circulation) and for good reason, as we shall see. Both iﬁstability
processes are locally operative and consequently the frequency spectra
of streamfunction amplitude (Figuré 17) shows content in frequency
bands that had been rather unenergetic in El, for instance at 51 days
and its higher harmonics, though the dominant contribution still occurs
near a period of 64 days. Similar;y, phase propogation is somewhat
confused, though a charactéfiéfic phase speéd can still be defined
(Figure 18, Table 3).

In terms of energy fluxes, the rigid boundaries and consequent
reduﬁtion in transport have been effective in suppressing the barotropic
energy cascade relative to the baroclinic (compare Figures 14 and 19).
Experiment 2R contains unstable modes of both types and the dominant

energy flux path is a combination of FP1l and FP2

- K1 ro
_ X1 Dy
WK, — T : : (FP3)
L3P — 5 Pl Ké—-—» D

with both barotropic and baroclinic circuits active.1 Contour plots of
the mean perturbation energy components (Figure 20) illustrate the dual

characteristic of the transfer processes at work in E2R. The eddy

lOther experiments conducted by HL demonstrate that these flux pathways
can be modified by selection of other viscous mechanisms. For instance,
a small amount of a higher order vorticity diffusion (K4V*Z) combined
with a modest level of bottom drag (Kof ) can reroute the energy cas- .
cade by requiring that most energy be transferred vertically and lost
through the bottom rather than laterally where it is lost in the
boundary layers. This is in many ways a more preferrable energy dis-

' sipation scheme in which the higher order viscosity selectively ex-
tracts the enstrophy cascaded to the highest wavenumbers while 1eav1ng

- the mesoscale relatively unaffected.



Figure 17:

Composite frequency spectra for the upper and lower
level streamfunction fields of experiment 2R. The
spectra have been obtained by averaging 50 separate
frequency spectra of the streamfunction amplitude
taken at 50 equally spaced points.
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Figure 18: Experiment 2R x~t diagrams.

(a) upper level streamfunction.
(b) lower level streamfunction

The profiles have been taken along y = 1350 km.
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Figure 19: The experiment 2R global energybbud et. Energy fluxes
are in ergs/cm?/sec; energies in 10° ergs/cm”.
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Figure 20:

. The experiment 2R mean eddy enefgy components.

(a) upper .level eddz kinetic ,energy (contour
interval = 0.8 x 10 ergs/cm ).

(b) lower level eddg kinetic penergy (contour
interval = 0.7 x 10 ergs/cm ).

(c) eddy potentla% energy (contour interval =
0.5 x 10° ergs/cm
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energy, no longer confined primarily to either the eastward or westﬁard
flowing currents, has contributions in Both fegiOns iﬁ the case of Kl'
(Figure 20a). ' The lower level eddy kinetic energy (K', Figure 20b) is
once again béing fed exclusively by baroclinic activit? in the two
regions of westward recirculation and conforms nicely to the equivalent
single-gyre results (Figure 9b).

Except for lower overall energy levels and the relatively more im-
portant contribution of baroclinic instability, the important features
of thé Eé equilibrium circulation recur in E2R despite the.severe
modification in boundary-layer physics. Once separated by several boun-
dary layer widths from the coast, the structure of the internal jet no
longer depends on the bqundary conditions on x = 0; for example, compare
Figures 34 and 43. The eddies seem to be generated locally in infense
mid-ocean regions of barotropic and baroclinic instability and their
exact statistiés are dependent on the western boundary layer only inso-
far as the overall amplitude of the idealized circulation is determined
by frictional effects in the west. Especially in cases such as E2R
where a mixture of modes exists, we can test this proposed dependence of
eddy properties on the local environment only by a truly local analysis.l

Such a theory is advanced in the next chapter.

lAnother interesting test of these ideas would be to redo E1R and E2R
with an increased wind stress. If our scaling hypothesis is at all
valid, an appropriate strengthening of the forcing in E1R and E2R
should quantitatively as well as qualitatively reproduce the results
of El and E2, thus verifying the independence of the results of the
explicit western boundary layer structure (for fixed Wy and Wg). Such
tests have not been made due to computer resource limitations; however,
the same conclusions arise during the course of the highly efficient
stability analyses discussed in Chapter VI. :
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(V) A Linearized Stability Analysis

We are beginning to accumulate a growing number of numerical simu-
lations upon which to base conclusions about eddy behavior under various
parametric conditions. Hopefully, those in which eddies spontaneously
appear display some basic instability having a counterpart in the ﬁorld's
oceans. In many of these expéfimenté, highly localized regions of
significantvmean field/eddy interaction coincide with the intense bound-
ary current after it separates from the western (or northern) wall;
however, the mesoscale disturbances propagate out from these regions
and ultimately modify the dynamics in other areas as well. The instan-
taneous and mean étreamfunction fields.availablé from these simulatioﬁs
represent, therefore, a picture of the integrated response of the system
to some distribution in'tiﬁe and space of mesoscale energy sources and
siﬁks. In some fortuitous cases, eddy behavior is rather easily under-
stood on the basis of the associated global-energy fluxés; in these
instances, the eddies generally possess well.defined space and time
scales that stand out in the experimental results. Other simulations
exist, however, in which the mesoscale response is much more confused,
being a cémposite 6f several unstable modes, énd for which more sensitive
diagnostic tools are needed. This chapter proposes one such tool, based
upon a quasistéady_stability analysié'of model flow profiles, whose
advantages are simplicity and efficiency. Succeeding chapters will
discuss and assess the feasibility of extending this simple idea to a

more predictive use.
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(V.1) The stability of parallel flows above topography

Consider an arbitrarily oriented coordinate system (x', v') which
lies at an angle © to the coordinate frame (x, y) of Chapter II. Because
there is no preferred direction, the equations are insensitive to such a

coordinate rotation except for the /5 term which will, in general, be

split in two components:

where yAYES
and /Agj ==/éfcgs-€>.

In these coordinates, we may then write the two-level quasigeostrophic

equations as

Sl erckd] = [o50-p 4]

z, -~ 4
T, PR T e ™ 5.1)

and j’; l V*‘*a‘FS Gy = [/dx :%3' B -: 3%3']

4
= 3‘["/3’ V‘/)"'qu","' ‘%'-;] + KHV#S-KBVJ#S .

The reduction of this problem to one horizontal dimension requires the
assumption that the mean streamfunction of levels 1 and 3 be independent
of time and of one coordinate, let us say x'. (This theory therefore

automatically rules out certain classes of instabilities, most notably
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the barotropic instability of Rossby waves (Lorenz, 1972) which cannot be
adequately represented in terms of parallel flows.) Then, in the

traditional manner, we may expand into mean and perturbation:

AR ?I,Ccﬁ') + 7\§,(x,3,t) + 0c4%)
44y + Re Adcyt) ™™ + O4%)

([

- . (5.2)
and % = q,u) + A, xyt) + 04%)

= )+ Re Afupr et + 0UF)
where 1& is assumed small ( A <<1). Formally, the validity of this
theory "as a predictor of the properties of the growing waves requires

that

(i) the projeétion of the mean (finite-amplitude) velocity
field onto the y' axis be small,

(ii) the mean flow be quasisteady over many eddy periods, and

(iii) the'perturbation amplitude remain small.
The independence of the mean fields of the x' coordinate allows a wave-
like solution in this direction; k is now a free pa;ametér and represents
the x wavenumber of the infinitesimal disturbance. As usual, we
substitute (5.2) into (5.1) and linearize by neglecting terms propor-

tional to 0(1‘2) or smaller. There results

F[Fy- FeOE R ] = [pFy- k]
Pk T [, Y 5 d,]
- Lkd@ [21',“-# F,q,h + KHv‘%
md R [dy, - (RO 1 FF] - [/Sxda,-“‘ﬂﬂs]
+ ik 431[‘%3.1\1‘ a?{s*':s?ﬂ + KHV";I%
- ik I, [43“+F,"I,4'%_;_;]1 - Kg[ds,,- B

(5.3)
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Y n @ _
where V(é..bt k(%;_"o?kd;_“ + éé'ﬂ‘“ (L=ll3)

and the primes for the rotated system have been dropped. Finally, we
set i“ e:r—tand inquire for what complex values of €=OR'-+LO’1’._solutions
exist to these equations (subject to some appropriate boundary conditions
on the ¢.‘ ). Equation 5.3 is not 1n the form of a standard eigenvalue
problem; otherwise, the solution would be immediately available by any
number of techniques. Fortunately, a little manipulation serves to
reduce (5.3) to a mofe manageable fo~rm.

In general, this problem must be solved numerically on a discrete
grid of points. Theréforé, let us make a second-order finite-difference

approximation to (5.3). Using a subscript j to denote the jth gridpoint

along our transect in the y direction, the discretized equations become

G Dy, - (rrredd 4 G ),,,.+F¢3ﬂ

k- 1,1 (Ge) b, o - )+ G ,)¢
- [9‘43] {qnm* ang_hi

*5(,,4.,3(@»,,“ i) + )8 jarid b a0

- e?kKn)[’J_' ” j+l]"‘ kK,,¢,A)}

.1

2 (5.4a)

4ine]

and

Jt[ z)‘?ga,- (duz+F3+‘< )‘7534 '*(A, )¢3,,-H*F3 il =
tk{A &y + 1T} [Gp) g - (4¥)d, + @) ,J+,+F3¢,]
_ st.n Ty AT+ -}h,‘-] 'g (5.4b)
+ S( )(9‘9;1' ¢3J-l)* ( ){‘2‘ i ‘/%J—; 99(54 "¢ # 5"’/“+z]
) 2032 o) + ey

3

- K TG i - (), + ] 1.
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To these equations we must add the finite-differencé analogues of the
chosen boundary conditions on ‘#t . These need be specified because the
highly differentiated terms - in this case, the viscous terms - cannot
be evaluated on the boundaries unless,some information is given on how
9‘,behaves beyond its normal range. Suppose j = 1 is the first nonzero
gridpoint;ﬁhen, equation 5,4§"calls-for gé’jto ,» and Q@ j== Which
are not‘yet known. Given a particular set of boundary conditions,
however, they can be specified in terms of the interior points in the

following manner. For a free-slip, impermeable wall

dm ‘e = Q . .
“4=° Ci=13)

and ¢L,j="l = - d(." .

which arise as second-order approximations to the conditions 2/=?/‘m= (4

.

on the boundary. Similarly, no-slip impermeable walls require

¢%j=o =

4

o
and d = d"'13='

& 3=

(i=13),

The properties of the unstable modes, however, are not sensitive to the
boundary conditions fbr'eigenfunctions which are well restricted to the
basin interior as is the case in many of our simulatioms.

To cast this problem into standard form, redefine the left-hand
sides of (5.4a) and (5.4b) so fhat

@, = [GPD L -(Gperk) D, + Gi)d v 1 4] 29
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and Qa,i = [(z‘gz)da,j-l - (‘ngr-"'Fa*kz)?gs,J + (%,'t)%,jw ¥ F3¢9,‘;] .

On this discrete grid, the relationship between CQL and §5¢ is

explicitly known to be

'S “ g

: O
—_— Q’,iﬂ e d, -
Q= | = M |
‘ Q'J;\" - 4,/
-Q‘,JW. ' %

with tﬂ the matrix of coefficients defined by (5.5). Inverting the
block tridiagonal matrix ™M yields the (?;‘ as a function of Q‘_‘ on

the discrete grid. Then,

J p—~ : ——ly

R = HI,T) Q | -6
where the functional relationship,%f! » results by substituting for Qé
on the right-hand sides of (5.4a, b). Once reduced to this form, the

eigenvalues are easily calculable via eigensystem analysis; we have

e e

employed EISPACK for this purpose. Note that for a given set of param-
eters, meén flow cbnditions, and bottom topography, we need still solve
this problem over the range of k_to identify the most active wavenumber.
In doing so, we regard k as a continﬁous variable. Insofar as our simula-
tions are enclosed in a bounded domain, however, we do intrinsically re-
strict the range of admissable x wavelengths to be less than that of the
fundamental basin mode. In any case, the most unstable waves generally

possess scales much smaller than the basin dimension.
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(V.2) The predictions of linearized stability theory

Despite the simplicity of the approach, the methodology outlined in
the previous section.does predict many quantitative aspects of perturba-
tions-arising on the mean flow.r These properties can be compared to
statistics generated-from actual finite-amplitude eddy simulations. From
the unstable eigenvalues, ifwgny, we know the expected growth rate of the
eddies under the assumed mean flow conditions. lThe associated eigen-
vectors and the most unstable x wavenumber, kmax’ define the spatial
configu;ation of the eddies and indicate in which region of the y domain
they may be expected to apbear. This can then be compared with our
expectationé based on an a priori examination of the profile of mean
velocity and potential vorticity, and our knowledge of simple instability
-theory. Finally, the eigenvectors yield a description of the energy
cascade to the growing eddies. We need only multiply (5.3) by Qé: (qﬂ

conjugate) and combine to construct the two eddy kinetic energy equations

M L1 %+ C191°] = Relhork 44, und §99, 0, 1
+ KPKD> + KR=K/> - <KDY (5.7a)

md g Hy gy P K14 10T  re [y & 18, o scé;"dhira‘i}]

+ <P=KYS + <Ky=K3D - ‘<'<3r,"‘3u> = <K;"DB> (5.7b)

where Re denotes the real part of a complex expression. Similarly, one

can easily derive the potential emnergy equation

Q?,a -— /- l ’ ’ :
S [ (G22) 14217 = <F P> - <PLk/> - <Paxd>. (5.70)
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The individual flux terms

i

(gl-sz,.'.) Re | ikH, &% ".11]

Hak/> = (‘3:‘) Re{“f'@ 9)- ke, q’ﬂ]

KK/~ D, Re [HcKﬂcj:*v‘%]
<23 - K{) = Re [ ikH3<75:¢3“ q3“-]
P k> = G ke [ot ) s ]

<Ki=D> = Re[H:iKy @y v ]

<Ki=Dg> = Re [‘”?K5¢;Vz¢a]

and <§_° P :—ng) ﬁe[{.kq‘;( ?‘{d;)""( 43’4‘)‘-] .

are once again directly comparable to the finite amplitude predictions

of the fully nonlinear results.



118.

(VI) The Local Properties of the Unstable Modes and the Prediction
of Eddy Statistics

It remainé to be seen of course to what extent a highly simplified
stability model such as that advanced in Chapter V can reproduce the mean
eddy statistics seen.in the full numerical simulations. Under the most
optimal circumstances, we might fiqd it possible to extract the mesoscale
field properties from a stéffiity analysis of selected ﬁean velocity
profiles. in such cases, the application of LSA begins to extend beyond
the immediate goal of simple model analysis. For instance, one impor-
tant limitation on making a'thérough examination of model behavior under
a wide range of parametric conditions is ‘the costliness of the nonlinear
simulations described in Chapter IV.1 Evidently, we cannot expect to do
a complete parameter exploration by this méans. Consider however the
advantages inherent in the LSA. The determination of the most unstable
modes from a mean profile and the calculation.of the accompanying
energetics requires two orders of magnitude fewer computer resources
than a full simulation. Thus, if verified, LSA acqﬁires prognostic as

well as diagnostic importance in the following ways. First, the effects

5t e

of small parametric changes can be estimated by studying a range of
closely spaced values for fixed mean flow profilés (so long as the
funétional dependence of the mean fields on the parameters is itself
small). Such studies can extend our knowledge of eddy propertieé into
regioﬁs of parameter space adjacent to pre-existing nonlinear simula-

tions. We need integrate the quasigeostrophic equations only long

<

Experiment 2R and its acéompanying analysis, for instance, required
three hours of computer time on the NCAR CDC 7600.
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thereupon,
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define the approximate interior flow structure and strength;

LSA predicts the ensuing equilibrium eddies insofar as the

modification of the mean fields can be ignored. At the very least, this

yields a preliminary estimate of eddy statistics on the basis of which

it might be decided, for one reason or another, to terminate the

experiment. In such instanées, we have saved ourselves the trouble and

expense of running the nonlinear code far enbugh into the equilibrium

phase to generate reliable eddy statistics, a savings of nearly 50% in a

typical simulation. Meanwhile, the LSA always provides useful diagnostic

information, namely the local structure of the unstable modes which, as

remarked,

This

is unavailable to us from global energy considerations.

optimistic evaluation of the uses of the LSA depends on the

validity of the predictions it makes, so we proceed now to explore its

range of applicability. In particular, we consider the following

questions:

1)

(ii)

(iii)

(iv)

~ parameters such as R

)

can we qualitatively explain the conclusions of Chapter IV
on the basis of linear stability results,

can we quantitatively interpret equilibrium eddy statistics
from mean or instantaneous velocity profiles which are
assumed unidirectional and streamwise invariant,

what are the properties of the mean flow primarily responsible
for the growth of the unstable modes,

how are the instabilities dependent on critical environmental
d and KH’ and,

what are the most probable signatures for regions of baro-
tropic and baroclinic activity?
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(VI.1l) A stability analysis of experiment 1

As we recall from Chapter'IV, E1l had the cleanest and most uniform
eddy field of any of.the primary simulations. There is thereforé some
justification for presuming that El will also be the easiest to inter-
pret uSing LSA. Thié will be shown to be true. Take, for instance; our
initial impression from the.boundary layer sensitivity studies that
local factors such as (some measure of) circulation intensity affect
eddy generation. We can test this hypothesis by considering a succession
of El velopity profiles including

(i) méan profiles from the El equilibrium phase,

(ii) instantaneousrprofiles from the spinup phase, and,

(iii) instantaneous profiles from the equilibrium phase.
"In the experimepts to be reported, profiles were typically taken along
x = 300 km and x = 500 km. For each profile, we have used LSA to deter-
mine the accompanying unstable modes and their associated statistics.
Figure 21 shows the resulting correlation between the gréwth rate for
the maximally unstable modes (barocliﬁic in this case) and the maximum
local value of vertical shear for ali the El profiles analyzed. Because
El has a negligible lower layer velocity, vertical shear has been ésti—
mated by the maximum upper layer velocity.

The dominant trend in the experimental results is unmistakable; the
growth rates of the unstable baroclinic modes vary quasilinearly with the
local vertical shear. Tﬁe e—f§1ding times predicted for the equilibrium

| phase eddies lie between 50 and 200 days. Note, however, the time

evolution of the growth rate, ¢,

R Re @, during the spinup phase -~
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et 254

Figure 21: The variation with vertical shear of the growth
rate of the baroclinic modes observed in experiment 1.

X instantaneous profiles taken during the
equilibrium phase.

B mean profiles taken during the equilibrium
phase. ’

@® baroclinic mode scaling experiment (see
section VI.5) '

]-§ time sequence of instantaneous profiles taken
during spinup ' phase along x = 300 km.

a~€ time sequence of instantaneous profiles taken
during spinup phase along x = 500 km.
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also plotted in Figure 21. As the circulation accelerates; the predicted
growth time of the unstable eddies decreases, approaching a minimum

of 30 days. Once the eddies, which grow from perturbations of unknown
initial amplitude, reach finite amplitude and begin to ef%iciently exL
tract energy from the mean field, Re O falls drasticaily and eventually
assumes its more modest equilibrium Qalue. During spinup;the baroclinic
modes along x = 300 km are hé%é unstable than those along x = 500 km; the
reversé is true for the equilibrium phase. Since the El1 flow features,
at least at the upper level, are dominated by the mean flow and are thus
quasisteady, the instantaneous eddy properties do not vary a great deal
in time but lie in 1ocalized‘regions in Figure 21. This may arise
because of the influence of the northern wall; relaxing this constraint
allows a greatér range of unstable modes to appear - as we will see in
(VI.3). This rather narrow range of flow variability in El is trans-

lated into the simple quasilinear relation between O_ and |uz| which

R
depends, as we supposed, on the fact that north-south profiles taken
along any longitude at any time have nearly identical shapes but differ-
ing amplitudes; thus, jet structure as such cannot play a significant
role in these results.

The predicted substantial eddy growth rate as early as day 500 was
initially quite perplexing. Ihe obvious manifgstations of finite ampli-
tude eddies do not appear in plots of streamfunction and global kinetic
energy until nearer day 900 (Figure 4). Perhaps the assumptions made
during the derivation of the LSA have led to ovefestimates of the growth

rate. Assuming a 50-day e-folding time, perturbations would need to

begin with an amplitude some 20,000 times smaller than that of the mean
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flow in order to grow to a distinguishable magnitude in 500 days. It is
unclear whether or not this is a reasonable estimate for error amplitude
at this stage in the model calculations. We need another way ofiveri—
fying the growth rate prediction of the LSA, preferably an unambiguous
demonstration of instability at ‘day 500.

To provide such a demonstration, we have devised a pérturbation
growth test. Beginﬁing from the s;ate of El at day 540, a periodic
streamfunction "error" field was introduced with an amplitude of approx-
The nonlinear

imately 0.1% lel and a length scale comparable to R

d’

equations were then integrated in time and the growth of the eddy field,

max

defined as the difference between the perturbed and unperturbed simula-
tions as a function of time, was monitored. The zonally averaged
Xo

Lg
perturbation energy, x, 3 (K1 + K3

error energy decays everywhere but in the zonal band where instantaneous

+ P')dx, shows in Figure 22 that the

instability has been predicted. Aside from.an initial tendency for a
slight loss of energy even at these latitudes (due to the fact that the
eddies are unstable only in about one-half of the basin width), the
perturbation energy soon begins to grow in the expected manner. A closer
examination of individual eddies in the unstable region confirms that |
the eddy amplitude increases with a characteristic time of 50-100 days.
We are therefore encouraged to put some confidence in the LSA results
which in this case have for the first.time revealed the instability
mechanisms to'be operative very early iﬁ the numerical simulations;
apparently, the onset of instability really beginé prior to aay 540.

| Rather‘than describe in detail the over 100 profiles examined from

all four experiments, we choose instead to discuss only one represenative
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Figure 22: The time evolution of the zonally averaged eddy
energy from the experiment 1 perturbation growth
test.

day 540

day 560

‘day 580

day 600

day 620
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profile and the accompanying eddy statistics for each of E1, EIR, E2 and
EZR. In most cases, and this is a primary conclusion of the LSA studies,
it is the large-scale features of tﬁe mean circulation rather than the
higher order properties that indicéte whether instability will occur;
consequently, even a single profile can give an accurate impression of
the instabilities at work in a particular experiment. In examining the
El equilibrium fields, the si;ﬁation is very simple (as Figure 21
suggests); there is never more than one instability, a moderately un-
stable baroclinic mode which occurs in the region of westward return
flow. Both the time mean and instantaneous two-dimensiohal velocity
profiles exhibit this instability. Take, for example, the instantaneous
vprofile of Figu;e 24 which corresponds to cross section AA' in Figure 23.
The primary (eastward) and secondary (westward) jets are clear in this
diagram, as is the slow westward return flow in the southern half basin.
Note that although the upper level streamfunction field in the neighbor-
hood of AA' does satisfy our assumption of x—dependence ﬁuite well (since
it is dominated by the mean flow rather than the eddy field), the pro-
jection of the lower level velocity onto section AA' is quite large;
C[S%s] YU
"that is, I l> Jg

exceeds that at level 3 by more than an order of magnitude and, hence,

, . Fortunately, the maximum velocity at level 1

the local shears will depend most stfongly-on the upper level circula-
tion. Still, it will be shown presently that even small uncertainties
in the value of the shear can, in some instances, cause large uncertain-
ties in the LSA results. Despite these limitations, we shall proceed

with the linear analysis bearing in mind that, should our assumptions
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Figure 23: Representative instantaneous fields from experiment 1.

(a) upper layer streamfunction (contour interval =
4.0 Sverdrups).

(b) lower layer streamfunction (contour interval =
2.4 Sverdrups).

Profile AA' is replotted in Figure 24.
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Figure 24: Profiles AA' from experiment 1, Figure 23.
(a) uppeg layer streamfunction (]w | =

3.2 x 10°). max
(b) upper layer velocity (lu [ = 51.3).
(c) upper layer potential vort?c1ty (Iqll

= 2.0 x 107°).
(d) lower layer streamfunction (|¢3|
= 7.9 x 10° ).
(e) lower layer velocity (lu | = 1.4).
(f) lower layer potential vort?c%ty (|q l
= 2.1 x 1075). 3 max

Maximal instability occurs at y = 750 km.
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prove too severe or the two—dimgnsional results inconclusive, we may wish
in future to devise a fully three-dimensional stability theory.

The unstable mode predicted by LSA is centered at y‘? 750 km as
denotéd by the line drawn through the»individual plots of Figure 24. As
we expect, the instability aligns with the westward inertial recircula-
tion and lies in a region of opposing potential vorticity gradients at
the upper and lower levels (Figures”24c, f), a necessary condition for
baroclinic instability (Pedlosky, 1963). The growing eddies - the eigen-
functions of the LSA - appear in Figure 25 both in transect (25a, c) and
with the oscillatory x—defendence reintroduced (25b, d). As should be no
surprise, the eddies display the telltéle 90° phase offset between
upper and lower level appropriate for a transfer of meén potential energy
Eo the perturbation field.

In comparison to the results of the El nonlinear simulation, the
Predicted eddies have many of the same statistical properties (Tables 3
and 4). Even by inspection it is obvious that the idealized stability
‘analysis "eddies" have the same spatial scales (Figures 5 and 25) and
that they are both preferentially eloﬁgated in the meridional direction.1
Wave radiation into the southern basin and the consequent setup of the
barotropié far field cén, of coursé, only occur in the fully nonlinear
experiments.

An energy diagram for the growing eddies (Figure 26) confirms the

characteristic baroclinic energy transfers. (Note that since these are

This feature can also be anticipated theoretically for westward zonal
currents (Robinson and McWilliams, 1974).



Figﬁre 25:

N g

The most unstable baroclinic mode corresponding
to profile AA', Figures 23 and 24.

(a,c) the complex upper and lower layer eigen-
functions (Re¢ solid, Im$ dotted). :
(b,d) the real part of the unstable modes with
the x-dependence reintroduced.

Lines have been drawn along x = 480 km to
indicate the phase relationship between the
upper and lower layer eddies.
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Table 4: The equilibrium eddy statistics from the four
primary experiments as predicted by the linear
stability analysis. '
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El E2 E2R

baroclinic baro- / baro- baro- baro-

- clinic tropic clinic ’ tropic
wavelength (km) 370 350/470 420 390 350
~period (days) 58 35/490 75 180 67
phase speed (cm sec V) 7.4 -12/-.51 7.9 -2.4 6.1
global energy transfer | baroclinic baro- baro- baro- baro-
(FP1) tropic clinic tropic tropic
. (FP2) (FP1) (FP2) (FP1)



137.

Figure 26: The normalized global energy budget for the growing
perturbation of Figure 25.
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growing eddies the energy fluxes to each eddy energy component need not
sum to zero.) Individual plots of the energy flux terms as a function
of y indicate the localness of the>energy transfers (Figures 27 and 28);
tﬁe band of baroclinic activity is>0(200 km) in width. The global and
local fluxes have been normalized by their maximum valueslwhich are also

listed in the figures. Since the El eddy energetics are dominated by

IR

this single localized region of instability, the corresponding LSA
energy fluxes have the same spatiél characteristics as the zonal eddy
energy fluxes observed in the nonlinear simulation (Figure 29).

We would like, however, to be able to do better thah just a predic-
tion of the primary energy flux paths and their spatial distributioﬁs;
How might we redimensionalize the predicted energy fluxes so as to
provide a quantitative comparison to the experimental results? There
are two possible methods. First, we could estimate the equilibrium
amplitude of the eddies in El1 and, adopting a similar amplitude for the
corresponding LSA eigenfunctions, determine the approximate magnitudes
of the various flux terms. Second, we might try the converse tactic
and nondimensionalize the global energy fluxes derived in El; this is
most easily accomplished by normalizing by the maximum flux value as
we have alfeady implicitly done for the LSA energy diagram. Both types
of comparison are risky, however, because no matter how we make our
estimates, we are always comparing an equilibrium ené}gy diagram with
an inherently non-equilibrium one. We can expect a correspondence
between the two only in the fortuitous case that certain energy fluxes

and/or paths remain essentially fixed during the onset and equ111br1um :



Figure 27: Normalized local energy fluxes

of Figure 25.
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for the growing perturbations

Diagram Flux Maximum Value

(a) <R - K> 4.7x10"°

' ' 10
(b) <P' > K '> 5.6x10
(c) <Dy > K'> 3.1x10%°
@ < 1’<3 > K.'> 3.0x108
(e) <P' > K.'>  4.9x1010
(£) <D > K'> - 1.8x1010
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hadk %

Figure 28: Normalized local energy fluxes for the growing perturbations
of Figure 25.

Diagram Flux ‘ lMaximum Value
(a) Préssure Work on Kl' 2.7x1010
(b) Total Flux to Kl' | 2.2x1010
(c) <Fap'> 1.4x1011
(d) Pressure Work on K3' 9.5x109
(e) Total Flux to K, | 2.2x10%0

(£) Total Flux to P' 3.0x1010



TOTAL FLUX TO K| PRESSURE WORK ON K!

F—P>

[} [ Y

O 0000 --0000 _©O00o0o0 -

N O D o ® 0,0 ® 0 D M ONDON® o O
lllllll[ ol]l]l[Tll l]llllll

TTTTTT T

I
o
H

TT T T T i T T T T T T

'

L Y B I

I N .

()

INENEENE NN N

4y

T I T T

200 400 600 800

1000

TT T T T T T T T T L

i I T T

(b)

NN NN NN

200 400 600 800

1000

lll]lll]lTl]lI B

T T 7T 7T 7]

vl a1 laly

TTTT T T 7T

(c)

L b by opr by by

200 400 600 800
y (km)

1000

PRESSURE WORK ON Kl

TOTAL FLUX TO P’

TOTAL FLUX TO K's

k!
-

14

LI L B B A B B O |

LI I S N S T D N B N D B

' NS BN BN I A

TTT T T 1717

| T

(d)

[ O B O S B O O B O | I

06

] ] ]
OO0 00 oo
o O H M O N DN
LIS I N N I 0 Y et o |

L
OO

OO0 o0 o -
N A o ©® D

LI N B B |

(@)

O

200 400 600 800 00

T T T [ T T T [ T T T [T IR T 77T

s la bl ol

(e)

PO SO BN N B I

T T Y U O I OO I B TR O BT

200 400 600 800 1000

TT T [T T T T T T T T AT TT

' I e T

LI I N I o

' I I T

(f)

A A A B A A A O A O O

200 400 600 800
y (km)

1000



144,

Figure 29: A comparison of the dominant energy fluxes from experiment

1 as observed in the nonlinear simulations (zomal average;
dotted line) and as predicted by the linear stability
analysis of the profile of Figure 25 (solid line).

(@) <P >p'>.
(b) <P' > K"' >

(c) <P' > K3' >.
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phases of these experiments, or, equivalently, where the infinitesimal

eddies maintain their structural features as they grow to finite ampli-
tude. There is no reason a priori why this should be true, but with
this proviso we proceed to attempt such quantitative compérisons.

Figure 30 shows the normalized energetics derived from an average
over five El instantaneous profiles taken 10 days apart (thus covering
approximately one eddy cycle) along x = 500 km. By assigning to the
eigenfunctions an estimate of the eddy amplitude in El over this inter-
val (¢1 = ¢3 = 4,5 x 107), we redimensionalize the < P + P' > transfer
and get an energy transfer estimate of one erg/cmzksec. This is too
high, in comparison to Figure 8, by a factor of nearly four but the ex-
tension of the x = 500 km (local) cascade rates uniformly across the
basin, an aésumption of zonaluniformity, is overly optimistic; actually,
X = 500 km is a longitude of unusually high activity and some geometric '
factor of 0(1/2) can be reasonably applied to the LSA energy fluxes to
account for 1atera1 inhomogeneities. With this correction, the compari-
-son of the linearized perturbation energy flux < P->P' > to thé results
of experiment 1 is within a factor of perhaps two. This is a first
indication that some of the primary energy transfers from mean to eddy
field established during'the onset ‘phase may be insensitive to the
approach of the system to equilibrium. Adopting our second strategy,
let us normalize the El global energy fluxes by the < §l+ P' > value
(Figure 8), producing flux ratios comparable to those associated with
the predicted iinear modes (Figure 30). Again, we are left with the

s . . ' <pP' - K!'>
impression that certain flux ratios, most notably 1l , may -

<Ff > pr>
remain invariant during the establishment of the eddy field. The
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Figure 30: A mean normalized global energy budget for the baroclinic
instabilities of experiment 1 as predicted by LSA (average
over five baroclinic modes).

The numbers in brackets are the equivalent flux ratios
derived from the experiment 1 global energy diagram
(Figure 8) by dividing by < P + P' >.
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generality of this relatiénship remains to be established.

It is clear, however, that the predictions of tﬁe LSA compare favor-
ably with the exact statistics of the El mesoscale field. Growth rates,
space and time scales, spatial distribution of éddies, and energy fluxes
have been shown to be quantitatively as well as qualitatively accuraté.
However, El is not an overly complex situation. A north-south sectioﬁ
through its instantaneous véiécitylfield actually satisfies our assump-
tion of two-dimensionality quite well.l A more severe test of the
applicability of the LSA will be its accuracy in predicting the statis-

tics of more disordered eddy fields such as those of E2 and E2R.

1When corrections for path curvature are made to the stability analysis
of El, the predictions are altered by less than 5%.

P e T THTIN
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(VI.2) A stability analysis of experiment 1R

As we have noted, the north-south profiles of E1R are nearly
identical in structure to those from El1 (Figures 24 and 31). Why then
is the equilibrium phase of E1R identified by a stable rather than eddy-
ing state? The answer lies in the observation that a sufficient reduc-
tion in vertical shear will always §tabilizé a frictional baroclinic
-flow. A diminution in the ;;;imum upper level velocity by only 30%
will stabilize El for example (Figure 21). Such an explanation is
clearly indicated in E1R where western boundary layer dissipation has
reduced the estimated shear byv31%, or just enough to preciude the
unstable growth of small perturbationms. Fof a slightly higher character-
istic velocity, the E1R westwa?d return flow would presumably be the
site of a mesoscale eddy field comparable tb that in El1. In this sense,
and as E2 and E2R will demonstrate, rigid boundaries, in the flat bottom

- 1limit, impose only weak constraints on the interior.
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et

Figure 31: Profile AA' from experiment 1R, Figure 11.-
. A8y
(2) upper level streamfunction (|W1|m3x=2.2x10 ).
(b) upper level potential vorticity ([qllmax=2.0x10-5);

(c) upper level velocity (|u x=33.l).

llma

. . _ -5
(d) lower level potgntial vorticity ([q3[max—2.0x10 ).
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(VI.3) A stability analysis of experiment 2

The qualitative behavior of the E2 equilibrium fields suggest that
at least three instabilities are périodically or continuously active;
one barotropic mode in the eastward flowing internal jet, and two baro-
clinic modes symmetrically disposed in the westward return flows. One
of the tests of the.LSA, thefefore,“will be whether or not it can resolve
these distinct regiéns of in;;;bility and hence prove to be capable of a
truly local analysis. Since the E2 global energetics are dominated by
thef?Z energy flux pathway, we know that the barotropic conversion
process is the most intense overall; it should be readily distinguishable
in almost any profile that transects the internal jet. Surprisiﬁgly,
however, when a_variety of profiles similar to that proposed in (VI.1)
were examined for experiment 2, barotropic instabilities could not be
detected from any mean velocity profile; only for an instantaneous
velocity record did the barotropic mode appear. The associated growth
rates depend sensitively, with a certain amount of scattér, on horizontal
shear values (Figure 32). (Vertical shear was the crucial environmental
parameter in the case of the baroclinic mode.) Thus, the meandering of
the internal jet, itself indicative of the presence of the finite—ampli-.
tude eddieé, tends in the mean to smear out the streamfunction field in
the same way as the envelope of the Gulf Stream paths is much broader
than any individual trajectory. Our inability to detect the presence of
barotropic instabilities from a mean profile is a direct result of this
smearing action. The instability acts on the mean flow to weaken the
;ef of conditions which originally favored the instability and ulfimately

to limit the finite amplitude of the eddies.
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Figure 32: The variation with horizontal shear of the growth rate
of the barotropic modes observed in experiment 2. The
modes denoted by x's were determined from instantaneous
profiles taken 600 days later than those used to deter-
mine the dotted points(s). The residual differences in the
instability properties of the two sets of points
indicates that either we have not, as yet, quite attained
equilibrium or that there are very long period processes
at work in this simulation.
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For a representative‘ﬁz example, we choose transect AA' thfough the
instantaneous streamfunction fields pictured in Figure 33; the associatéd
profiles are repiottgd for convenience in Figure 34. The quasisymmetry
of the_upper level velocity about the mid-latitude (Figure 34b) stands
out, with the central jet and two westwérd recirculations being highly
prominant features. The most unstable mode corresponding to this zonal
representatioﬁ of the instantaneous flow occurs in the eastward current
as expected (Figure 35). The eddies are distinctly barotropic in both
phase relationship (35b, d) and energy transfer characteristics (Figure
36) which now. favor the < Ei -+ Ki > cascade. In general, the growth
rates of the instantaneous barotropic modes are predicted to be quite
large; Figure 32 suggeSté a mean e-folding time less then 50 days. This
is consistent with the vigorous meandering observed during the course of
'E2. The individual energy flux profiles demonstrate that narrow, highly
structured transfers are involved in the barotropic instability process
(Figures 37-38). Note that the LSA predicts the existence of twé sepa-
rate barotropic modes of widely separéted scales (Table 4). The long-
period barotropic instability may well account for long-term trends
observed in the E2 global energy statistics.

The barotropic mode is not, however, the only instability predicted
for the Figure 34 profile. LSA also reveals baroclinic activity in the
northern branch of the westward return flow (Figure 39). Its growth
time, 0(75 days), is much greater than that of the barotfopic mode, but
the phase and energy flux relationsﬁips indicative of baroclinic-insta—
bility are agéin present (Figures 39 and 405. The individual energ& flux

profiles are similar to those of the El baroclinic mode and need not be
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e g

~ Figure 33: Representative instantaneous fields from experiment 2.
(a) upper layer streamfunction (contour interval =
4.0 Sverdrups). '

(b) lower layer streamfunction (contour interval =
8.0 Sverdrups). :

Profile AA' is replotted in Figure 34. Lows (L)

and highs (H) indicate cyclonic and anticyclonic

flow respectively.
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Figure 34: Profile AA' from experiment 2 ‘Figure 33.
(a) uppeg layer streamfunctlon (lwllmax =
4.1 x 107)
(b) upper layer velocity (lu |max 53.0).
(¢) upper 1ayer potential vorticity (lql|

= 4.0 x 10™ )
(d) lowe§ layer streamfunction'(|w3| =
1.4 x 10%)
(e) lower layer velocity (Iu | = 9.8).
(f) lower layer potential vortlg§ty (|q3l

= 4.0 x 107°). max

Maximal instability occurs at y = 980 km
(barotropic) and y = 1230 km (baroclinic).
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Figure 35:

The most unstable barotropic mode corresponding to
profile AA', Figures 33 and 34.

(a,c) the complex upper and lower layer eigen-
functions (Re¢ solid, Im¢ dotted).

(b,d) the real part of the unstable modes with the
x-dependence reintroduced.

Lines have been drawn along x = 560 km to indicate
the phase relationship between the upper and lower
layer eddies. '
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Figure 36: ' The normalized global energy budget for the growing
- perturbations of Figure 35.
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Figure 37: Normalized local energy fluxes for the growing perturbatlons_
of Figure 35.

Diagram - Flux Maximum Value
@ <R ex > 1.9x1012
(b) <P K> - 2.4x10M1
(c) <Dy K> © 2.5x10M1
(d) <R Ky > " 3.1x10Mt
(e) <P s> 1.5x10™t
(£) <D, >K'> 2.8x1010
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g

Figure 38: Normalized local energy fluxes for the growing perturbations.
: of Figure 35. '

Diagram Flux ' Maximum Value
(a) - Pressure Work on Kl' l.OxlO12
(b) Total Flux to K ' 1.1x10%2
(c) <BP+p' > 4.9x10Mt
(d) Pressure Work on K3' ’1.6x1011
(e) | Tofal Flux to K3' 2.2x10ll

(£) Total Flux to P' 5.8x1011
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Figure 39:

The most unstablé baroclinic mode correSpondlng to
profile AA', Figures 33 and 34.

(a,c) the complex upper and lower layer eigen—
functions (Re¢ solid, Im¢ dotted).

(b,d) the real part of the unstable eigenfunctions
with the x-dependence reintroduced.

Lines have been drawn along x = 600 km to indicate
the phase relationship between the upper and lower
layer eddies. :
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e e

Figure 40: The normalized global energy budget for the growing
perturbations of Figure 39.
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included here. The ineffectiveheés of the baroclinic tranéfer (FP1)
relative to the barotropic (FP2) in the global, long-term energy fluxes
(Figure 14) can be explained by obéerving that the region of westward
inertial flow is highly variable in E2 with the consequence that the baro-
clinic instability is intermittent while the barotropic is continuous.

Because of the difficuity of ggtimating a represehta£ive'amplitude
for the barotropic éddies f;;E”the E2 resulté, the quéntitative compari-
son of the LSA energy fluxes to the E2 model results can be made most
easily by the second of our two methods in which the six-box global energy
diagiam is normalized by the dominant flux <K1+ Ki>. The flux ratios
for the LSA‘eddies have been estimated by an average over the results.

for the barotropic modes from nine separate profiles to give them greater

reliability (Figure 41). By comparison to the full model energetics, we

<P' > K!>
note that the flux ratio —————— is approximately constant for both
<K. > K'>

the growing as well as the equili%rium eddy field. This observation
conforms, in a certain sense, to the conclusions of Section VI.1. In
both.El and E2, flux ratios lying on or near the primary flux pathway
Temain constant throughout the infinitésimal and finite-amplitude eddy
phases._ This strengthens our belief in an invariance of some under-
standable sort but the evidence is hardly overwhelming. Thus, though
perhaps somewhat less successful than.the prediction attempted in (VI.1),
the results for E2 do clearly show that the component instabilities of a
more complicated equilibrium can be isolated and described. The diffi-~
cult and unresolved question is how to put the m;ny LSA modes (Table 4)
back together to form the best prediction of the equilibrium eddj field

(Table 3).
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Rt g

Figure 41: A mean normalized global energy budget for the
barotropic instabilities of experiment 2 as
. predicted by LSA (average over nine barotropic
modes). The numbers in brackets are the equivalent
flux ratios obtained from the experiment 2 global
energy diagram (Figure 14) by dividing by <K -+ K'>.
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(VI.4) A stability analysis of experiment 2R

The instantaneous north-south velocity profiles collected for analy-
sis from E2R béar many of the features of the E2 sections. A profile
taken ‘along the mid-longitude in E2R (Figures 42 and 43) with minor
changes could be a scaled version of the transect studied in (VI.3) -
Figure 34, the amplitude ratio being about 0.5. We therefore expect the
instabilities of both expef%ﬁénts to have comparable properties. Indeed,
an examination of the E2R profiles reveals the analogue of the quasi-
linear relationship, noted before in E2, between the growth rate, Re o,
of the Earotrbpic mode and'thé.local value of horizontal shear in the
mid-latitude jet (Figure 44). Because of the lower overall flow speed,
however, the mean e—foiding time for the barotropic instability is now
_0(75 days). Physicall&, this reduced growfh rate is translated into a
more quiescent stream which undergoes less meandering and displays less
asymmetry between the cyclonic and anticyclonic gyres. The effective-
ness of the barotropic mode has been so reduced by the weakening of the
current that the baroclinic modes are now equally aé energetic as the
barotropic, as opposed to E2 where the barotropic clearly dominated.

The most unstable eigenfunctions associated with the representative E2R
flow profile are shown in Figures 45 (barotropicj and 47 (baroclinic)
and>a1ign with the regions of greateét local horizontal and vertical
shear respectively. The accompanying'energy flux diagrams (Figures 46
and 48) clearly identify the instabilities as barotropic and baroclinic
in the sense (adopted previously) that the fluxes are dominated by the

< El > Ki > and < P > P'> transfers.
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Figure 42: Representative instantaneous fields from experiment 2R.
(a) upper level streamfunction (contour interval =
2.4 Sverdrups).
(b) lower level streamfunction (contour interval =
4.0 Sverdrups). .
Profile AA' is replotted in Figure 43.
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Figure 43: Profile AA' from experiment 2R, Figure 42.
(a) upper level streamfunction (lwll =

2.1 x 108). max

(b) upper level velocity (lull ag = 30.7).
(c) upper level potential vortTc%ty (lqll =
4.0 x 10™ ) I

(d) lower level streamfunction ( =

3.0 x 107).. 193 e

(e) lower level velocity (Iu l =3,2).

(£f) lower51eve1 potential vortlgﬁty (|q3|max=
4.0 x 10 7). i

Maximal instability occurs at y = 1020 km
(barotropic) and y = 760 km (baroclinic).
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Figure 44: The variation with horzontal shear of the growth rate
of the barotropic-modes observed in experiment 2R.
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Figure 45:

The most unstable barotropic mode corresponding to
profile AA', Figures 42 and 43.

(a,c) the complex upper and lower level eigen-
functions (Re¢ solid, Im$ dotted).

(b,d) the real part of the unstable eigenfunction
with the x-dependence reintroduced.

Lines have been drawn along x = 680 km to indicate
the phase relationship between the upper and lower
level eddies.
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Figure 46: The normalized global energy budget for the growing
perturbations of Figure 45.
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Figure 47:

-

The most unstable baroclinic mode corresponding to
profile AA' Figures 42 and 43.

(a,c) the complex upper and lower level eigen—

" functions (Re¢ solid, Im¢ dotted).

(b,d) the real part of the unstable eigenfunction
with x~dependence reintroduced.
Lines have been drawn along x = 680 km to indicate

the phase relationship between the upper and lower
level eddies.
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Figure 48: The normalized glbbal energy budget for the growing
perturbations of Figure 47.
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One might argue that E2R has the most complicated equilibrium of all
the primary experiments; although the eddies grow less rapidly than those
in E2, and therefore the eddying ie less intense, we now have a situation
where at least two (and possibly three) unstable modes are continuously
active with neither overwhelming the other. Previously, either a baro-
clinic (E1l) or barotropic (E2) mode completely controlled the global
energetics even though smalle;Vregions of competing instabilities might
have been locally operational. In E2R, both instability processes are
in epproximate balance, making the overall emergy transfer path (FP3)
more:ceﬁplex and the mean eddy statistics (Table 4) more.difficult to
ascertain. Note, however, one very nice confirmation of the E2R nonlinear
results by the LSA. Recall that the E2R frequency spectrum has signifi-
cant content near not only 64, but also 51, days (Figure 17). The 64-day
periodicity arises directly from the presence of the baroclinic mode
(ptedicted by LSA to have a 67—&ay period). There is also a smaller but
significant content at a period of 171 days which must Be due to the
barotropic mode (predicted period 180 days). Now where could the strong
51-day oscillation be originating? Almost certainly it results from the
nonlinear'coupling'of the two primary instabilities which have an
interactive period of 49 days.

Unfortunately, attempts to renormalize and compare the predicted LSA
energy flux ratios with those from the full exﬁeriment are not successful;
they fail because now the energy cascade cannot be adequately modelled by
a simple flux pathway.‘ Presumably, a local energetic analysis of the in-
diviﬁual regions of.inetebility in E2R would reconfifm (over limited areas)

the invariance of the flux ratios identified in Sections VI.1 and VI.3.
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(VI.5) Generalized properties of the baroclinic mode

In studying our four primary experiments, certain characteristics of
the upstable modes have become Clear, specifically the strong relation-
ship between 1océl velocity shear and the efficiency of the instability
process. But have we learned enough about the conditions under which the
eddies arise to Ee able to construct analytic profiles with given insta—
bilities? To do so, we fir;;hﬁeed to know whether other profile features
and environmental parameters affect eddy generation. If we are then

successful in making unstable flows to order, we are also much closer to

generalizing our deductions to the real world.

Consider first the profiles of Figure 49 in which we have construct-

ed a smooth mean flow consisting of two strong internal jets, one east-~
ward and the other westward. Now, we perform an éxperiment by solving
for the unstaBle modes as a function of maximum jet velocity. As will
;merge later, the breadth of the jets is such that we are always in the
baroclinié regiﬁe so that vertical éhear, u, should be the appropriate
measure of instability. Figures 50 and 51 show the results of this
baroclinic mode scaling experiment. A gently curving relationship
exists between growth rate, Redf'and the local maximum vertical shear.
The westward flowing jet is always more unstable than the eastward, and
the threshold value for instability occurs for a velocity differenée of
5-10 cm/sec across the thermocline; both observations conform to the
predictions of baroclinic instability theory (Robinson and McWilliams,

1974). However, the systematic variation of the most unstable wave-

number, kmax’ with shear amplitude is in the opposite sense - decreasing

5 el e G e
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e

Figure 49: An idealized mean circulation consisting of two oppositely
directed internal jets of equal strength. g
(a) upper level streamfunction (lwllmax =6.0 x 10).
(b) upper level velocity (|u,| ax - 22.7).
(c) upper_level potential vorticity (|q =

-5 1'max

4.9 x 10 7). l l
(d) lower level potential. vorticity (jq
4.0 x 1075). 3 max

The lower level is at rest.
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Figure 50: The variation with vertical shear of the growth rate
- of the baroclinic modes associated with the analytic
circulation of Figure 49.
X unstable modes in the westward flowing jet.
@® unstable modes in the eastward flowing jet.
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T .

Figure 51: The variation with vertical shear of the most unstable
wavenumber, k » -associated with the analytic circula-
X ma
- tion of Figure %9. ‘
X unstable modes in the westward flowing jet.
®  unstable modes in the eastward flowing jet.
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with increasing vertical shear (Figure 51) - to that suggested by the
same theories. This conflict, which has not been adequately resolved,
is however the énly point of contention between mid-~ocean stability
theories and the LSA results.

The quasilinear trend of &7

R
lative results of El plotted in Figure 21. This is expected if, as we

with u, is very reminiscent of the cumu-

suppose, local amplitude vafiéﬁilities are primarily responsible for the
time-dependence of the instabilities. An additional experiment confirms
this explanation. Taking an instantaneous velocity profile from E1,
i.e., a ﬁodel—generated rather-than an analytic profile, werperform a
similar scaling experiment and overlay the results onto Figure 21. The
coincidence of the two ;ets of points justifies our assigning a primary
#61e to variations in the amplitude of the iocal shear.

Of course, we hold other potentially important énvironmental param-
eters fixed during these nonlinear simulations so we have no way of
guaging the sensitivity of the results to other factors. ‘Assume for the
moment, however, that the strategy outlined at the béginning of the
chapter can be used. That- is, let us fix the profiles under considera-
tion and vary the interesting parameters without worrying about the fact
that the profiles, if model generated, would themsélves depend on the
same parameters. (Alternatively_, we could just comsider this a
study of the instability properties of ‘generalized current profiles.)

We have done this for the Rossby radius of deformation, Rd, which has

been varied for the idealized jet profile of Figure 49a.1 The wvariation

1 . : s . v . . .
A systematic study of the effects of frictional parameterization is
underway; the results will be reserved for future elaboration.
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in Red™ with R.d is smooth; mono;onic, and inverse, with larger growth_
rates associated with smaller deformation scales (Figure 52). The wave-
scale of the most unstable eddies is always slightly larger than and
varié; linearly with Ry (Figure 53).

The effects of jet structure - including their width and separation
on the baroclinic mode have also been studied. The results indicate
that over a wide range of v;iﬁés the width of the jet has little effect
on its Stability properties so long as the ratio of vertical to horizon-
tal shear remains large. Similarly, a sequence of. jet pairs separated by
succeédingly larger and larger distances (Figures 54 and 55) shows that
a separation of only one or two jet widths (or eduivalenfly one or two
deformation wavelengths) is sufficient for the eastward and westward
flowing regions to be independent (Figure 56).

A last experiment underscores_the'sensitivity of the instability
hechanisms to the exact levels of local shear. Figure 57 shows an iso-
lated jet'with strong horizontal as well as vertical shear. If the
.lower layer is taken to be at rest, the energetics are dominated by the
< P > P'" > flux (FPl); this is a baroclinic instability in our terminol-
oé&. Now, consider adding successively to the strength of the lower
layer floﬁ by setting ¢3 = awl and varying o from 0.0 to 1.0, thereby
slowly reducing the vertical but not the horizontal shear. Such a test
shows that setting w3 to the 157 level completely eliminates the domi-
nance of the baréclinic transfer, yielding a mixed mode (FP3). Adding
-30% of wl to w3, we have a heavily barotropic transfer (FP2). These

results are summarized in Figure 58. On the basis of the analytic

profile experiments, then, there is little reason to doubt that the

Rl U
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Figure 52: The variation with R, of the growth rate of the
baroclinic modes associated with the analytic
circulation of Figure 49.
X unstable modes in the westward flowing jet.
® unstable modes in the eastward flowing jet.
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Figure 53: The variation with R, of the most unstable wavenumber,

k , associated witﬂ the analytic circulation of
pax :
Figure 49.
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Figure 54:

A sequence of idealized mean circulations consisting
of two oppositely directed internal jets of equal

" strength separated by succeedingly greater distances.

Diagram Jet Separation
(a) 120 km
(b) 180
(c) 240
@

360
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Figure 55: A continuation of the sequence of a

nalytic jets from
Figure 54.
Diagram Jet Separation
(a) 480 km
(b) 720
(c) 960
(d)

1200
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Figure 56: The variation with jet separation of the baroclinic
modes associated with the analytic circulations of
. Figures 54 and 55. .
X unstable modes in the westward flowing jet
® unstable modes in the eastward flowing jet
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~——

Figure 57: An idealized mean circulation comsisting of a single
eastward jet and a slowuniform westward return flog.
(2) upper level streamfunction (|1p1| = 2.5 x 107).
(b) upper level velocity (|u | = lezaxo .
(c) upper _level potential vorticity (qu
4.0 x 1079),
(d) lower level potential vorticity (|q3|
4.0 x 1079).

The lower level is at rest.

Tmax

max
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Figure 58: The variation with the strength of the lower layer
circulation, w3/w1, of the energy flux ratio

v 1 = t
< K1 > K1 >4+ < K3 > K3 >

<P =+>P'>

for the unstable mode corresponding to Figure 57.
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baroclinicVinstabilities, though rather insensitive to certain features
of the jets such as width and separation, depend critically on the local
ratio of horizontal to vertical sheér. The transition from a baroclinic
to a barotropic instability can thérefore be quite rapid if we use as a

measure the accuracy with which we can make velocity measurements in the

field.
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(VI.6) Generalized properties of the barotropic mode

As indicated in the previous section, a jet with a sufficiently
intense horizontal velocity gradient will be barotropically unstable.
Such a current is shown in Figure 59; we have made it very narrow to
insure the predominance of the barotropic over the baroclinic instabil-
ity mechanism. Using this 1q§élized jet profile in a scaling experiment
similar to that conducted for the baroclinic mode, LSA yields the
variation of Re¥ with horizontal éhear. The trend is once again quasi-
linear (Figure 60) with a threshold value of approximately 2 x 10_6 sec_}
This scaling behavior roughly explains the observed distribution of Ok
versus’|uly| in E2 (Figure 32) and E2RI(Figure 44). However, as
opposed to the baroclinic modes of El, the time-dependence of the solu-
tions clearly involves more>than just amplitude changes. This is indi-
cafed not only by the scatter in the correlation between growth rate and
horizontal shear but by the fac; that the liﬁear regreséions froﬁ three
complementary experiments have slightly différent slopes and intercepts
(Figure 32, 44, and 60). Perhaps barotropic activity is a function of
some higher order profile feature? Without further tests, we have no
indicatioﬁ what this additional dependence might be. It is known, how-
ever, that, as opposed to the strong role of the radius of deformation
in determining the vigorousness of a'baroclinicrmode, Rd seems to have
only a slight effect on the growth rate and wavenumber characteristics
of the barotropic eddies. This suggests that the missing functional de-

pendence might involve velocity profile features that we have not as yet

considered.
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Figure 59: An idealized mean circulation consisting of a single

eastward jet and a slow uniform westward return flow.

(2) upper level streamfunction (|w11 =

2.7 x 108). max

(b) upper level velocity (|u Imax = 62.7).

(c) upper_level potential vorticity (|ql| =
=t max

4.6 x 10 7). [ [

(d) lower level potential vorticity (|q =

4.0 x 107°). 3 max

The lower level is at rest.

217.
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g

Figure 60: The variation with horizontal shear of the growth rate
. of the barotropic mode associated with the analytic
circulation of Figure 59.
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(ViI) Conclusions

We have described two numerical procedures for simulating quasi-
geostrophic mesoscale eddies under a variety of conditioné. The first,
a global nonlinear model, uses a pseudospectral technique whose accuracy,
efficiency gnd resolution make it well suited to the study of boundary
layer phenomena of which these highly asymmetric beta-plane flows are an.
example. The application of this formulation was to an investigation of
the effects on the mid-ocean equilibrium circulation of variations in
western boundary layer structure; two pair of priméry simulations,
including both sihgle and double-gyred mean flows, were conducted in this-
context. Second, in an attempt to e:;plore the local dynamic processes at
work in eddy-generation regions, a quasisteady linear stability theory
was advanced and used to interpret the simulated eddy statistics on the

~

basis of mean and instantaneous velocity profiles.

" We will not dwell at length on the primary conclusions of the
previous chapters; they were

(1) the closed basin Chebyshev-sine model can be made at least
as accurate and efficient as other current finite-difference
two-layer box models though it has a definite superiority in
its resolution of boundary layer processes and adaptability
to rather arbitrary boundary conditions;

(it)—inthe absenceof topography, no—slip western boundaries tend —
to promote a more efficient diffusion of vorticity than free-
slip walls; they thus affect the quantitative, though not the
qualitative, properties of the interior flow field;

(iii) a linear stability analysis (LSA) can, in most cases, accur-
ately reproduce the statistics of the equilibrium eddy field
given pairs of one-dimensional velocity profiles;

(iv) the LSA has an advantage over global analysis techniques in
that it yields accurate information on the local dynamics of
the eddies; thus, relatively less unstable regions that may
be masked in the global statistics can be explored via LSA;



(v)

(vi)

(vii)

(viii)

(ix)

»
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the growth rates of the individual barotrdpic and baroclinic
modes scale directly with the local magnitude of the hori-
zontal and vertical shears respectively;

the immediate effect of infinitesimal eddies on the mean

flow is to reduce the horizontal and vertical shear fields
whose extreme values originally induce the instabilities;

the finite-amplitude modification of the mean flow by the
eddies - that is, <K +K'> << 0 - is not predicted by the LSA;

in the presence of barotropic disturbances, horizontal shears,
and consequently the existence of unstable modes, can be
severely underestimated on the basis of mean velocity pro-
files; instantaneous velocity records, although unaveraged in
tinme and therefore not quasisteady as required by the theory,
are barotropically unstable to linear perturbations which bear
some resemblance to the eddies of the nonlinear double-gyred
experiment;

very small relative errors of 0(10%) in the measurement of
vertical and horizontal shears can lead to completely errone-
ous predictions as to the existence and type of imstability
operative in a local region; and

the general properties of the baroclinic modes -~ phase rela-
tionships, parameteric dependencies, and spatial characteris-~
tics - conform in most cases to the predictions of mid-ocean
baroclinic stability theory. '

Many of these points can be summarized very nicely in one scatter dia-

gram - Figure 61 - in which all the unstable modes we have calculated

from all of the four primary experiments (E1l, EIR, E2, E2R) are plotted

as a function of u, and luiyl' The corresponding instabilities, deduced

via LSA, dre classified as either barotropic, baroclinic or mixed and

are each represented by a different symbol. The resulting dependence of

the instabilities on the ratio of horizontal to vertical shear is

obvious; the u_ - Iulyl half-infinite plane can be divided into three

distinct regions: one region of stability, and two of barotropic and

baroclinic activity. The transition from one to another of these regions

can be quite abrupt as was verified using a sequence of analytic profiles
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Figure 61: A scatter diagram of the barotropic and baroclinic
instabilities observed in the four primary experiments
as a function of local horizontal and vertical shear
strengths. )

X barotropic modes
0 baroclinic modes
4 mixed modes



224,

(U, max * 10* (sec™!)

Uy mox

x 10% (sec*')



225.
(Figure 62) whose horizontal to vertical shear ratio passes from the
predicted barotropically to the baroclinically unstable region of Figure
61. The LSA was applied to this series of profiles to ascertain exactly
what type(s) of energy transfer predominated, either FPl (baroclinic
instability), FP2 (barotropic instability), or FP3 (mixed instability)f
" The seven points determined in this way have been added to Figure 61;

they lie along (uz)m x - 1.25 % 10_4 sec-1 and again reestablish the

a
existence of a very rapid transition from barotropic to baroclinic
instability.

Of'course, other importanf parameters have been held invariant
during our four simulations. The scatter diagram_of Figure 61 represents,
therefore, only one twe-dimensional slice through a many-dimensioned

space of parameters; under other conditions; quite different behavior can

be expected. Hart (1974), for instance, has pointed out the dependence
2
Q;QL_e
AN YH
M, e
and the layer depth ratio ( $= /&s) in a two-layer quasigeostrophic

of the mixed instability problem on the eddy Froude number (F_ =

model on an f-plane. For sufficiently small.gﬂand,moderate,Fé,,mean .
current distributions representative of an isolated eddy embedded in the
mid-ocean can be stabilized. For our experiments, Fea 1 and 8= 0.25.
According to Hart, these conditions allow a wide fange of unstable
behavior which depends on the width of the shear zone. Our simulations,
in which the ratio of vertical to horizontal shear varies, support this
conclusion. As in related contexts (see Owens, 1975, for instance),
therefore, tﬁe mesoscale eddies are characterized by a competition

between many physicel processes. Even under the very modest range of -

flow structures and strengths studied in our experiments, a variety of
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P

Figure 62: Representative profiles taken from a sequence of analytic
' single-jet circulations whose horizontal to vertical shear
ratio passes from the predicted barotropically to the
baroclinically unstable region of Figure 61.
(a,c) the most barotropically active streamgunction and
velocity profiles (Iw I = 2.7 x 10,
lu | = 62.7). 1 max
(b,d) the most baroclinically active streamgunction and
velocity profiles (lwll = 3.8 x 10",
lug | .y = 627D
The lower layer is at rest.

max
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instabilities are evident. As Hart pointed out, the ocean's eddy field
seems to occupy a unique position in the space of available nondimension-
al parameters, lying very near the "triple point" where the stable, and
baroéropically and baroclinically unstable regions coincide.

The last conclusion to be drawn from Figure 61 concerns the.condi-
tions necessary for instability. On the one hand, approximately a 5 cm
sec_1 velocify difference across tﬁe thermocline can lead to vigorous
baroclinic activity in the two-level model; this corresponds to an ampli-
tude of 2-3 cm sec:_1 for the first baroclinic mode in‘an equivalent
two-ﬁode dyhamical model (Flierl, 1975a). Persistén£ vertical shears in
the mid-ocean probably do not reach this level aﬁd, indéed, there is no
strong evidence for baroclinic;instability in either tﬁe Polygon or MODE
field results (McWilliams and Robinson, 1974; McWilliams, 1975). On the
other hand, a horizontal shear greater than 2-3 x 10-6 sec:—l seems to be
"large enough to promote barotropic instabilities. This value is equiva—
lent to a 12.5 cm sec_1 velocity gradient over a horizontal distance of
50 km. Such relatively small she;rs are certainly attained instantane-
ously, if not in the mean, in the Gulf Stream (Robinson, Luyten, and
'Fuglister, 1974). These numerical experiments therefore support the
contentioﬁ, long held By observatiénalists, that intense current systems
such as the Gulf Stream or the North Equatorial Current, and not the

mid-ocean, are the primary sites of eddy generation and growth.



229.

Appendix A - Fast sine/cosine transforms

The implementation of spectral methods depends primarily on the
ability to comstruct éfficient spectral transform routines. 1In the pre-
sent abplications, the variable fields can be expanded in a discrete
Fourier series. However, we have even more:information about these
fields; not only are they rggl,‘butrthey muét be either odd or even func-
tions (see section III.1). Armed with these extfa bits of information,
conventional discrete fast Fourier transforms can ba modified to provide
even more efficient transform programs. A gain in execution time of

four can be achieved.

(A.1) FFST
Following Orszag (1971a), let us consider a string of (N+1) uniform-

ly spaced points, a (0 < n <N), such that

*

(i) a =a (an real) " (a.l)
(ii) a, =ay . (én antisymmetric) ' (a.2)
and (1ii) a, =ag= 0.

The Fourier transform of such a series must be conjugate-symmetric, that

where the discrete transform

: N Jrln:‘/N -
A:‘= goane o< jEN-1.
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A
Now, let Q, =ta, ,
5 L (R gy - & M-
so that if b, = Gt b Rgne o’.?n-u) osns M-
. N
= la, - (°‘.?n+u‘q-m-v) M= "3
] a L s A [ e e
chen i n=o qo?ne + ‘e nzo a?n'”e'
I, zm /N] Z Zﬂ'ud(-'hn-l)/l\/
hco a“'
r- 2mij(an)/N 2] .2" A iy (n+1) /n
= 2 &ane + [a? S'sn('ﬁ )] nco Xan ©
n<o
and
M-) ' " M-1 et '
A - Ztn.J(e?n)/N @ a i) (Ane1) /N
BM-:‘ %, %on & - ["? S«-n( WJ>] .-,Z-_-, X204 _
_ MZ‘ Zm.‘(a?n)/N (-?rr',)] Z.-mJ (e?n-H)/N
- n=o %o [ .?rm
Therefore, for 0 < j < M-1,
’3 M-, e?vr;j(a?nvlu M-1 A Jﬂij(ﬂni-l)//v
N Q
| nzo n Y S ans ’ (a.4)
) )
- Ls-8 '] . ___—-[ .+ B ]
=15 M- 4 sin (20)) B; M=)
In addition, from (a.l) and (a.2),
»
b =

- Qg ~ (Qqny™ O gyer )

ta

b

M-n *

N-2n T (o an-1 ~ qN-a‘tn”)
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The conjugate symmetry of b suggests that we set

. omin /N | o<¢n g K-i
Cn = Ctn"- BKM tie ( " ’bmn) K= Ny

from which, for O <j <K1l,

K-}

2mi (L)n /M K-! 27 (Rj#+1)n /M
. = 3 . .
CJ ')ZSO (b'\+beh) e + ¢ 'go (bh— LK‘U)) e
Kt amapn/Mm M ari@)n/m
- Igv .b" e + new w e ]
Xt s . . . ,
41 b, T R/ %l 5, e&vn Rjen/m ]
nso 7113
- Cai R N a.5
- 8&) + i Bﬂ‘.' . _ . (a )

In other words, the N-point transform Aj can be obtained from the

K (=N/4) point .transform Cj and the relations (a.3), (a.4), and (a.5).

(A.2) FFCT

Similarly, consider a set of (N+1) points a such that

' *
(1) a, =a, (arl real)

(ii) a = An—n (an symmetric)
and, as before, foi‘ 0 <3 <N,

*

A'N-j . . (a.6)

(1ii) Aj

o

: i ' oL ns M-t
Then, let bn Aan +i (q;m-m" a‘o?n-l)

from which, by considerations of symmetry,

¥
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and AJ' = é [BJ +BI"\-J‘]+ ‘;‘-;i—("?w?ﬁ IBJ - BM'J] . (a.7)

Since the b field is once again conjugate-symmetric, define

| in/
Cn= “’n"’ bmn} M ?T,e’w " N(bn‘ﬁx-n)

et I8

whence, C’q = Ba') + ¢ 82j+_l - . » (a.8)

The results (a.7) and (a.8) may be obtained by retracing the steps of
section (A.l1). The N-point cosine transform Aj can again be retrieved
from the K-point discrete Fourier tranéform of the array cn (0 <n< K—l)

via equations (a.6), (a.7), and (a.8).
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Appendix B»— Some properties of Chebyshev series

Consider the one-dimensional discrete Chebyshev expansion

Alx) = Z a T(x) € XE 41 (b.1)
n=o
where ’T;(x) = 'T;(cos ®) = cos (ne\)

e g

and A(x) is some unspecified scalar function. Then the series expansions

for the first and second derivatives of A(x) are given by

# - A'Cx) = :4;, o, T ex) = ga T, (x) (b.2)
&
and Cj—Aa = A”(x) = Z anT (x) = Z—%T(x) (b.3)
dx . e
where o
_ ' 2
a, = ol
" Cn P%I;H Fa—f’
P odd
N
A »
an - c, ‘""'a 'F(-P )O..
P+n even
and C°=o?) c, =t (n>o).

These relations can be expressed more compactly as
’ ’
(an)da, = c, 0., - Ql,, - (b.4)

’ "
and (2n) An = Cpoy oy = Xigy (b.5)
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By considering (b.l)_ and (b.2), one can also show that the Chebyshev

series has the following properties:

: N Iy
A(x=t)=0 = Za, =2 g~0 (b.6)
n=o nTo
‘ nodd n even
and
dA + (”) = % - é / =0
Ix (x=2) = Q, = Qn
g Teo n=o
n odd n ewen
2 2o
or Zna.n =Zha,h= O. (b.7)
n=o n=o
n odd n even

These are the equivalent series statements of the analytic boundary

conditions adopted in Chapter III.
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Appendix C - A modified Adams-Bashforth method

Consider the partial differential equation C

3% - A+B _ (c.1l)

where ¥ = " (x,y,t) is some scalar function. In analogy to our quasigeo-
strophic vorticity equations, we may think of '2 as representing poten-
tial vorticity. It is convenient to consider the right—hand side of (c.l)
as including.two expreésions, A and B, the former containing the advective
and forcing effects and the latter the diffusive ferms. Now, for consid-
erations of viscous stability as well as those numerical constraints
mentioned in Chapter III, we wish to treat B semi-implicitly. By modify-
ing the traditional Adams-Bashforth approximation, we therefore derive

the following appropriate scheme

-‘2"” "2 (At) ket (Mt)»‘l (‘ft (Bk k') (c.2)

As usual, verification of (c.2) follows directly from a Taylor series
expansion of the A and B terms; thus,

15 < 4e (B[ B+ e IE o] ¢+ CE) 4K

+(E)[8-A+ 2Y + 0N "

vz"+ At (A+B) + % :’Q "8) O(At)

v s () - 2R+ ouh

from which the second-order validity of the modified Adams-Bashforth

method is establishéd.
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Appendix‘D - Constructing pseudospectral analogues of Arakawa
conservative schemes

In many applications, it is cénsidered advantageous for the discre-
tized version of the nonlinear equafions to retain some of the conserva-
tive properties they have in their contniuous form. In pgrticular, the
discrete representation of the advective terms must have rather specific
integral properties if consér;étion is to be maintained. A variety of
possible finite-difference formulations which comserve some or all of the
quadratic mdmenté was originally noted by Arakawa (1966). As we now show,
the extension of these results to the pseudospectral or épectral approxi-

mation is quite trivial. Consider, for instance, the energy-conserving,

second-order finite-difference representation of the Jacobian term:

1
3‘- ' ("l’ @) ‘-}dai f 3(4“: 3+ Z’m 4-.) + 5 4, J("l -1, ) z/i-',j")
* < ¢+' )‘H c'l J-H) g rl('/i-t-l,';"_ 4«:—:, j-n)]

44\ Jy
""l fdj 1-,/31.?\1!

i R .)1 Uit ‘ 3,,]-* 0d”)

{ j’;‘[f"%: - j}a[gﬁ i’;,/"’ + 0(d?9).

Recasting the expression into its equivalent derivative forms shows that
the Arakawa second-order, energy—consérving scheme involves nothing more

than setting

"J (’flg) = V;’i,'(‘fg) ‘ (d.1)

that is, using the well known conservative representation of the
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advective terms. Now.thé ahalogous pseudospectral energy-conserving
approximation follows immediately; it consists of maklng the identical
assumptlon (d.1) although now the relative error in the calculation of
the Jacobian term is of course much reduced in the pseudospectral
approximation.

The conservative properties of representation (d.1) follow from the
fact that the corresponding flux térms in the energy equation can be

integrated by parts; thus,

gz(q:(#,f)c’xdy =v @i#dx Ig ] "f\l{; YYJ4]id d‘j @.2) .

[

I .,,mjl 5 fve idn

o

]

where I is the boundary of our closed domain through which no mass or
energy transport is allowed. We thefefore see that the requirement of
eneréy conservation is satisfied by assuming (d.1) only if our discrete
formulation maintains the property of being integrable by parts so that
the advective energy flux terms can be identically cast into the form
of a global divergence (which clearly sums out in the appropriate manner).
The pseudospectral technique does, in.fact, have the required property.
To prove this, it is sufficient to show that,rin general,

N=1 N-{

J 5, Ja,\ .
Zo kGl S (T R =0 (@3

h=o
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For instance, choose a generalized Fourier expansion for the functions

fn and g,"

K-t $ 'Px
0 = Pg" pe _ otn s N-)
and . = N/g
c%xn X,= /N
3" r=-|<%1,
K o oo
Then, 9%, S ips e P*
dx P-_-—K P P
: (d.4)
K=~ g x
Jan : 4
and - | -J?: r%-“ gzzz’e
N | W=t J
so that =, dx(—f 3n)_ Z ( d"sn-t-'pn;ﬁ;n) (d.5)

N1 K-l Kl (P"%)x”
=2 2 Z ¢
nto pz-r %t-& P‘r?:) 3% .

Note, however, that

, © mod N
%':’ i P—r%) Xn % (P"%) *
e =
n=o N ( P.r%) O mod N .
Hence, contributions to the summation (d.5) can occur only for p = q = -K.

In order to obtain the cancellation required by (d.3), we must modify the

derivative relations (d.4) to become

J{ln_f; L'FC.P
x P-%. P

o o cox (4.6)
and ';’_31‘ = % "
. . ‘lX '“K'f' %3%

R LTI TR
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from which integration by parts and our conservative properties are
Insured. Relations (d.6) therefore define the appropriate method for
taking derivatives in the pseudospectral approximation.

This derivation only holds for a set of expansion functions - like
the Fourier series - which are orthonormal with respect to a unit weight
funcfion over the interval under qpnsideration. (Therefore, this result
applies equally well to a ;;gmation of sine modes or Legendre poly-
nomials.) However, the Chebyshev series adopted in Chapter III does
not satisfy this orthogonality condition; its weight function -

-1/2

w(x) =-(l—x2) - is quite different. Consequently, if we let

N
= T ¢
7 Z:Frl’x")

n
, -—
X, = Cos(——-N )

Mz 7

and 3“' = 3{%0‘.5)

o

g

then

N Jf; ' éﬁr NN p , ~
= ( 3.;4-'?.,:,‘) = 2 Z(—Frgg-* rgz));;:l";(xh)";(xn)

n<o Ix reo zzo

which cannot in general sum to zero for any arbitrary fields fn and g,
Indeed, this is the price we must_pay for the convenience, efficiency,
and increased bouﬁdary layer resolution of the Chebyshe? transform
method. It is operationally possible to guarantee strict conservation
even with a Chebyshev series if one is willing to modify some of the

higher order dynamic equations as was done in (III.3) to satisfy the

D st s LT CITT LR
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boundary conditions. However, tests have shown that'the nonconservation
assﬁciated wi;h the Chebyshev series technique rarely exceeds one part
in 105 for well behaved fields such as those of the primary experiments.
This error is relatively much less than the errors arising from the
physical and numerical approximations of Chapters II and III and can be

safely ignored.

g
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