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ABSTRACT

Two numerical applications of two-level quasigeostrophic theory
are used to investigate the interrelationships of the mean and mesoscale
eddy fields in a closed-basin ocean model. The resulting techniques
provide a more accurate description of the local dynamics ~ origins ~ and
parametric dependences of the eddies than that available in previous
modelling studies.

First ~ we propose a novel and highly efficient quasigeostrophic
closed-domain model which has among its advantages a heightened reso-
lution in the boundary layer regions. The pseudospectral method ~
employing an orthogonal expansion in Fourier and Chebyshev functions,
relies upon a discrete Green i s function technique capable of satisfying
to spectral accuracy rather arbitrary boundary conditions on the
eastern and western (continental) walls. Using this formulation~ a
series of four primary numerical experiments tests the sensitivity of
wind-driven single and double-gyred eddying circulations to a transi-
tion from free-slip to no-slip boundary conditions. These comparisons
indicate that, in the absence of topography ~ no-slip boundaries act
primarily to diffuse vorticity more efficiently. The interior transport
fields are thus reduced by as much as 50%~ but left qualitatively un-
changed. In effect, once having separated from the western wall, the
internal jet has no know1edge~ apart from its characteristic flow
speed~ of the details of the boundary layer structure.

Next, we develop a linearized stability theory to analyze the
local dynamic processes responsible for the eddy fields observed in
these idealized models. Given two-dimensional (x~ z) velocity profiles
of arbitrary horizontal orientation~ the resulting eigenfunction
problems are solved to predict a variety of eddy properties: growth
rate ~ length and time scales ~ spatial distribution ~ and energy fluxes.
This simple methodology accurately reproduces many of the eddy
statistics of the fully nonlinear fields; for instance~ growth rates
of la-lOa days predicted for the growing waves by the stability
analysis are consistent with observed model behavior and have been

\
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confirmed independently by a perturbation growth test. Local energetic
considerations indicate that the eddy motions arise in distinct : and
recognizable regions of barotropic and baroclinic activity. The baro-
clinic instabilities deîend sensitively on the vertical shear which
must exceed 0(5 cm sec- ) across the thermocline to induce eddy growth.
As little as a 10% reduction in I u I, however, severely suppresses the
cascade of mean potential energy t~ the eddy field. In comparison,
the barotropic energy conversion process scales with the horizontal
velocity shear, LU I, whose threshold values for instability,
a (2 x 10-6 sec-1), y is undoubtedly geophysically realizable. A simple
scatter diagram of I u I versus I u I for all the unstable modes studied
shows a clear separation between rhe regions of barotropic and baro-
clinic instability. While the existence of baroclinic modes can be
deduced from either time mean or instantaneous flow profiles ~ baro-
tropic modes cannot be predicted from mean circulation profiles (in
which the averaging process reduces the effective horizontal shears). ~

Finally, we conduct a separate set of stability experiments on
analytically generated jet profiles. The resulting unstable modes
align with the upper level velocity maxima and, although highly sensi-
tive to local shear amplitude~ depend much less strongly on jet
separation and width. Thus, the spatial and temporal variability of
the mesoscale statistics monitored in the nonlinear eddy simulations
can be attributed almost entirely to time-dependent variations in local
shear strength. While these results have been obtained in the absence
of topography and in an idealized system, they yet have strong implica-
tions for the importance of the mid-ocean and boundary layer regions as
possible eddy generation sites.

Thesis Supervisor: Robert C. Beardsley

Title: Lecturer, Massachusetts Institute of Technology
Research Scientist~ Woods Hole Oceanographic Institution
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7.
(I) Introduction

There is a long history of attempts, both theoretical and numeri-

cal, to model and predict ocean circulation features. The earliest

studies, those of Sverdrup (l94 7) ~ Stommel (1948) ~ and Munk (1950), for

instance~ began by investigating the combined roles of wind stress,

planetary vorticity, and fri,ctional effects in determining the large-

scale flow. Some of the mean properties of the western boundary cur-

rent and the associated broad return flow were thereby deduced from

these early linear models. i Except for the free inertial solutions of

Fofonoff (l954) and Charney (l955), however ~ the inclusion of first-

order nonlinear effects awaited the advent of the numerical model as, a

recognized tool in the simulation of geophysical flows. The first numer-

ical experiments, carried out by Bryan (l963) and Veronis (1966) ~ were

simple extensions of the original Stommel and Munk frictional theories

to include significant nonlinearity ~ a more complete dynamic formula-

tion than was tractable analytically. In a barotropic system, the cor-

responding results incorporated features of both frictional and inertial

boundary layers; flows intensified towards the west (beta effect) and
"~

t,
1~north (inertial effect). In addítion~ an inertial recirculation adja-

cent to the western boundary current developed which could be made un-

stable for suitable parameters and boundary conditions (Bryan, 1963;

Blandford ~ 1971). More complicated dynamical formulations, including

the effects of topography and baroclinicity, were soon shown to repro-

duce the qualitative features of the mean large-scale ocean circulation

rather well (Holland, 1966 and 1973).
IFor an overview of the theories of the wind-driven ocean, see Robinson

(l963) .
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(I. I) Evidence for an energetic and dynamically active eddy field

These early analytic and numerical models fail because they resolve

o~ly the grossest dynamical scales of the ocean circulation and treat

subgridscale motion as a turbulent, dissipative field. Such a

representation does not take account of the possibility of mean flows

driven by smaller scale~ time-varying motions~ a mechanism of some

importance in the maintenance of the atmospheric general circulation

(Starr~ 1968). In fact, observational evidence collected over the past

decade reveals a rather energetic and well organized mesoscale field

which may actually support, rather than inhibit, the mean circulation

of the ocean. Swallow and Crease first documented the presence of the

eddies in what had been believed to be a relatively quiescent deep mid-

ocean environment (Crease, 1962). Recent field data confirm the

persistant and ubiquitous existence of an eddy field in not only the

North Atlantic (Kosh1yakov and Grachev, 1973; Gould, Schmitz, and

Wunsch, 1974), but in the Pacific Ocean as well (Bernstein and White~

1975); the preferred spatial and temporal scales of these motions are

typically LOO km and 15-25 days respectively. These measurements sug-

gest that the mesoscale may contribute substantially to the local

maintenance of the mid-ocean mean circulation.

Theoreticians soon identified several dynamic processes which might

populate the mid-ocean with eddies of the observed characteristics. For

instance, meandering of the Gulf Stream can result in the shedding of

cyclonic rings whose effects can be felt well into the oceanic interior.

Using the historical records summarized by Parker (1971), Flierl (1975b)
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has shown that ring spindown and subsequent wave radiation may drive a

mid-ocean velocity field of several centimeters per second. Eddies can

also arise directly in the mid-ocean through the agency of baroclinic

instability which acts to convert the potential energy of the large-

scale flow into eddy kinetic energy at the radius of deformation. The

potential energy field of the world i s oceans is quite sufficient to

account for the eddies in this manner (Gill, Green~ and Simmons, 1974).

In fact, the growth time scales for infinitesimal baroclinic eddies can

be as short as 50 days for rather modest values of the ambient vertical
4

shear (Robinson and McWilliams, 1974). Finally ~ interaction of the mean

circulation with topography may play an important role in sustaining

the baroclinic eddy field both in the intense western boundary layer

(and its seaward extension) where topographic variabilities can very

often destabilize the mean circulation and induce meandering and energy

radiation.into the .interior (Orlanski,1969), and -Ín the open ocean

where topographic scattering maintains the baroclinicity of the eddy

field against the forces of two-dimensional turbulence (Rhines, 1975).

A complete dynamical treatment of these instability processes and the

accompanying eddy-mean flow interactions hinged upon the formulation of

more sophisticated analytic and numerical models which took explicit

account of the dynamic consequences of an active mesoscale.
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(1.2) The preliminary results of numerical eddy simulations

Two distinct but related approaches have been adopted in an attempt

to numerically simulate mesoscale eddy behavior. The simplest, and

that yielding the most easily interpretable results ~ is the so-called

process model in which local dynamic processes are studied in a

periodic~ unforced domain. Starting from some initial circulation~

the dynamic equations are integrated forward in time and the evolution

of the field statistics monitored. Perhaps the most convincing compari-

son of model results to a collection of field data has been made in

this way by Bretherton and Owens whose multileveled quasigeostrophic

regional model accurately simulates the mesoscale statistics of the

MODE-I region (Owens, 1975). At the same time, related analytic and

numerical studies reveal a great deal of the generalized nonlinear be-
~:

havior of waves and turbulence~ for example, the fundamental instability

of a baroclinic Rossby wave (Kim, 1975) ~ the halting of the two-

dimensional cascade of energy towards low wavenumber ~ barotropic cur-

rents by wave radiation and topographic scattering (Rhines, 1975) ~ and

the evolution of a two-dimensional turbulent field above topography

~ ¡

g.t
ih
V.
~

towards a state of minimum enstrophy characterized~ on a beta-plane~

by predominantly westward flow (Bretherton and Haidvoge1~ 1976). Since

these models rely heavily on the powerful Fourier expansion technique,

they have the advantage of predicting the spectral as well as the

physical space energy transfers occurring during these nonlinear

interactions.

A second type of model attempts to simulate an entire oceanic gyre



II.

ra ther than jus t a localized mid-ocean region. Consequen tly, in

addition to a turbulent eddy field these models include idealized rep-

resentations of the intense western boundary current and associated

(often unstable) westward return flow. Such an isolated gyre is

necessarily enclosed by impermeable walls, thus complicating both the

boundary conditions and the numerical techniques that must be applied

to solve the problem. In contrast to the spindown experiments mentioned

above, the fluid is spunup from rest to an equilibrium state by some

hypothesized distribution of wind stresses. The presence of a driven

mean flow complicates the interpretation, especially the spectral trans-

fer properties ~ of the closed-basin simulations. The results do

indicate, however, that for certain parameter ranges, mesoscale eddies

can spontaneously appear during the spinup phase (Holland and Lin,

1975a). Following this initial period of instability the model

generally settles into an oscillatory equilibrium in which the eddy

streamfunction and energy fields ~ superimposed on the steady, large-

scale flow, vary periodically. At this stage, the fini te-ampli tude

eddies contribute substantially to the mean dynamic balances. For

instance, in the absence of vertical momentum transport, only the

Reynolds stresses induced by the eddies can sustain a nonzero mean flow

at the lower levels. Although model behavior varies considerably with

the values of the environmental parameters, the predictions of these

closed-basin 'simulations - including eddy space and time scales, phase

speeds, and source and sink regions - can closely correspond to observed

mesoscale statistics (Holland and Lin, 1975b). With the addition to
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these preliminary models of continentality, bottom topography, and a

less coarse vertical decomposition~ dynamically accurate eddy general

circulation models for the world i s oceans may be realizable in the near

future.
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(1.3) A global eddy modelling strategy

One of the most important limitations of these closed-basin models

is their sensitivity to small parametric changes. Thus, even given a

perfect physical model, we would still have to examine its response

throughout a multidimensional space of unknown parameters and boundary

condi tions; that is, the model mus t be "tuned". This is perhaps a

straightforward, but nontrivial~ task. The large block of computer

resources needed to run even a single nonlinear eddy simulation effec-

tively limits the number of such runs that we can realistically

envision. Though essentially a trial-and-error approach, this simple

but costly methodology has nevertheless formed a basis for much of our

modelling of global eddy behavior.

This investigation addresses two separate problems central to the'

issue of model sensitivity and predictability. First, we derive and

construct a highly accurate two-level quasigeostrophic closed-basin

model in which the boundary constraints on the eastern and western walls

may be arbitrarily specified (Chapters II and III). With this mode1~

we make a preliminary evaluation of the effects of lateral boundary

conditions on eddy generation (Chapter iV). Second~ we devise a

procedure by which the energetic balances of the local mean flows and

accompanying eddies can be explored. The method~ based on a linearized

stability theory~ predicts eddy features such as growth rate~ finite ampli-

tude spatial and temporal structure~ and mean to eddy energy conversions

given velocity profiles for the upper and lower layer flows (Chapter V).

The predictions of .the linearized stability analysis compare favorably
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with the fully nonlinear results over a large range of parameters

(Chapter VI). In addition to their diagnostic capabillties, such

stability analyses can be used as an exploratory tool in parametric

ranges where fully nonlinear simulations are unavailable. Consideration

of the local stability properties of simple mean flows also allows us

to generalize about the signatures of barotropic and baroclinic eddy

generation regions. Of particular interest is a determination of the

mean flow features that induce wave growth~ and the energy flux

quantities that may locally identify energy sources and sinks for the

mesoscale eddy field.
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(II) Formulation of the Quasigeostrophic Model

An accurate numerical simulation of the dynamics of mesoscale eddies

in a suitably large domain requires very fine spatial and temporal

resolution, and consequently a high degree of numerical sophistication.

To insure that such simulations be economically feasible, however, a

viable model can retain only the most essential physical processes.

With such a simplification in mind, we will first ignore the irregu-

larity of the continental boundaries. The planar representation of

these boundaries does not disturb the fundamental dynamics of the en-

closed fluid~ although qualitative mean flow features may be lost.

Rectilinear coastlines also facilitate the implementation of efficient

numerical techniques, as we will see. Similarly, we replace the upper

bounding surface by a rigid lid in the traditional manner. The con-

comitant filtering of surface gravity waves relaxes the restrictive

Courant-Friedrichs-Lewy (CFL) condition on the magnitude of the time

step permissible during the numerical integration of the hydro dynamical

equations. The remaining bounding surface, the ocean bottom, must be

treated more explicitly, thereby preserving the well known effects of

topography on the strength and stability of oceanic circulations

(Orlanski and Cox~ 1973; Holland, 1973). The necessity of the

retention of an idealized baroclinic structure arises as a consequence

not only of the highly stratified nature of the mid-ocean environment ~

but of our anticipation that a cascade of available potential energy

into baroclinically unstable waves will be pne of the eddy generation

mechanisms. The effects of the sphericity of the earth will be
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adequately modelled by adopting the conventional mid-latitude ¡& -plane

approxima tion

-s = -So+~'1 :: -fo(' + l'j/C\1-CUSo)

where f is the local value of the Coriolis parameter at some centralo

latitude, ~ ; a the mean radius of the earth; and L the horizontalo

basin dimension. Nonlinearity is presumably also important in

conjunction with the dynamics of planetary waves in directing energy

transfers between differing scales of motion (Rhines ~ 1973). Finally ~

the approach to statistical equilibrium will require the inclusion of

some dissipation though its correct parameterization remains a matter

of considerable uncertainty.
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(II.L) The potential vorticity equation

As have many in the past, we will make a quasigeostrophic approxi-

mation to the full equations of motion. This formulation incorporates

all the essential physical and environmental factors mentioned in the

previous section and, fortunately, accords well with observations made

in the mid-o~ean (Gould, Schmitz, and Wunsch, 1974; Bryden, 1975).

Take the local cartesian variables x', y', and z' (positive upwards)

as the eastward, northward, and vertical coordinate directions; u i, v' ~

and w' the corresponding components of the vector velocity Vi; and'"

(-H + h (x', y')) the total depth measured downwards from the rigid sea

surface (z' = 0). The idealized fluid system, contained between

impermeable vertical walls at x'=O, x and y'=O, y , obeys the equationso 0
of fluid motion

c:h..'
\T ~ Vu.' I dc.'

-5 \)

, ~, J ' i , Jl ,
J-t' .. + c# ¡-' - :

ß. ~, + 1(.. V u. +1( ~.. "" JL2.

J\7 , dl1' , óI , ., tv '
~ ~ 1f IT' .¡ \.

, ~!l:; + .. i. Ji + = ß ~J ' + Kll V \T + K ;¡~.. o ~ ,v L.

d~ i loJ ', ,a' + \T. \!to -+ cq ::"' ..~'

~I , i I~'
cl ' + ~.Vt -r i. ~~'

~.¿ -l rJ~' + .J co'
Jx' -,

~i.'~'å

:: :: 2'
to .i~'

,~
to

== o

o

õl
where V denotes the horizontal gradient operator, V the two-

,

dimensional Laplacian, and ~ and ~ the horizontal and vertical
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coefficients of eddy diffusivity. 1 Note also the traditional and

Boussinesq approximations. Decompose the density fieln such that

where

i':: (0 .. ti'(~') + I; ()(;~:~:-t/J

to ~ til ~ r;.

Similarly, pi I; ..

"B I(~') of f.l (x; ':: i!: 1:')

where
,

Rl.' :: - ~ tto "11').

Together, these field assumptions define the mean hydrostati,c states

and the deviations therefrom. Choosing the non-dimensionalization

-t i = (foG4Y'-t

(x; ~/) -= L (~'j )

~' = H a

( u ~ ~' ) :. V(u.lT)"

w-' - ( Vr) C4 ~ = H¡L

f = -!o ( , + ol~) iX :: Il/to

lThe corrresponding terms are therefore assumed to adequately model the

subgridscale turbulent diffusion of momentum. Other such formulations
in current use are the fourth-order frictional mechanisms of the pro-
cess models (Rhines; Bretherton and Owens), and cascade models deduced
from simple turbulence arguments (Leith; Holloway).
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~'
- ~H f

i
(1'0\ LV J land l~ = )

the equations can be rewritten

€. 1)\A ¡;
( , -to(~) \7 =

- lx +
EH \i v. + Ëv lAz~1)

_.-. ~~-1'V

1)\1 co

e. :J-t -t ( I+O(~) 1., ::
- l~ -+

E:H \7 \T + Ev \raL

e (".1 ~l) 'J) - fc. - ß

~ ~ - f)tQ o

u. x + l1~ .. CAi! - 0

where 1:-
J)-t = l~)~ + 1.. Q..

J.. W"~ .

The nondimensional parameters are then

e - v/.£ = RO~!ihy YJlAnibev-oL

i
~~i. = - 'JlI9f-f" = N /-f..

00 0

B : (ï'S) .i = e \,V"~~V' n\,unbe.'t

KN/f LOl
hori~on-Lo.l

E-H == ::
Ii kW\ o.V\ n v.mht.Y'

c
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and £v ~ K"h ~
foH

::
v e'l"t\. co.I
E. KMCLV' l-..m b ~ 't

Quasigeostrophy is insured by setting

0u. u.
(1

f(J
€.~ - 0u, +

l or

( t
and adopting the parametric ordering

+ o (e,.2)

(i) o (t.) ~
E:/B ~~ oei)

(ii) OC~ ~ ~ ~ Co ~ O(E)
and (iii) t '/~ ~ l:H/ e. ~ o (L)~€.

Physically, statement (i) is equivalent to the requirement that the

thermocline in a two-layer model not intersect the surface; (ii) demands

that the domain have small lateral scales compared to variations in f

(and even smaller vertical dimensions), and that the motions be

characterized by the advective time scale; lastly, (iii) restricts
'I,

frictional action to lateral boundary layers of thickness ~F: (E~~).

Under these conditions, the lowest order balances become

0 0
0- -

.. px-
Du. :: _ 0p

,~

ora :: Of

Ow = 0
oL( -t °ir "1

o \A = 0u. "1 017 = o .)( ~ ~ )t ~
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To lowest order the fields are geostrophic and hydrostatic, an approxi-

mation consistent with the results of the MODE-I field experiment

(Bryden, 1975). To next order

1 (o\,) - '\ì - (ol~/t.) 0\Y :: - 'g.. + (c./e) ~:/'''( 0u.)

~ (0\,) + lv., +' (o(~/e) 0"" :: - 'f, + (€HIt) V õl(0IJ)

'Pe. =: - 't (2. I)

where

Iu. -t , + 'w- :: 0)C \1 '; -L

cl - '8 ( '(i ) 0dt (~) ::

'd (~ ) J + o~."
ëÆ = ~ .

Equivalently, the vorticity equation may be written as

;k (O~) - 'cd~ .. (oy£.) ofT _ (E:../i.) \Jil(O~)"" O(¿"'S+o(~+e:I4+ry)

where the error in this formulation, represented by the right-hand side ~

is assumed to be everyhere small. Though this may be the case in the

mid-ocean environment, the approximations leading to the quasigeo-

¡,,
¡

strophic potential vorticity equation are less accurate in the narrow

inertiofrictional boundary layers w~ere the scaling arguments break

down. (Recent numerical results suggest that this oversimplified

treatment of the boundary layers does in fact run into trouble during

the spinup of a stratified fluid model; however, the steady or oscilla-

tory equilibrium attained subsequent to the spinup period seems to be

relatively insensitive to whether primitive or quasigeostrophic dynamics
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are used.) Returning to dimensional form and dropping the prime

notation

cJ "S~ + 8J~
l Vx

f~ ~ -+ Kll Võl~ (2.2)

where the streamfunction, ~ , and vorticity, ~ , assume their

standard definitions

"0 = or ~fo

and ~ -- 00: _ 0v- ::X ~ nól?j .

The statement of the problem is completed by specifying an appropriate

,set of boundary conditions. At z=O ~ we assume the existence of a known

wind stress, 1?(~it), while along the bottom the normal component of

veloci ty vanishes. In analogy to the well known homogeneous spinup

problem, we anticipate the action of thin Ekman boundary layers at the

upper and lower surfaces. These must exist so as to adjust the interior

flow to the prescribed boundary conditions. The boundary layers may be

turbulent, but the net suction velocities into the interior are assumed

to be related to a constant Ekman veering (independent of the interior

flow); hence, the equivalent constraints on the interior assume the

dimensional form

(i) (...
1\

:. ~(:.:,o):: k..Q.x'S:: -l~1'0"0 ~o
W" (~& -H+h) = í i. 9" + Ke~ 1~ ~. -H+h

(2.3)

and (ii) ws : (2.4)

where ~E. ~ (Kv/~o) i/~.
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In the horizontal,

(iii) ~=o )( i: 0 Xo
./

~ :: 0, '10 (2.5)

to disallow flow through the impermeable boundaries.

.~. ...,1.-.



24.

(11.2) Conservation principles

A fluid system conforming to the above dynamics quasiconserves

both vorticity and energy. Applying the vector identities

(i) 0/ (Ø~.vri) -= v. (Ø~l/'l) - 1. ( e.~. \7~) - z/rz ("'. · g-)

\1, (O~it'l)::

and (ii) l- V~?.t v. (?Iv'1 ) - r (\i?f):l 2i: L Ø? ft
~

where ~ is an arbitrary scalar function, equation 2.2 can be

integrated to yield

~ rrr t dV = KH fJr V'~ dV + ~ f T- fol(E~ l elx c1J

and
~ ITr f (~*)1- + -fb:::~).: l dv

- KH Srr'2v~ dV .

- rr r 'ZTI - :£ K.w I _ _ ì d)( d",
.\) t ~:o 0 e: -,~ 1 e --H+" I .,

::

where use has been made of the dimensional form of (2.1). Note that

in a closed basin the global integral of the advective terms vanishes.

(V~)L T.: (Zl )ëtIdentifying the quantities -- and 0 ~ with the kineticØl ó? N .:
and potential energy densities respectively, these equalities demonstrate

that both the integrated vorticity and energy density are conserved in

the absence of wind stress and viscous forces. In a similar fashion,

other quadratic invariants ~ such as enstrophy ~ can be shown to exist.
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(11.3) Vertical discretization' and the resulting system of equations

The importance of baroclinici ty has already been mentioned.

Fortunately, observational evidence suggests that the physical responses

we seek may be adequately modelled by a very coarse vertical decomposi-

tion. In fact, we choose to retain only two degrees of freedom in the

vertical dimension~ a discretization entirely analogous to the assump-

tion of two immiscible fluid layers in stable stratification. In a

meteorological context, such two-level models have been known for some

time, to retain many of the essential features of the baroclinic insta-

bility processes observed in continuous systems (Phillips, 1951). This

formulation also agrees moderately well with the actual mid-ocean

situation in which the upper and lower weakly stratified layers are

separated by the highly stable thermocline, and relies on the observed

dominance of the barotropic and first baroclinic modes in the mid-ocean

environment during the MODE experiment (Gould, Schmitz and Wunsch,

1974). Since both these modes are uniquely recoverable from a two-

level model (Flierl, 197 5a) ~ such a scheme, while offering the conve-,

nience of being simple ~ yet retains a high degree of dynamic similarity

to the real ocean.

Diagramatically, the vertical grid system is shown in Figure l.

Assuming we know the fields of ¥ (and hence ~) at two nonuniformly

spaced levels in the vertical, second-order finite-difference approxi-

mations to equation 2.2 at levels land 3 yield

~t ( ~,) + A ~,
I., X

': K Vc7S T .£ r ~-~ 1if0 i ol- H, J (2.6)



_. ~~.1_'

Figure I: Vertical discretization of the continuous problem.
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and ~ (~,) + ; ~~3 " KJll v"f. + +. f "'~;l ì (2.7)

where subscripts denote a given reference level. Note that the

equations are coupled through the vertical velocity at level 2, a level

taken to correspond to that of the main thermocline in the open ocean.

Using (2. l) in dimensional form and the upper and lower boundary condi-

tions 2.3 and 2.4, the coupling can be made more explicit; that is,

;~ (~, +.f) + E- ~ (ci:s-~) = I(J/ \7~, + Yif

and ~ (~i+t) - F; ~ (I/i1/;) ;: l(iHV1-) - K8~~ - t~lH~) '!-l. vh

Ft;: Óli~óll- H. ( l ~ ~ l)
"

where

and "8 :: (KvTo/ÓlH).:) i/~.

The Rossby rådius of deformation, Rd, in this formulation ,becomes

Rd ~ ( i= -l FS ) - y~ = (Ólf;i ~ )-y~I N ~, Ii) .

The problem is closed by making the approximations

(i) (T . çrh = (T. V h"'.¡ "" '! Ke ~., 0: KlS ~3

(ii) K'H ': 1(,.1 :: K'..

and (iii) ~øt "£ (I'" ~ ,) a + ( Hi ) \J~-.. ,... H ..~

which equate the independent variables at tevel 2 to a linear combina-

tion of those at levels i and 3, and the bottom velocity to that at
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level 3. Note also that the coefficient of eddy diffusivity is now

strictly constant. Finally~

l ;l +1"('2,1 ) l f'VdliI + f + F; (~-zt) I;: KHV't1., + ~H
(2.8)

and i '~J ..I+ :re,i
J

) \ L Val¥i -l -f-F; (~rt/)f = l(u't,'7f,

- Kß Vrit/i - Cio/Hi) T( il~)d .

(2.9)

The only estimate of the mean stratification enters through the

2 -'!lparametersF iand F 3 which each contain a factor of N = ¡;v ~~ evaluated

at level 2. In practice, the value of the Brunt-Vaisala frequency is

not a thermocline (that is a point) value, but some mean stratification

representative of the entire water column lying between levels land 3.

~
Subject to some appropriate horizontal discretization and the boundary

conditions 2.5, these coupled equations can be solved for ~ and ~

The numerical details are reserved for Chapter III.



30.

(II.4) The mean field equations

In anticipation of solutions which exhibit both mean and time-

dependent features , consider the usual decomposition of the stream-

function into mean and perturbation fields

~. - 31 + ?,.' (i.=I¡3)
L \. &.

"t. -"'..

where 'I. ~
~o ~

1/. cJ:tc. &..

and ,by definition

-z'.. 0
Co

and can be realized from numerical or observational data if to~" "CF" '

the integral scale for the eddy field. The vorticity and vertical

velocity fields may be similarly decomposed. Insofar as we wish to
.

approximate an average over an ensemble of realizations ~ these opera-

tions are assumed to commute with both spatial and temporal differential

operators. Given these definitions, the equivalent mean field analogues

of (2.6) and (2.7) are

d~ - 0 =
I/ ~,' \7 CS, + ti g:'. Q \' +- #'! 17,.l (2.11)

ól- T + TC1~- H, I( H \J f,
-

and .Ils :. 0 - Hi ~i .v?! -l ;13 !!i. 9~; + 113 fiJ3J- (2. l2)
~-

H:Kß ~ 3 + fcr,J.V1 - f ~ .-1-!if(HV t3 t- o .. 1)

The mean vorticity dynamics are then seen to arise from a local balance

of advective, Reynolds stress, and planetary vorticity effects, lateral

and bottom viscous dissipation, wind forcing, and the stretching of
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vortex lines due to the vertical motions induced at the level of the

thermocline (level 2) and at the bottom (level 4).

Defining the mean and eddy energy densities as

jl :: ¡.. (VzJ,:)ól
Co \. ól

K~ ( Qzt!. ~ (2.10)
:: J-.

c. " õl

'P
- - ~

c: :x ól Co =-
of.! e1:: ~ ('23 - 2J, ) l:

NH

-p'" - C (7f;-?/' r~ .. c 1('~and

equations 2. l, 2.6, and 2.7 combine to give the mean energe tic

balances

J - ~ = 0 :: Hi t7. f z/, ~ g, ,"t .fz7 ~ of if ~'f.' l (2.13)
d-: (. K,

.. ~15~ K,) + (W~k"i) ...(K,"-k') - ('KI~1;l' )

J - 0 HJ 'Ç. f a'3 ~gj -+ .ç~i~1 + 1f3 '!í~; + ~ ~h~3 l (2.14);; (Ki) :. :.

+ (P..k\) + ~K;~K3') - (¡ZS~DH) - (K's--'D)

i. - f - C *~) -"7 \and tit. (p) :: 0 :: - ólc: V. "1:Z;; + 1( ~.1-X
(2. 15), -

(' p ~ R, "" - .(P~K3 ") + ~~ ~ ~)

where ' ~P-j(i") - fo ~ c.õt

~'P"" K!) '=
-t ii3~

/ - , , t-' ~~ I(\. ~ "'i. ') ': - \Y. .. \J .",' L L
(i:~p) ólf: ' i -:: ~~-1 . V1(

.( Ki-"bH)
- ~-

:: Hi. K,. 'zi 'V ~t

O.::~l)

(i.~/3)"
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and ('w.. K,") --tii,T- .

Th~ eddy energy balances can be cast in a similar form:

i. ( K ').J , - 0 :. ( - 7.'/l' ? 'V' 't/' i' 2/' , )
II V. i £r, , , + i ~ I I + ~ J , J, + -f i 'I, r ( )2.l6

+ .(~'~K/)- ~f(,'-';¡Z,) + (w'..K/) - ('g-"'l)rt)

1. (K').l 3 - 0 '= 113 7.1 q=3 "l;~; + ~1l!;~' + ~; ?/¡r:; ~ f2/;il; ~

, , _ , , (2. l7)
.. .¿ 1" ..Kl) - -( K~"" 1(3) ,- (K;) -Dtl ') - (K,..lle)

= 0 : -;lc. i ~~l;L) + ~~L:;:t) - of ~~~' l

~'P/-K,') .(~~i 1(;) - -(p'-lS") (2.l8)
and :L (p')~

where .l 'P' - K,'') - fn ~~'

~'P/- K';') = - -f -i; w;

~ K(-::1)li ') ~ - J- f(.¡ 0/.' 9o?t;' ((.:/'3).. i. i. ,

~ K;-1)8 ') -
1-13 l(S o/:~;

and ~ W'"" K ''' - -' f ?I','..
i o I .

Ignoring the advective terms which do not contribute to the global

energetics, the remaining terms reflect the transfers of energy between

the components of kinetic and potential energy. Also represented are the

sources and sinks of energy arising from the mechanical action of the

wind at the sea surface ( .(W~K,) ), lateral dissipation ( ~j(¡:-,'bH) ),

and bottom drag effects ((Ki-q(). A sumation of (2. 13) through

(2. l8) readily shows that quasiconservation of mean total energy is
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maintained in this vertically quantized version of the original continu-

ous problem. As in the case of a double-layered fluid model, the

components of mean potential energy as defined in (2 . 10) are interpret-

able precisely in terms of the concept of available potential energy

(Lorenz, 1955). Under our assumptions, the lowest order (unavailable)

potential energy corresponds to a state of' no motion, ~ = 0 , and is of
~

little dynamical significance.
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(III) Numerical Solution Techniques

Because we have restricted our attention to a rectangular domain,

equations 2.8 and 2.9 can be integrated via pseudospectral approxima-

tion, a variant of the Galerkin (spectral) method which is highly

efficient in simulating incompressible flows within simple geometries

(Orszag, 1971a). Both techniques use truncated spectral series to

approximate the primary variables and their derivatives, which can be

accurately evaluated in the spectral domain; however, pseudospectral

approx~mation imposes the governing differential equations at selected

collocation points in physical space, whereas the Galerkin procedure

distributes the error. more uniformly by making the error in the

(discretized) differential equation orthogonal to the expansion func-

tions (Orszag, 1972). In comparison to the more traditional finite-

difference techniques~ spectral and pseudospectral methods possess

several advantages, most notably that they are not subject to first-

differencing (phase), second-differencing, or incompressibility errors

(Orszag, 197Ib). Moreover, if a problem has an infinitely differenti-

able solution, then spectral and pseudospectral approximation with an

N term spectral series converge faster than any power of (l/N) as

1
N + 00. Since spectral schemes are also efficiently implementable via

fast transform methods, they offer substantial gains in accuracy over

finite-difference techniques. On the other hand, spectral and

pseudospectral methods seem to be equally accurate in the simulation of

ISuch series are said to possess "infinite" order accuracy in analogy

to simple finite-difference schemes whose error decreases as some
finite power of As, the mesh size (Orszag, 1971b).



35.

many geophysical turbulence problems despite aliasing "errors" in the

pseudospectral approach (Fox and Orszag, 1973). For th~se reasons, and

because of its twofold advantage in efficiency ~ pseudospectral predic-

tion is preferred in most applications ~ as indeed it will be here.

.~,~ ;~"".
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(III. l) Lateral boundary conditions and choice of the expansion series

In order to completely specify the problem, conditions on the

lateral boundaries must be chosen in addition to (2.5). For our

problem, in which both inflow and outflow have been ignored~ the eastern

and western boundaries will be modelled either as "slippery" or "rigid"

surfaces; that is, flows tangential to the lateral walls either suffer

no frictional retardation whatsoever, in which case

( '2~ ) X)( ;; 0 )(=0)(~ 0 (t=~~) (3. l)

or are allowed no slippage at all, whereby v must vanish and-
( it;.) ~ ~ 0 x=:o )l" 0 (i.c;~3). (3.2)

The northern and southern walls are thought of as the boundaries between'

adjacent oceanic gyres that exchange neither mass nor momentum; hence,

("lt )'i1 : 0 ~ .. ~ ~o ( t \:/3), (3.3)

will be assumed to hold in all cases.

We have yet to choose an appropriate set of horizontal expansion

functions. Clearly, the suitability of a particular series depends

critically on the choice of boundary conditions. If, for instance, our

domain were periodic, a two-dimensional Fourier series would be conve-

nient. Let us suppose first that the constraints (3.l) and (3.3),' as

well as (2.5), apply. Then, not only the streamfunction~ ~ , but the

vorticity, -(= V~ , must vanish on all four walls. A convenient

expansion for this behavior might be

"'':(~J) ::
N M
2: :2
hI' 0 fI,.'O

q,.~""" s~vi (be) ¡¿n U~) (3.4)
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and

k :: nrr-
Xo

.£ =.
m ".

~.

where

identically satisfy the boundary conditions. This series is again

implementable via the fast Fourier transform (FFT) algorithm. Unfor-

tunately, this series representation fails due to

A.Jilplanetary vortici ty term. In particular, iv ~~

the presence of the

must formally be a

truncated series of cosine functions. These, in turn~ can be asymptoti-

cally represented by an equivalent sine expansion, but not without the

appearance of a Gibb~ effect near x = 0, x where the sumation of sine
o

modes vanishes and cannot model a nonzero first derivative field. In

this sense, 1fo( iih(kx) is not a "natural" expansion for a problem in

which ¡6 is nonzero; even for an initial field completely describable

by (3.4) ~ non-sinusoidal terms are immediately generated in the x

direction. Physically, this can be most easily visualized in the Munk

model of the wind-driven ocean circulation (Munk, 1950) in which lateral

viscous stresses (K~V~~) arise to balance the planetary vorticity

effect in the western boundary layer region. The maximum diffusion of

vorticity occurs at x = 0 and clearly cannot be simulated by O/.. J'i.f'Ckx).

Note, however, that sinusoidal expansion of ~ in the y direction

suffers no such defect since all dynamical terms can be exactly repre-

sented as a north-south sine series. This antisymetry about y=y
o

together with the constrain that ~ be real, makes it possible to

utilize highly efficient fast Fourier sine transforms (FFST) which
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require approximately one quarter the number of operations of a conven-

tional FFT on the same array (Appendix A). (In addition, we have used

machine language programing for all fast Fourier transforms, thereby

increasing efficiency by a factor of two over the comparable FORTRA

codes. )

Now suppose that the streamfunction fields satisfy (3.2) and (3.3).

Since the boundary condi tions along the northern and southern ext rem-

ities remain unchanged, a FFST can again be applied in the y direction.

As we approach the eastern and western walls ~ however, frictional

effects must bring the flow to rest. Such a boundary layer velocity

profile clearly cannot be represented in general by an expan~ion of

the type (3.4). This consideration~ together with that mentioned in

connection with the planetary vorticity effect, dictates that we choose,

an extremely flexible expansion in the x direction. We therefore let

'l.(~ \()L , .i ::
NM
2: 2:
n=O MO:O

ct. T C~) S\V\ ct",)Lnl n ~ (3.5)

where x= (2x-x ) / x iand T (x) =T (cos ~) =cos (n E3) is the Chebyshevo 0 n n
polynomial of degree n, a function of the linearly stretched coordinate

x. If we now choose the collocation points

( ~r'~b) ~ £ cos (* ) , ~ \)
then

~c. (~r/JJ w:

N M
2: 2-
rl=O .-=o

C\~n"" CO~ L -riV) r t,t) £1t~vt t .

In other words, a series in T (x) is identical to a cosine transformn

on a nonuniformly stretched grid of points. This equivalence
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underscores two important numerical advantages of the Chebyshev tech-

nique, namely,

(i) a Chebyshev expansion can be implemented using a fast Fourier

cosine transform (FFCT, Appendix A), and

(ii) the nonuniformly spaced collocation points ~ are more
p

densely packed near x = + l, thereby insuring increased

resolution at the western and eastern walls where the most

highly structured flows are anticipated (Table I).

A more detailed account of the solution technique is given in the

following sections.



-~. ~. ,.- .

Table 1: The location and separation of the equivalent
collocation points (N ) for a 32-term Chebyshev
expansion 'in a 1000 ~ domain.

40.



x (km) l1x (lan)Nx (km) 15x (km)
c

N
c

l7 549.0 48.50 0.0 2.4
l8 597.5 47.61 2.4 7.2
19 645. I 46.22 9.6 l1.9
20 691.3 44.43 21.5 l7.1
2l 735.7 42.14 38.6 20.4
22 777.8 39.45 59.0 25.3
23 817 . 2 36.46 84.3 29.2
24 '853.6 32.97 l13 . 5 32.9
25 886.5 29.28 l46.4 36.4
26 915. 7 25.39 l82 . 8 39.4
27 94l . 0 20.410 222.2

42. 1

28 96l.9 l7.l11 264.3 44.4
29 978.5 lL9l2 308. 7 46.2
30 990.4 7.213 354. 9 47.6
3l 997.6 2.4l4 402.5 48.5
32 1000. al5 45l.0 49.0

l6 500. 0

41.
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(III.2) The decoupled equations

The equations to be solved are (2.8) and (2.9), subject to some

suitable expansion of the time derivative terms. In order to treat the

diffusion terms semi-implicitly, we use the modified Adams-Bashforth

scheme described in Appendix C. Under this second-order approximation~

the dynamic ~quations become, in the usual notation,

r - (¥ll) V~, +- ~I + F;('li-~) J k..1 ~

r!, + r: (-l~- tV 1 k ~ (Sf):t k. -t (~) (,91,k._ ~I k-') ~ R, ()(,~)

and (- C~:iKM)Qø7fi ..t~ -F!(~fit)Jk+J ::

(-fi- F,C,il,-¥'l1k-l e:)~: + (~)( 9j~ - fsk-') '= R,())~)

where -r k - :: l -i,i ~+11- F;"lil k +

., k

:: /I-
i ,

~3k
= - T I 7.3" ~~..r + F3~1 -l (tf'i)h 1" - K8 f;

.h.k.
.. k (.t=~~).and ': K., V 1/¡,

"

To further simplify the numerical analysis, we decouple the equations

by isolating the equivalent barotropic and baroclinic modal equations

in the new variables

and

cP ~ 4l of ef3/1-.) ~~

cp" = v, - '23 ·
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Stability considerations dictate that the resulting uncoupled fourth-

order equations be solved in a two-step procedure when using the tau

method to be described shortly. Therefore, the resulting equations take

the form

( cl (ól) \f i kTI ~T1 $.,- ~ 0\,

n~cf k+' :
,

H ) ,
R, + \. l/i-, R~

( ~ ) 1t k+i- ..t 1(.. 0\,

and r ~ ú) J k+it7~~+ G-cr~, ¥

( v'1 - (.. -+ G- ) cf J k+' i:T3 AtK,. ,
R, - R)

_( ól ., df k..1.d f(..") , 3

where b - r _ / + r / - Ifi: /Jl;f(H i Võl 2i /i-Jl H~, I / Åt KH .

In analogy to (3.5), we expand the independent variables as

'" M

~ (x/~) - :? L q. TcQ-) s-è.n Lt.'j)
n=-o M:"O C.nm I'

N M
and dr, (~~) ': 2: 2: "h. T-(~) 1~n (..~) ."=0 ,.c.o "'nm n

Since the R. are defined at previous time levels and hence presumedi
known, the sine expansion in the north-south direction decouples the

y-dependence from the problem. In n~m (wavenumber) space, reached by a

simultaneous FFST in y and a FFCT in x, the problem may be solved

independently for each mode number ~ in the truncated y expansion.

For ~ fixed, the equations reduce to the following



r h" - (-E.. Ø)'h 1 k-lI :: r R (H3)f? 1i dt 1(.. ,~". ,+ "Hi 3 run

r " ' ~ J k+ 1C(/ -.L ~i hm
. óI ) k+ ,

.. ~ (At Ktl lhmm

( N 1 k+'-bi + (G-....) b 3l)~ r ((.- R, i ~M

r Il:i .;) i k+i0. ~ - (bL of G+1 C43 ~t'

o ~n ~ N

o.st\~ N

oS..~N

- (~ )1, k+ , 0 S. l" S; N- - .( KM . 3n..

44.

(3.6a)

(3. 6b)

(3.7a)

(3. 7b)

where a double prime refers to a coefficient in a second derivative

series (Appendix B).
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(III.3) Solution technique - free-slip boundaries

We now outline the method of solution for a syste~ entirely en-

closed by free-slip boundaries, a constraint which together with the

requirement of no normal flow through the boundaries, implies that

;z. :: ~. = 0" "
"

(t='li) o~ x~~1 - equations 2.5 and 3.l. Note that no

further regard need be paid to the northern and southern walls, since

the expansion in .\~nU'j) identically satisfies the free-slip con-

straints at y=O,y. The solution technique we adopt has been alluded to
o

in the previous section; it is an approximation called the tau method,

and consists merely of neglecting the two highest order dynamic

equations in each of 3.6a, 3.6b, 3.7a, and 3.7b. The remaining

equations are then supplemented by eight boundary conditions to close

the system. Rewriting the boundary conditions in terms of their

..
Chebyshev series equivalents (Appendix B), the final problem becomes,

for fixed m,

r b" - (3- + ~)b 1 k..1 r R... ("l~HJ f?, i W)~, &K,..£ '.-m ':

N k+i N

-b kl-I¿ lb :: L == 0n=o in~ n= 0 inmD~en n ~c: d

o ~ If ~ N-~

r" ~ 1Ct, -.. a., k+i
n.. :¡ ) k+'

=c-- --( .óK14 inm o ~ n ~ N-Q(

N
2-
n1: 0

I' eve",

k+I
Q. inn"

N
c L

h=O
t\ odcl

k+i
Q.

inn'
= o



and r " i k+1-b~ + (G-.R~ )13 nm
( R, - R) 1 n",

o ~ t) (N-ci(3. 8a)

N k,.1
z: b
n1:., Jnn

" EWi!

=
,.
L b k+1 -:
n 1: 9 )iM

n 0 dr:

o (3. 8b)

r " (Øl &l) 1 k+1q, - M:KI' + G -t.. '\3 nW' ': ( R ) h k.+'~ K., 31'l' o~ Y) ~ N-C;

N
¿ ct ie..'h ~ 0 3nl'

n e"~n

'" ie.. 1

=- L. C\l)= t) l))m
" 0 ck

-= o

By expanding ai " and bi " in term of the equivalent ai and bi

series expansions (Appendix B, equation b.2), the resulting upper

diagonal matrix equations are repeatedly solved via standard matrix

inversion techniques for each mode number m in the discrete north-south

expansion. A pair of inverse Fourier transforms (IFFST and IFFCT) then

k+i
yields ~pi and

at t = (k+l) ilt is exactly known.

ok+'
~~r~

(i.:/i~) from which the state of the system

It has been brought to our attention that an even more efficient

matrix solution technique exists. Consider equations b.4 and b.5 of

Appendix B. These expressions show that, rather than using the cumber-

some series representation for a." and b " we can write the secondi i '
derivative terms in a much more compact form. For example, we can

expand (3.8a) according to (b.4) and (b.5) to get the following series

of relations:

r I' ~ L leofl:bil1 + C &- -,. ) h1n j l"

(" (G-"(óf) r blb3y) + tXr¡ i C,._i S,r,,

:: r R'l? - RJn l~

( R,~-R3nl~

.J

I 11k..
b'S..n.., f',:

)
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( c;..l~ J

cJn (,,+'1)
" ,. L 1 k+ I

I Con Ð3n -: b~ t?+=l 1 M
=

f ~'r' - R3t? 1 tt )

(
s (;-.. ~ 1 lt + r I _
L cfr' (n-li) \ 3.l'Hól 'L

(G-..ó?) t.-, _ (G--..oÖ) c.yi L -b ",
l/ri (''-1) i-n (n"") i 30

+ f (G-.L:l) c:~_;è.,.i. l" J
i ctVl ("'-I) b3,n-Øl'

k+i
= f R1n- R3n 1M )m

or, finally,

( £ L/~(n+i) ~'b3 n...: ~ f

. tn-i en ~ b
c; -..~ ý., CJ-') - Ý.. ty+1) )t',

+
f ~-i c"l_ól Ì b 1~' .. t rR."n+'.:-~ln"'él 1.. 1 (3.8e)

lI ("-') 1, .,-~ Ýn Cn+-d c. G--gq,)

f e;i-i en l ( Rio-R,;'l,. £ c..,_, ~.i. r r R"n-i. -Ri n-i.l""

If,,(n-') - Cl.,(n..') (6-.. ó1 )
+ '-n (".') lG--..:t ) .

Thus, for fixed m, the equation for mode n can be written in terms of

the known quantities Ri (i=I,3) and the unknown coefficients b3,n+2'

b3 ' and b3 2, n , n- Together with the boundary conditions 3. 8b, the

dynamic equations in the new representation 3.8c clearly decouple into
i

. -r

two independent problems, one for n even and another for n odd. In

dd.' . h . f h th d . 1 i d +2a ition, since t e equation or ten mo e invo ves on y mo es n ,

n, and n-2, the matrix equations are tridiagonal and diagonally domi-

nant (except for the boundary condition which involves the sum of the

b3 coefficients). Matrices of this form (as opposed to the'more general

upper diagonal matrices considered above), can be inverted moreeffi-

eiently and with less round off error. In its future applic~tions, the
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pseudospectral model will be modified to take advantage of this tri-

diagonali ty .

As in finite difference schemes, care should perhaps be taken to

quasi-conserve such quadratic quantities as energy and entrophy. In

analogy to the well known Arakawa schemes (Arakawa, 1966), there exist a

set of equivalent forms for pseudospectral nonlinear operators that can

be shown to approximate the desired conservative properties (Appendix D).

For instance, d it is quite easy to prove that one such energy preserving

form is

r ::(~"i) 1 k =l\ f j ~'\, l. .e ) J "-.1"1 ('1~)J - ~Jc (i ""1 lt

with 2 an arbitrary scalar function. This form has been used through-

out except in the case of the planetary vorticity terms, J(~, f),
c.

1
= i, 3. Note~ich are given their correct pointwise values, ~ ~t ' i

also a further advantage of the pseudospectral technique, namely, both

the advective terms and the boundary conditions are implemented to

infinite order accuracy. As we shall see, this is not only true for

rather simple boundary constraints~ as in the case of free-slip walls,

but also when more complicated conditions must be imposed.

~is points out the choice that must be made in all spectral ~ -plane
models. The planetary vorticity term may be included in one of two
ways: as J ( ~i' f) which though identically conservative may not be
pointwise equal to ¡S J'lJJx.) or as /. .Ji¡~/~x which though locally cor-
rect is not globally conservative. ~ese differences arise from the
properties of the pseudospectral technique and the implicit assumption~
yalid only in the limit of infinite resolution, that f = f + Jy can be
exactly expanded in analogy to (2.5) in a Chebyshev-sine sgriès. '
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(III.4) Solution technique - no-slip boundaries

Retaining the free-slip conditions on y = 0, y 0 ~ let us modify

those on the eastern and western walls to disallow slippage along

x = + l. Referring to Appendix B, this requirement (equation 3.2) can

be compac tly restated in terms of the Chebyshev coefficients:

N ." '"

Z ól ¿ el
V) "',.."" ~ n C\ ii rl -= 0 (j.9a)";0 t'; 0

n €.\LC-n n oda
(m -fixecl).

and ,. N
L. nólo. :; Z. ~ : 0r) ~,,,,. (3.9b)n ; 0 ~nr) n=o'" e\l~ l' odå

In addition, we once again require ~. = a (i = l, 3) on x = + l.i
To satisfy these somewhat more cumbersome conditions, we adopt

what is best described as a discrete Green's function approach. This

is necessitated by the fact that all four constraints are given in

terms of the a. ; we have no conditions to apply on either of theinm

Hel~oltz equations for vorticity. We circumvent this problem by em-

(Step I)

"

~
1

l'

ploying a two-step procedure in which we solve two related problems:
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Evidently, the first problem determines the particular solution we are

.:
seeking subject to Q~. = a (i = l, 3) on x = + l. In ,the second step,i
we isolate an independent homogeneous solution by requiring

f' k..'

¿ h ß~f)MI'co
i1~~

.; 0 .k+ I
': L h Uc.nm

ri~o
n ocd

~ i (i.~3),

We have yet to satisfy ( 3 . 8a, b) ; therefore, choose
-, .'10-

G\ W1W\ ': pA. 04 oc¿ (hA~VlW'J,,~..
and Cl:='lS),

h \"f' =
f E ¿"m

T 01. (hB. )" UI)oi

Needless to say, the free constraints o(l and ~ are chosen to satisfy

3.9a and 3.9b. (There are actually a total of four OL's~ one, pair for

n even and another for n odd; since the odd and the even modes are not

coupled, these problems are solved independently for maximum efficiency.

At each time step then, we apply the Green's function technique a (4M)

times - twice for i=l, 3, twice for n odd and n even, and M times for

m=O, M.) The problem is then solved.

Although this procedure' appears to require twice as many matrix

solutions as the scheme for a free-slip basin, this is in fact not the

case. Step II does not depend on the state of the system at previous

time levels and need be preprocessed only once at the beginning of a

simulation. Conceptually, the scheme is somewhat more complicated, but

the efficiency is negligibly affected, the only additional calculations

being those rèquired to fix ~ 1 and ~3. As in the case of slippery

walls, these calculations conserve energy in the absence of dissipation

and time differencing errors (in the sense outlined in Appendix D).
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(iv) Eddy Sensitivity to Western Boundary Layer Structure

The recent work of Holland and Lin (henceforth referred to as HL)

exemplifies the prevailing eddy modelling strategy which is to investi-

gate eddy behavior under a large range of frictional and topographic

parameterizations, and driving and boundary conditions. The pseudo-

spectral model developed in Chapter III has been designed to make such

parametric studies and in particular to address the previously un-

answered question of the sensitivity of mid-ocean eddy dynamics to

changes in boundary layer structure. (Enhanced boundary layer flexi-

bility makes the Chebyshev formulation particularly attractive for such

studies. )

In order to make our comparisons, we will draw heavily on the

results of two previous quasigeostrophic simulations conducted in basins

bounded entirely by stress-free walls (HL~ 1976).The former~

henceforth to be referred to as experiment I, or El, is driven by a

single-gyred wind stress distribution identical to that adopted origi-

nally by Stommel (l948), and the latter, experiment 2 (E2), incorporates

a double-gyred stress in a basin of twice the north-south extent. For

comparison, an analogous pair of experiments (ElR and E2R) have been

performed which differ from their counterparts solely in that they are

now bounded on the east and west by rigid (no-slip) walls. These sets

of simulations allow us to deduce the effects of the western boundary

layer on the stability of the mid-ocean environment.

It must be noted at the outset that our initial simulations have

all been carried out in a flat-bottomed domain. This is ~ in itself, a

~
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severe constraint on the system; topographic variations are well known

to be responsible for destabilizing strong mean flows (Orlanski, 1969;

Orlanski and Cox, 1973) and for impeding the two-dimensional cascade

toward low-wavenumber ~ barotropic flows (Rhines, 1975). Thus ~ we

acknowledge immediately that the physics of our model remains incomplete

at this stage, essentially SQ that we may initially address the most

tractable version of the boundary layer question. Our conclusions,

therefore~ must be tempered by a recognition that a primary dynamic

mechanism may have been ignored. The introduction of an idealized topo-

graphic variation is being planned in a future set of experiments.

~

f
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(iv. I) Experiment 1

The values of the model parameters for El (Table 2) have been

chosen to coincide with those adopted by Holland and Lin for their

primary fini te~difference wind-driven ocean simulation. Since the

results of this experiment have been so thoroughly studied~ we select

this experiment as our benchmark in two ways. In addition to the

boundary layer comparison to be made shortly, the results and equilib-

rium statistics obtained for experiment I by ,HL serve as a test

I
problem for the verification' of the nonlinear pseudospectral model.

(Alternatively, we can regard the small differences between the

predictions of the two formulations as an evaluation of the finite-

difference model relative to the theoretically more accurate pseudo-

spectral technique. Since that is not our present concern, such a

comparison will be elaborated elsewhere.)

Briefly, the time-dependent model behavior in EI has three distinct

phases: spinup, onset of instability, and eventual statistical equilib-

rium. Thus, after a three-year spinup from a state of rest, HL noted

that the resulting highly inertial circulation went spontaneously

unstable, generating a field of mesoscale eddies of 340 kilometer (km)

wavelength. After an additional, but shorter, period of integration,

the mean and perturbation fields (Figure 2) settled into an oscillatory

equilibrium characterized by a well defined periodicity of 57 days in

both the pointwise streamfunction amplitude and the global energy

IThe linear version of the model has been tested against the known

analytic solutions to. the two-level versions of the Stommel and Munk
frictional theories; the agreement was perfect in all cases.
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Table 2: The environmental parameters, forcing functions, and
boundary conditions adopted for the four primary
simula tions . In addi tion to the nondimensional
groups mentioned in the text, we have included Re ~
W !L , and WF!L ; these are the Reynolds number of
tSe tnterior fiãw~ and the relative widths of the
inertial and frictional western boundary layers,
respectively.
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El EIR E2 E2R 56.

(cm)
8 8 8 8L 1. OxlO 1. Ox10 1. OxlO 1. OxlOx
8 8 8 8L (cm) 1. OxlO 1. OxlO 2.0xlO 2.0xlOy 5 1. Oxl05 5 5Hi (cm) 1. OxlO 1. OxlO 1. OxlO
5 5 5 J~

H) ( cm) 4 . Oxl a 4. OxlO 4.0x10 4.0x10.)-l -5 -5 ' -5 -5f (sec ) 8.3x10 8.3x10 9.3xlO 9. 3xlO0 -l 2.0xI0-l3 2.0xiO-l3 2.0xI0-l3 2.0xI0-l3
(i

(cm sec)
-2 --6 -6 j -6 -6(sec ) 8.0xlO 8.0xlO 8.0xlO 8.0xlO '

Rd ( em)
6 6 -6 ..64.8xlO 4.8x10 4.3xlO 4. 3xl02 -l 6 ° 

"3.3x106 6 6l) (cm sec ) 3.3x10 1. OxlO 1. OxlO-l~ (sec ) 0.0 0.0 0.0 0.0

t.'C .. 'C -cosi~ l -Cosi~ \ -eos f~; \ - ~SL Z~;J_ )l _~
(dytlc., c. )

F$ FS FS FS
boundary FsDFS lJS D A)S

FS DF$ ~\D ~S
conditions

FS n
FS 'I ~€£ - 'iL' P

FS fS
Nt; .. No- SI./P

numerical spectral spectral finit~ difference spectral
model 32x32 32x32 50x50 32x64

V 'C. -5 -5 -5 -5E:rr=-
tH,-toL~

6.8x10 6. 8xl0 5.4xlO 5.4xlOox
£,,:: "if/oS L .:

-6 -6 i. ixlO-6 -64.0xlO 4.0xlO 1. lxlO
. x

Re "; "C°lH K 15 l5 50 50, tl
Re / i- "

-2 -2 -2 -24.8xlO 4 . 8xlO 4.3x10 4.3x10
~i: ('t )11-' -2 -2 - -2 -2
i:;: H,Lxt- A

1. 6xl a 1. 6xl0 1. 6xl0 1. 6xlO
-2 -2 -2 -2

~ (1(t4 )"X 2. 6xl0 2 . 6xl0 1. 7xl0 1. 7xlOi: - -l L¥



Figure 2: Experiment I from Holland and Lin (1976).

(a) mean upper layer streamfunction (average
over 600 days; contour intervals = 2.4 Sverdrups).

(b) mean lower layer streamfunction (average
over 600 days; contour interval = l.6 Sverdrups).

(c) instantaneous upper layer eddy streamfunction
contour interval = 0.8 Sverdrups).

(d) instantaneous lówer layer eddy streamfunction
(contour interval = 3.2 Sverdrups).
Lines have been drawn a~ong x = 320 km to indicate
the phase relationship between the upper and lower
layer eddies. Lows (L) and highs (H) indicate
cyclonic and anticyclonic flow respectively~
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components. The set of equilibrium eddy statistics is summarized in

Table 3.

In the manner of section (II. 4), the mean field energies and the

accompanying fluxes can be calculated and the global means of these

quantities conveniently entered on a "six-box diagram". ,The energy

budget resulting from the RL simulation appears in Figure 3. The

global energetics indicate a predominant baroclinic cascade of mean

potential energy to the equilibrium eddy field which maintains the meso-

scale eddies in the presence of lateral dissipation. The primary energy

transfer path is

W -+ K -+ P -+ K' -+ DH.1 3 (FPl)

In the localized region of intense barûclinic activity, confineà to the

intense westward return flow (Figure 2a, c), the upper and lower layer

eddies bear the 900 phase relationship indicative of baroclinic in-

stability (Robinson and McWilliams, 1974). Contouring the levels of

the three mean eddy energy components also effectively demarcates the

area of baroclinic activity (Figure 9). In the southern half basin, ¡,

;r

removed from the intense currents of the north, the eddies are nearly

barotropic, thus confirming the efficiency of the trend towards baro-

tropy observed by Rhines (l975) in flat-bottomed local eddy interaction

simulations; only in the region of persistent energy cascade is the

baroclinici ty of the eddy field preserved. Finally, note the contri-

, bution of the Reynolds stresses to the maintenance of the mean flow

field; this is most clear in the lower layer where forcing by the
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Table 3: The equilibrium eddy statistics from the four primary
simulations.
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El El ElR E2 E2R
(Holland) (HaidvoQ:el)

wavelength (km) 340 380 400/680 360

period (days) 57 64 110/56 64/5l
-l 7.0 6.8 4.2/l3.9 8.9phase speed (cm sec )

global energy transfer baroclinic baroclinic stable bärotropic mixed
(FPl) (FPl) (FP2) (FP3)



Figure 3: The experiment 1 global energy budget from Holland
and Lin (1976) ~ Energ2 fluxes are in ergs/ cm2/sec;
energies in 106 ergs/ cm .
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transient eddies is, in the absence of vertical momentum diffusion, the

only mean flow generation mechanism.

- When integrated from a state of rest with the same values of the

environmental parameters chosen by HL, the pseudospectral model dis-

plays an identical behavior. Figure 4 shows the mean energy components

as a function of time; the'spinup, onset, and statistical equilibrium

phases are again evident. The mean streamunction fields and represen-

tative (instantaneous) eddy streamfunction fields are plotted in Figure

5. ,The similarity to the finite-difference results (Figure 2) is

striking, if not for all intents and purposes exact. The eddy statis-

tics collected from the pseudospectral simulation compare favorably to

their finite difference analogues (Table 3) and the eddy phase relations

noted above recur. As before, the equilibrium eddy field has well

defined temporal as well as spatial features. The frequency spectra of

the upper and lower layer streamfunction amplitude (Figure 6) shows the

dominant periodicity to be 64 days (and its higher harmonics). An x-t

diagram taken through the latitude of most active eddying displays a

uniform phase propogation consistent with these scales (Figure 7).

Energetically, the primary cascade (FPi) occurs as in the HL model

though a quantitative comparison of the finite-difference and pseudo-

spectral models reveals some systematic differences in the predicted

global energy budgets (Figures 3 and 8). The mean energy levels and

fluxes are everywhere lower in the pseudospectral approximation, by as

much as 50% in some of the smaller terms. The primary energy fluxes

are uncertain to only 0 (LO%), however, and the pathway itself is



Figure 4: The experi~ent 1 globally averaged energy components
as a function of time from the pseudospectral model.
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Figure 5: Experiment 1 from the pseudospectral model.
(a) mean upper level streamfunction (average over
500 days; contour interval = 3.0 Sverdrups).
(b) mean lower level streamfunction (average over
500 days; contour interval = 1.6 Sverdrups).
(c) instantaneous upper level eddy streamfunction
(contour interval = 1.0 Sverdrup).
(d) instantaneous lower level eddy streamfunction
(contour interval = 4.0 Sverdrups).
Lines have been drawn along x = 430 km to indicate
the phase relationship between the upper and lower
level eddies.
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Figure 6: Composite frequency spectra for, the -upper and lower
level streamfunction fields of experiment l. The
spectra have been obtained by averaging 25 separate
frequency spectra of the streamfunction amplitude
taken at 25 equally spaced points.
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Figure 7:, Experiment 1 x-t diagrams.

(a) upper level streamfunction.
(b) lower level streamfunction.
The profiles have been taken along the
latitude of most active eddying

(y = 750 km).
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Figure 8: The experiment' 1 global energy budget according to
the pseudospectral model. Energy fluxes are in
ergs/cm2/sec; energies in 106 ergs/cm2.
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Figure 9: The experiment 1 mean eddy energy components.

(a) upper level eddy kinetic energy (contour
interval = 0.3 x 100 ergs/cm2).

(b) lower level eddy kinetic energy (contour
interval = 0.7 x 10ó ergs/ cm2) .

(c) eddy potential energy (contour interval =
0.3 x 106 ergs/cm2).

75.



"',-

,r'

1t~;~ì"~ l~~Q)'-~'// ",
~~=-=:..~- i ''- =: '-. /

--, ''--- / /
~,_.--_.-~/

...10.

.

----. '~

\
\ --
) l- \r "- i,_/

"-,

¡ .
I

\
,

/

~--_./"~-= -- ,:i(-:'~~~ì'\\\(~,==~~::.;/~//-:,-) \',~~ /\ '-- ~-:-_:.

76...

(0 )

I

(b)

L

. T

(c )



77.

unambiguous. Such errors as these are perhaps not unreasonable consid-

ering the modest physical differences between a two-layer model which

takes account of the small variations in layer thickness, due to

undulations in the thermocline and our two-level formulation which does

not, and the inherent dissimilarities between the finite-difference and

pseudospectral methods. For our purposes here, however, the overall

results are sufficiently similar to confirm the HL experimental find-

ings and to validate the Chebyshev~odel, which we now extend to the

no-slip analogue of experiment l.
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(iV. 2) Experiment lR

Starting from rest, the quasigeostrophic equations, (2.8, 2.9) are

integrated in time as has been described for El except for the imposi-

tion of rigid boundary conditions, equation 3.2, on the eastern and

western walls. The spinup phase proceeds as before, taking approximate-

ly l,OOO days, but here th~similarity ends. Instead of entering a

period of rapid energy cascade from the mean field to a set of growing

waves, ElR is stabilized by the effects of the rigid boundary and soon

reaches a steady equilibrium circulation characterized by velocities

confined to the upper level (Figures LO and ll). (The absence of both,

instabilities and viscous coupling between the layersguarantees that

the equilibrium flow at level 3 must vanish, although small amplitude

transients do exist near t = 0; these are quickly damped by friction.)

The energy flow diagram for EIR, Figure l2, demonstrates the resulting

steadiness very well. Within the measurement error, energy input from

the wind is just sufficient to drive the upper level circulation against

the forces of lateral dissipation. No significant amount of energy

leaks to any of the other components once the mean potential energy

field has been established during the spinup phase. Thus, ElR follows

a two-stage process - spinup followed by a rapid approach to steady

flow. The mid-ocean eddy generation witnessed in El has apparently

been suppressed by some direct or indirect action of the now modified

dynamc balances near the western boundary.

In contrast to the rather strong differences in equilibrium

behavior detailed above, the corresponding mean circulation patterns of
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Figure LO: The experiment IR globally averaged energy
components as a function of time.
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Figure ll: The experiment lR equilibrium upper level stream-

function (contour interval = 2.0 Sverdrups).
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Figure 12:

83.
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The experiment lR glo~al energy budget. Energy 2
fluxes are in ergs/em /sec;energies in i06 ergs/em.
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El and ElR are qualitatively similar in may respects (Figures 5 and

ll) . The boundary layer scale thicknesses along the western and north-

ern walls are comparable in both instances, as is the tendency towards

smooth inertial recirculation after the separation of the northern

boundary from the coast. The advent of the semi-rigid domain in EIR

has, however, reduced the upper layer kinetic energy by a factor of two

(Figures 8 and 12), although 'the boundary layer transport suffers by

only 0 (lO%), a consequence of the Sverdrup balance over the bulk of the

interior. The immediate effect of this weakening is a premature trun-

cation, relative to El, of the inertial boundary layer along the

northern wall. Though delayed in EI, however, the redistribution of

the boundary layer flow into the interior is no more abrupt in one ex-

periment than the other. Boundary layer profiles taken through El and

· ElR - Figures 24 and 31 - establish this similarity, apart from a

. scaling fâctor, very nicely. The important point to be noted is that

the adjustment from a no-slip to a free-slip vorticity profile is made

very quickly once the circulation leaves the western boundary layer

region and proceeds along the northern margin of the basin. A distance

of only two or three frictional boundary layer widths (wF) is sufficient

for the flow profiles to lose any memory of the dynamics to which they

were so lately subject. Of course, there has been an increased dif-

fusive constraint placed upon the overall circulation. Rigid boundaries

offer resistance to flow tangentially as well as normally and must a

priori increase viscous effects. This is precisely the case in ElR

where the regional influence of vorticity diffusion has been strengthened

and the circulation greatly retarded. The interior flow senses the
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details of the boundary layer vorticity balances only indirectly through

the modified energy and transport levels dictated by the increased

dissipation. We must once again remind ourselves, however, that the

flat-bottomed assumption effectively precludes topographic instabili-

ties associated with the western boundary layer. With appropriate

topography, such instabilities can be quite generally induced in highly

structured jets similar to those connected here with rigid boundary

conditions (Orlanski and Cox, 1973) and might be supposed to enlarge

the region over which the western boundary layer dynamics directly

affects the interior. Thus, subject to this one restriction of vanish-

ing topographic influence, the comparison of El and EIR supports the

hypothesis that the imediate effect on the mid-ocean circulation of a

rigid western wall - the dynamcal consequences of rigidity along the

eastern boundary are trivial in this case - is an increase in the local

and global diffusive loss of vorticity and an attendant reduction in

flow strength. If this conclusion is valid, it follows that the

stability properties of the equilibrium states in El and ElR, in which

the jet structure itself remains approximately invariant, are explicable

primarily on the basis of the local amplitude of the mid-ocean circula-

tion. In Chapter VI we will see that this is indeed an interpretati~n

consistent with the stability properties of these flow fields.



(IV.3) Experiment 2

In EI ~ the dominant, and as will be shown shortly the only, un-.

stable energy transfer occurs in the westward flowing inertial recir-

culation. Though the localization of this instability conforms with the

known vulnerability of westward flowing zonal currents (Robinson and

McWilliams, 1974) ~ this flow feature does not accord well with the ob-

serVed circulation pattern of, say, the Gulf Stream to which this model

might attempt to claim relevance. It would be more pleasing to observe

instability in the eastward flowing region~ not only beèause the Gulf

Stream has a strong meandering eastward jet, but also because eddy

interactions with an eastward current are more favorable for mean flow

intensification (Rhines, 1975). Gulf Stream measurements (Webster ~ 1965)

have indeed documented this behavior in some narrow regions adjacent to

the coast.; perhaps similar processes are at work in the mid-ocean

extension of the stream as well. In an attempt to create a flow pattern

at once more realistic and more susceptible to instability, HL have in-

vestigated the equilibria induced by double-gryed wind stresses. These

can be thought of as the antisymetric reflection of the classical single

gyre about the northern latitude of the (1000 kI x 1000 km) basin used

in El, thus creating a doubly sized domain (1000 kI x 2000 kI). In so

doing, we relax the requirement that the eastward jet flow, at least

initially ~ along a northern wall' where the vorticity must vanish and

allow the eastward flow to separate into the interior in a manner some-

what more analogous to the trajectory of the Gulf Stream (given that we

have ignored continental and topographic variabilities).

An initial double gyre experiment (E2) has been carried out by HL

as part of their own mesoscale studies; the authors have generously

87,

~
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made the following results available for inclusion here. The para-

metric values chosen for E2 (Table 2) are identical to those of El and

ElR except for a slightly smaller Rossby radius of deformation, Rd,

and lateral diffusivity,~. As before, integration proceeds from a

state of rest using the HL finite-difference model which is enclosed,

as in EI, entirely by free-slip walls. Since the relaxation of the

constraint on the separated' flow implies a greater range of admissable

unstable response, it is not surprising that the three phases of flow

development noted in El recur in E2. Onset of instability occurs after

a long period of spinup during which the velocity field remains complete-

ly symmetric about the mid-latitude, and an oscillatory" but now more

complicated, equilibrium follows in which this symmetry has been

relaxed via the appearance of the unstable modes. Figure l3 documents

. the equilibrium fields that result. They were formed by an average over

,1050 days of streamfunction fields taken at two-day intervals, a length

of time barely sufficient to define a stable set of associated statis-

tics. (There is some evidence that long time scale changes are indeed

still going on after a cumulative time in excess of LO years.) Even so,

the mean flow patterns clearly differ from those of, the single-gyred

ocean; in particular, not only has the eastward flowing internal jet

developed well defined meanders, but the westward redistribution of

mass into the noninertial interior is broader and less intense. The

nonzero lower level mean flow, comprised of two weak primary gyres

underlying, and in the same sense as, the upper level circulation has

again been driven by eddy-eddy interactions. Thus, the energy transfers

taking place on the mesoscale not only tend to reduce local horizontal



Figure 13: Experiment 2 (Holland and Lin, 1976).

(a) mean upper layer streamfunction (average over
1050 days; contour interval = 3.0 Sverdrups).

(b) mean lower layer streamfunction (average over
1050 days; contour interval = 3.6 Sverdrups).

(c) instantaneous upper layer eddy streamfunction
(contour interval = 4.0 Sverdrups).
(d) instantaneous lower layer eddy streamfunctionn
(contour interval = 8.0 Sverdrups).
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shears (in the mean due to meandering) but also local vertical shears

(in the mean due to lower layer current generation). We will return to

this observation again upon consideration of the local stability

properties of these flows.

The instantaneous eddy fields of E2 (Figures 13c, d) are more

incoherent than those noted in El though the mean eddy statistics

(Table 3) differ very little from their El counterparts. The path of

the eastward flowing jet is now the favored location for eddy produc-

tion; indeed, the meandering of the stream occasionally sheds closed

circulations which migrate for short distances before eventual reab-

sorption. The eddies embedded in the jet and its recirculation cannot

be clearly characterized as barotropic or baroclinic; both types of

instability are assumed (and will be demonstrated) to be locally active.,

.. The far field eddies ~ uninfluenced by local forcing, are highly baro-

~ tropic as in El.

A global estimate of the energy transfers - Figurel4 - reveals

the dominance of an intense barotropic cascade of mean kinetic energy

to the equilibrium eddy field; the barotropically unstable jet has the

primary energy circuit

~DH

~DH

eF'P 2 )
W~Ki ~Ki

Lp'-+K'
3

In E2, energy, supplied to the eddies cascades from Ki to Ki, rather

than from P to P l as in El. Note also that a greater fraction of the

energy is lost directly to lateral dissipation of the mean upper level

circulation in EI (Figures 3 and l4) so that the equilibrium levels of
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Figure l4: The experiment 2 global energy budget. Energy fluxes
are in ergs/cm2/sec; energies in 106 ergs/cm2.

92.



\

-
c(

W
-K

,~
1.

64
er

gs
/e

m
! /

se
e

,
 
J

_-
( 

K
,-

D
H

:;
K

1
- 

i
K

 i
I

C
:K

,-
K

, ~
 '-

1
c(

 K
1-

D
H

 ~
"'

11
.2

4
,

10
.3

4
~

0.
40

0.
94

0.
59

-
 
-

) ,
 
~
p
~
K
/
~

~ 
K

i-
P~

, ,
0.

27
i .

- 
0.

39
W

,
-

p'
p

c(
 p

-p
'~

 ..
~

,6
.3

5
47

.0
1

0.
06

-
 
-

c(
P~

K
~~

c(
 P

-K
 '3

~

, ,
,'

0.
19

0.
48

'II

-
K

~
.J

 c
( 

K
;-

 D
t-
)

K
3

- 
i

C
(K

~-
D

H
~

c(
K

3-
K

3~
,,

"
'
 
0
.
1
1

3.
22

,
21

.2
2

,
0.

05
0.

57
\0 W .



94.

eddy energy are correspondingly lower. Calculations in Chapter VI will

verify that the instabilities at work in E2 are many times IDre vigorous

than those in EI. Though barotropic instabilities are now active, the

regions of concentrated westward return flow (one to the north, the

other to the south) again exhibit baroclinic energy transfers; the mean

potential to eddy potential energy transfer pathway (FPi) is undoubt-

edly locally operational even'though it is dominated by the barotropic

cascade in the global statistics. This observation underscores an

important failing of a global energy budget: secondary (and sometimes

even primary) instabilities may not be identifiable from a basin-wide

analysis.
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(iV. 4) Experiment 2R

We now test the generality of the conclusions of section IV.2 by

redolng E2 in a semirigid domain. The environmental parameters are

listed in Table 2 for reference. For our tentative ideas to carry

through to this double-gyred experiment, we expect the mean fields of

E2R to be qualitatively similar to those of E2 but quantitatively re-

duced as a result of increased western boundary layer diffusion. The

flow may be stabilized in consequence (as in ElR), resulting in a steady

rather than an oscillatory equilibrium, but whether or not this is the

case the final state of the system is predicted to be dependent only on

the local amplitude of the interior calculation and not on d~rect

boundary layer influences.

Figure l5 shows the time history of the mean energy components.

Obviously, instability has occurred, as in E2, even though the mean

fields (Figure 16) are substantially weakened as has been predicted on

the basis of El and EIR. However, despite a boundary layer transport

reduced by 50% relative to E2, the qualitative characteristics of both

the upper level (wind-driven) and lower level (eddy-driven) circulations

in E2R closely mimic the mean state in the free-slip experiment. Note

that a 50D-day statistical average is sufficient in E2R to produce a

smooth mean flow field while a l050-day time series was required in E2

where the meandering is more intense and less "clean". The instantane-

ous eddies in E2R are also more coherent than their counterparts in

E2; Figure l6d is reminiscent of the El eddy patterns (which were

observed to align with the westward flowing branch of the inertial
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Figure l5: The experiment 2R globally averaged energy
components as a function of time.
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Figure l6:

"- '~-,.--

Experiment 2R.

(a) mean upper levëi streamfunction (average over
500 days; con tour in terval = 4.0 Sverd rups) .

(b) mean lower level streamfunction (average over
500 days; contour interval = 1.6 Sverdrups).

(c) instantaneous upper level eddy streamfunction
(contour interval = 1.0 Sverdrup).
(d) instantaneous lower level eddy streamfunction
(contour interval = 4.0 Sverdrups).
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circulation) and for good reason, as we shall see. Both instability

processes are locally operative and consequently the frequency spectra

of streamfunction amplitude (Figure l7) shows content in frequency

bands that had been rather unenergetic in EI, for instance at 5l days

and its higher harmonics, though the dominant contribution still occurs

near a perlod of 64 days. Similarly, phase propogation is somewhat

confused, though a characteristic phase speed can still be defined

(Figure l8, Table 3).

In terms of energy fluxes, the rigid boundaries and consequent

reduction in transport have been effective in suppressing the barotropic

energy cascade relative to the baroclinic (compare Figures l4 and 19).

Experiment 2R contains unstable modes of both types and the dominant

energy flux path is a combination of FPI and FP2

.. K'

tl
-- p'

(FP3)W-K
1 Ll

.. D
H

~ K'
3

!J DH '

with both barotropic and baroclinic circuits active. 1 Contour plots of

the mean perturbation energy components (Figure 20) illustrate the dual

characteristic of the transfer processes at work in E2R. The eddy

lOther experiments conducted by HL demonstrate that these flux pathways

can be modified by selection of other viscous mechanisms. For instance,
a small amount of a higher order vorticity diffusion (K4 V~š) combined
with a modest level of bottom drag (Koš ) can reroute the energy cas~ ,
cade by requiring that most energy be transferred vertically and lost
through the bottom rather than laterally where it is lost in the
boundary layers. This is in many ways a more preferrable energy dis-
aipation scheme in which the higher order viscosity selectively ex-
tracts the ens trophy cascaded to the highest wavenumbers while leaving
the mesoscale relatively unaffected.



Figure l7: Composite frequency spectrà for the upper and lower
level streamfunction fields of experiment 2R. The
spectra have been obtained by averaging 50 separate
frequency spectra of the streamfunction amplitude
taken at 50 ,eqUally spaced points.
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Figure l8: Experiment 2R x-t diagrams.

(a) upper level streamfunction.
(b) lower level streamfunction.
The profiles have been taken along y

l03.

l350 km.



200

300

o

(0)

r-)

400-
f/~
0
'U- 400 600 800 1000

w
:;
~

100

200

300

400

5000

( b)

200 400 600
( km )

800 1000

x

.---- ,--

104.



Figure 19:

- .........,..'

The experiment 2R global energy budget. Eneígy fluxes
are in ergs/cm2/sec; energies in i06 ergs/cm .
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Figure 20: The experiment 2R mean eddy energy components.

(a) upper ,level eddy kinetic energy (contour
interval = 0.8 x lOó ergs/cm2).

(b) lower level eddG kinetic2energy (contour
interval = 0.7 x 10 ergs/cm).
(c) eddy 6Potentia~ energy (contour interval =O.5xIO ergs/cm). ,
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energy, no longer confined primarily to either the eastward or westward

flowing currents, has contributions in both regions in the case of Ki'

(Figure 20a). 'The lower level eddy kinetic energy (Kj, Figure 20b) is

once again being fed excluSively by baroc1inic activity in the two

regions of westward recirculation and conforms nicely to the equivalent

single-gyre results (Figure 9b).

Except for lower overall energy levels and the relatively more im-

portant contribution of baroclinic instability, the important features
.,

of the E2 equilibrium circulation recur in E2R despite the severe

modification in boundary layer physics. Once separated by several boun-

dary layer widths from the coast, the structure of the internal jet no

longer depends on the boundary conditions on x = 0; for example, compare

Figures 34 and 43. The eddies seem to be generated locally in intense

mid-ocean regions of barotropic and baroclinic instability and their

exact statistics are dependent on the western boundary layer only inso-

far as the overall amplitude of the idealized circulation is determined

by frictional effects in the west. Especially in cases such as E2R

where a mixture of modes exists, we can test this proposed dependence of

eddy properties on the local environment only by a truly local analysis. 1

Such a theory is advanced in the next chapter.

lAnother interesting test of these ideas would be to redo EIR and E2R

with an increased wind stress. If our scaling hypothesis is at all
valid, an appropriate strengthening of the forcing in ElR and E2R
should quantitatively as well as qualitatively reproduce the results
of El and E2, thus verifying the independence of the results of the
explicit western boundary layer structure (for fixed WI and WF). Such
tests have not been made due to computer resource limitations; however,
the same conclusions arise during the course of the highly efficient
stability analyses discussed in Chapter VI.
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(V) A Linearized Stability Analysis

We are beginning to accumulate a growing number of numerical simu-

lations upon which to base conclusions about eddy behavior under various

parametric conditions. Hopefully ~ those in which eddies spontaneously

appear display some basic instability having a counterpart in the world's

oceans. In many of these exp~riments, highly local ized regions of

significant mean field/eddy interaction coincide with the intense bound-

ary current after it separates from the western (or northern) wall;

however, the mesoscale disturbances propagate out from these regions

and ultimately modify the dynamics in other areas as well. The instan-

taneous and mean streamfunction fields available from these simulations

represent, therefore, a picture of the integrated response of the system

to some distribution in 'time and space of mesoscale energy sources and

sinks. In some fortuitous cases~ eddy behavior is rather easily under-

stood on the basis of the associated global energy fluxes; in these

instances, the eddies generally possess well defined space and time

scales that stand out in the experimental results. Other simulations

ex is t, however, in which the mesoscale response is much more confused ~

being a composite of several unstable modes, and for which more sensitive

diagnostic tools are needed. This chapter proposes one such tool, based

upon a quasisteady stability analysis of model flow profiles, whose

advantages are simplicity and efficiency. Succeeding chapters will

discuss and assess the feasibility of extending this simple idea to a

more predictive use.
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(V.l) The stability of parallel flows above topography

Consider an arbitrarily oriented coordinate system (x', y') which

lies at an angle eto the coordinate frame (x, y) of Chapter II. Because

there is no preferred direction, the equations are insensitive to such a

.....'!.,...

~. \k, ",;I x'\ , i;\ , )C

f :

where

fo -t ~~

~o .. lxx' -+ti ~'

II( :. t ~;n e

/i ~ tCqse.

=

and

In these coordinates, we may then write the two-level quasigeostrophic

equations as

d r ~ "71 -'Z)J = r ß ,Jil, -.& J. J
Jt VZJ. +F,('f~ , I )("~' r~ "'x'

- :r r~, Vz,il..F,z/, i .. KHV'l'l,
J

(5. l)

and
;. r V"\ - F3 ('lf~) J c r f' :i. - /i ~~" J

f -i. T h i ~ e1-:r -i" V -.) + F1-i + H~ oJ + Kif V2/i - k'1S V 1/3 .

The reduction of this problem to One horizontal dimension requires the

assumption that the mean streamfunction of levels land 3 be independent

of time and of one coordinate, let us say x'. (This theory therefore
,

automatically rules out certain classes of instabilities, most notably
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the barotropic instability of Rossby waves (Lorenz, 1972) which cannot be

adequately represented in terms of parallel flows.) Then, in the

traditional manner, we may expand into mean and perturbation:

theory 'as a predictor of the properties of the growing waves requires

that

(i) the projection of the mean (finite-amplitude) velocity
field onto the y' axis be small,

(ii) the mean flow be quasisteady over many eddy periods, and

(iii) the perturbation amplitude remain small.

The independence of the mean fields of the x' coordinate allows a wave-

like solution in this direction; k is now a free parameter and represents

the x wavenumber of the infinitesimal disturbance. As usual, we

substitute (5.2) into (5. I) and linearize by neglecting terms propor-

tional to or"'.l) or smaller. There results

J
Ji r i~, - CF; + k.") rP .. F¡ l,J.. ( I. a,~ - "kl, ~l

-r ..I( a,'3 r ~~, .. kci~ +- F, ~~ J

- ¿k ~ r ?l'~l -+ F, lq,l'j'" k'H'V't

:. r ~J~1. (F, -+ ko?) ¥, T r3 ~ J ,= (Ix 13, - Lkl~ si~ J

.. c.k lq31 L Ø3'3~ - k:~ll3 + F3 ~ 1 + KH V 'i~3

- irk q$i t 43'4'1 .. F;'l, -l -!øh J.. - 1(13 r cP3 - ki6~ 1

... r/i .. '31

(5.3)
and
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where v'lø. 'I
L

*c1 él .J ~k . - K cp. + ÇJ." Øl "~i c.'~1~ (t~'l3)

and the primes for the rotated system have been dropped. Finally, we

q C( e,rr and inquire for what complex values of e5=q;+~ solutions

exist to these equations (subject to some appropriate boundary conditions

set

on the ~. ). Equation 5.3' is not in the form of a standard eigenvalue
L

problem; otherwise, the solution would be immedia tely available by any

number of techniques. Fortunately, a little manipulation serves to

reduce t5. 3) to a more manageable form.

In general, this problem must be solved numerically on a discrete

grid of points. Therefore, let us make a second-order finite-difference

approximation to (5.3). Using a subscript j to denote the j th gridpoint

along our transect in the y direction, the discretized equations become

~ r~'~~)q~-, - (~~Ol"'F,"'k~)9!,j + G'1ól)~j+' "i F;~3..l =

~kI-l1'l~i'" C-lIJ;r(t.i)&'J'_,-(fii"'k~)... + (~ili.)/~. +F,.t.l
r ~4 l. ~ J '3 Y'~J ,,"l.lJ+I' 'f~J J

- r cPi,i 1 r -q'~~1 + F, -q3~ ljÌ .

+ f (~1) (rt~~+,- ~!lj-,) + (~;.,) r ~~j-~ - 'l~j_''' ~~j -~~¡+i'" ~jU 1,

_ (ct k K,,) (~ . _.; J. .J Î Y:.. . l..d~4t ~i-i \p~,,+rp~~+'J'" k t(1l"fI"J J

(5.4a)

and

5t ((1'12.)~J,i-' -( 4~2.+f3 +il) 
(+\j T (~~t.) cPi"j-lJ .. r~ø:.Ijl ~

¡k í-l,9~~ T fq!i~lj i ~,2.)~Ü" - (~~1."'k2.)Ø~j .. ~~~)4'Jj+, + 1= ~~jl

- r ~~ j 1 I 2l3~.,': + F~ qi~'" ~:lh)'l i j ,

+ I (g~) (~$,¡..,-Ø3,j-J) + (1:..) f ø) l-Z. -c1'';' +-~93 ~ -~~ 'io/+ ø; i+J. Jz. oJ ~ J .. ;,~ ." .
(.,~~~H) r l,,~-J -~d~j + Ø3,~+,1 + k'lf(H~~,J

1(8 f C:J~2.)l$i,~_, - ( t1. .. kL) qSl,~ + (~~z.) øe~+' i 1.

(5.4b)
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To these equations we must add the finite~difference analogues of the

chosen boundary conditions on 9. ."
These need be specified because the

highly differentiated terms - in this case, the viscous terms - cannot

be evaluated on the boundaries unless some informtion is given on how

~behaves beyond its norml range. Suppose j = 1 is the first nonzero

gridpoint; then~ equation 5. 4a calls- for -l '_ , and ,.,. J' ~ _\ which.,... 0", J ~ C) '1,,
are not yet known. Given a particular set of boundary conditions,

however, they can be specified in terms of the interior points in the

following manner. For a free-slip ~ imperm~able wall

and

-l :: 0
'-c..,j eo

c:c.~j.-' -= - a5¿..j.,
'(,:'l'3)

which arise as second-order approximations to the conditions "2:: ?l~~= 0

on the boundary. Similarly, no-slip impermeable walls require

øc."j =0
= 0

(t~'/3) .and ø. , ': cf ..
".i J 0:-1

c...J=1

The properties of the unstable modes, however, are not sensitive to the

boundary conditions for eigenfunctions which are well restricted to the

basin interior as is the case in many of our simulations.

To cast this problem into standard form, redefine the left-hand

sides of (5.4a) and (5.4b) so that

Q I..¡ : r (.d1'j1)~..j_1 -( d~2.~ F, +kZ.)~)J + (4'~~)~j+, + F, cf3"j 1 (5.5)
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and Q~,l ~ r (~~i)4~j-' - (4~~+F~-lk2.)i,. .. (~~i.)91"j+' + Fi ~j J.

On this discrete grid, the relationship between ~t and ~l is

explicitly known to be

~i"j.., ~~~:,~ ~~~21 d$" fe'

Q - - M
Q,,,~,,,

c7'''~-

~,~"'" ~it~,

with t1 the matrix of coefficients defined by (5.5). Inverting the

block tridiagonal matrix r1 yields the ~ . as a function of ~L ~ o~.,~ ".
the discrete grid. Then,

oJ -
~éQ

-
c;c'E, 'Z,) Q_ iI (5.6)

where the functional relationship, t? , results by substituting for (A

on the right-hand sides of (5.4a, b). Once reduced to this form, the

eigenvalues are easily calculable via eigensystem analysis; we have ;. .
"
,

employed EISPACK for this purpose. Note that for a given set of param- i

. .r

eters, mean flow conditions, and bottom topography, we need still solve

this problem over the range of k to identify the most active wavenumber.

In doing so, we regard k as a continuous variable. Insofar as our simula-

tions are enclosed in a bounded domain, however, we do intrinsi.cally re-

strict the range of admissable x wavelengths to be less than' that of the

fundamental basin mode. In any case, the most unstable waves generally

possess scales much smaller than the basin dimension.
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(V.2) The predictions of linearized stability theory

Despite the simplicity of the approach, the methodology outlined in

the previous section does predict many quantitative aspects of perturba-

tions arising on the mean flow. These properties can be compared to

statistics generated from actual finite-amplitude eddy simlations. From

the unstable eigenvalues, if, any, we know the expected growth rate of the

eddies under the assumed mean flow conditions. The associated eigen-

vectors and the most unstable x wavenumber, k åefine the spatial
max'

configuration of the eddies and indicate in which region of the y domain

they may be expected to appear. This can then be compared with our

expectations based on an ~ priori examination of the profile of mean

velocity and potential vorticity, and our knowledge of simple instability

, theory. Finally, the eigenvectors yield a description of the energy

cascade to the growing eddies. We need only multiply (5.3) by t1~ (ø.l. ~
conjugate) and combine to construct the two eddy kinetic energy equations

~ Hi r I cP~ iót+ k-l I~'~ 1 :; Re fH,crj; ¡ ø,*~'J l-'-H,~ f i.st,~ ~1 ! 1

+ (P~ 1(,') + (' ~, - K/"' - .( 4(,'-"'bH) (5.7a)

and ~ H$ ~ 1~3112. + kal I ~3,;L 1 ~ ~~ rH,O" ~ ìlt çP,~ 1 ~'kH3~ ~~""~1'l 1:31 11

i I -, , ,+ .(1)- f(i ~ + -(Ki -~ K3) - ..1(3 ~1),. ') - .( I(r"'¡,,) (5. 7b)

where Re denotes the real part of a complex expression. Similarly, one

can easily derive the potential energy equation

5: r ( 0) 1,, .J/2.J /ii ~rl') - /P~KI',, -(~~J(:). (5.7c)R :!~él '+3- 'f =:" ,- " í"
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:: ~e r lkH, rf*ø -q JL i I~ '~1

~ (~) R.e (õcP*(ç6-~) - i.k~)63 '2,'i i

., -..~- ':-,, 1"~

-= Re r 1-, Kll 9,""n *r/ 1

f?e r tkH3Ø,. 43~ -q3~~ 1

(P'--i K3) - (:;#-1) Re rõq5;~'(~-~) -tk~~*'Z31l

~ l(3' - Î)1l ')

(Kt -')1)8 )

and (p ~ ~,)

Re r J., KH ~3* Vtlø'31

Re r - H3k'B )6t .~/ c;, 1

- C~2.) f?e.r ~kaL( ¥3-~ r (41-11, )'31

are once again directly comparable to the finite amplitude predictions

of the fully nonlinear results.
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(VI) The Local Properties of the Unstable Modes and the Prediction,

of Eddy Statistics

It remains to be seen of course to what extent a highly simplified

stability model such as that advanced in Chapter V can reproduce the mean

eddy statistics seen - in the full numerical simulations. Under the most

optimal circumstances, we might find it possible to extract the mesoscale

-
field properties from a stability analysis of sélected mean velocity

profiles. In such cases, the application of LSA begins to extend beyond

the immediate goal of simple model analysis. For instance, one impor-

tant limitation on making a thorough examination of model behavior under

a wide range of parametric conditions is 'the costliness of the nonlinear

simulations described in Chapter iv. 1 Evidently, we cannot expect to do

a complete parameter exploration by this means. Consider however the

advantages inherent in the LSA. The determination of the most unstable

modes from a mean profile and the calculation of the accompanying

energetics requires two orders of magnitude fewer computer resources

than a full simulation. Thus, if verified, LSA acquires prognostic as

well as diagnostic importance in the following ways. First, the effects

¡, -
u",

of small parametric changes can be estimted by studying a range of
, f

closely spaced values for fixed mean flow profiles (so long as the

functional dependence of the mean fields on the parameters is itself

small) . Such studies can extend our knowledge of eddy properties into

regions of parameter space adjacent to pre-existing nonlinear simula~

tions. We need integrate the quasigeostrophic equations only long

lExperiment 2R and its accompanying analysis, for instance ~ required

three hours of computer time on the NCAR CDC 7600.
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enough to define the approximate interior flow structure and strength;

thereupon, LSA predicts the ensuing equilibrium eddies insofar as the

modification of the mean fields can be ignored. At the very least, this

.yields a preliminary estimate of eddy statistics on the basis of which

it might be decided, for one reason or another ~ to terminate the

experiment. In such instances, we have saved ourselves the trouble and

expense of running the nonlinear code far enough into the equilibrium

phase to generate reliable eddy statistics, a savings of nearly 50% in a

typical simulation. Meanwhile, the LSA always provides useful diagnostic

informtion, namely the local structure of the unstable modes which, as

remarked, is unavailable to us from global energy considerations.

This optimistic evaluation of the USes of the LSA depends on the

validity of the predictions it makes, so we proceed now to explore its

range of applicability. In particular, we consider the following

questions:

(i) can we qualitatively explain the conclusions of Chapter IV
on the basis of linear stability results,

(ii) can we quantitatively interpret equilibrium eddy statistics
from mean or instantaneous velocity profiles which are
assumed unidirectional and streamwise invariant,

(iii) what are the properties of the mean flow primarily responsible
for the growth of the unstable modes,

(iv) how are the instabilities dependent on critical environmental
parameters such as Rd and ~, and,

(V) what are the most probable signatures for regions of baro-
tropic and baroclinic activity?
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(VI. l) A stability analysis of experiment 1

As we recall from Chapter iv, El had the cleanest and most uniform

eddy field of any of the primary simulations. There is therefore some

justification for presuming that El will also be the easiest to inter-

pret using LSA. This will be shown to be true. Take, for instance, our

initial impression from the, boundary layer sensitivity studies that

local factors such as (some measure of) circulation intensity affect

eddy generation. We can test this hypothesis by considering a succession

of El v~locity profiles including

(i) mean profiles from the EI equilibrium phase,

(ii) instantaneous profiles from the spinup phase, and,

(iii) instantaneous profiles from the equilibrium phase.

'In the experiments to be reported, profiles were typically taken along

x = 300 km and x = 500 km. For each profile, we have used LSA to deter-

mine the accompanying unstable modes and their associated statistics.

Figure 2l shows the resulting correlation between the growth rate for

the maximlly unstable modes (baroclinic in this case) and the maximum

local value of vertical shear for all the El profiles analyzed. Because

El has a negligible lower layer velocity, vertical shear has been esti-

mated by the maximum upper layer velocity.

The dominant trend in the experimental results is unmistakable; the

growth rates of the unstable baroclinic modes vary quasilinearly with the

local vertical shear. The e-folding times predicted for the equilibrium

phase eddies lie between 50 and 200 days. Note, however, the time

evolutiòn of the growth rate, erR = Re ~~ during the spinup phase -
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Figure 2l: The variation with vertical shear of the growth
rate of the baroclinic modes observed in experiment l.

~ instantaneo~s profiles taken during the
equilibrium phase.

. mean profiles taken during the equilibriumphase. '

. baroclinic mode scaling experiment (see
section VI.5)

1-5" time sequence of instantaneous profiles taken
during spinup, phase along x = 300 km.

Cl- e time sequence of instantaneous profiles taken
during spinup phase along x = 500 km.

121.
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also plotted in Figure 21. As the circulation accelerates, the predicted

growth time of the unstable eddies decreases, approaching a minimum

of 30 days. Once the eddies, which grow from perturbations of unkno~~

,
initial amplitude, reach finite amplitude and begin to efficiently ex-

tract energy from the mean field, Re ~ falls drastically and eventually

assumes its more modest equiiibrium value. During spinup, the baroclinic
_.-..".

modes along x = 300 km are more unstable than those along x = 500 km; the

reverse is true for the equilibrium phase. Since the El flow features,

at least at the upper level, are dominated by the mean flow and are thus

quasisteady, the instantaneous eddy properties do not vary a great deal

in time but lie in localized regions in Figure 2l. This may arise

because of the influence of the northern wall; relaxing this constraint

allows a greater range of unstable modes to appear - as we will see in

(VI. 3). This rather narrow range of flow variability in El is trans-

lated into the simple quasilinear relation between crR and I Uz I which

depends, as we supposed, on the fact that north-south profiles taken

along any longitude at any time have nearly identical shapes but differ-

ing amplitudes; thus, jet structure as such cannot playa significant

role in these resul ts .

The predicted substantial eddy growth rate as early as day 500 was

initially quite perplexing. The obvious manifestations of finite ampli-

tude eddies do not appear in plots of streamfunction and global kinetic

energy until nearer day 900 (Figure 4). Perhaps the assumptions made

during the derivation of the LSA have led to overestimates of the growth

rate. Assuming a 50-day e-folding time, perturbations would need to

begin with an amplitude some 20,000 times smaller than that of the mean
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flow in order to grow to a distinguishable magnitude in 500 days. It is

unclear whether or not this is a reasonable estimate for error amplitude

at this stage in the model calculations. We need another way of veri-

fying the growth rate prediction of the LSA, preferably an unambiguous

demonstration of instability at day 500.

To provide such a demonstration, we have devised a perturbation

growth test. Beginning from the state of El at day 540~ a periodic

streamfunction "error" field was introduced with an amplitude of approx-

imtely O.l% I~llmax and a length scale comparable to Rd. The nonlinear

equations were then integrated in time and the growth of the eddy field ~

defined as the difference between the perturbed and unperturbed simula-

tions as a function of time, was monitored. The zonally averaged
)C.

perturbation energy, ~ ~ (Ki + Kj + p' )dx, shows in Figure 22 that the
Xo 0

error energy decays everywhere but in the zonal band where instantaneous

instability has been predicted. Aside from an initial tendency for a

slight loss of energy even at these latitudes (due to the fact that the

eddies are unstable only in about one-half of the basin width), the

perturbation energy soon begins to grow in the expected manner. A closer

examination of individual eddies in the unstable region confirms that

the eddy amplitude increases with a characteristic time of 50-l00 days.

We are therefore encouraged to put some confidence in the LSA results

which in this case have for the first time revealed the instability

mechanisms to be operative very early in the numerical simulations;

apparently, the onset of instability really begins prior to day 540.

Rather than describe in detail the over 100 profiles examined from

all four experiments, we choose instead to discuss only one r:epresenative



.. -" -"',,~--

Figure 22: The time evolution of the zonally averaged eddy
energy from the experiment i perturbation growth
test.
A = day 540
B = day 560
C = 'day 580
D = day 600
E = day 620
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profile and the accompanying eddy statistics for each of El, EIR, E2 and

E2R. In most cases, and this is a primry conclusion of the LSA studies,

it is the large-scale features of the mean circulation rather than the

higher order properties that indicate whether instability will occur;

consequently, even a single profile can give an accurate impression of

the instabilities at work in a particular experiment. In examining the
.-. . ~.. .

El equilibrium fields, the situation is very simple (as Figure 21

suggests); there is never more than one instability, a moderately un-

stable baroclinic mode which occurs in the region of westward return

flow. Both the time mean and instantaneous two-dimensional velocity

profiles exhibit this instability. Take, for example, the instantaneous

profile of Figure 24 which corresponds to cross section AA' in Figure 23.

The primry (eastward) and secondary (westward) jets are clear in this

diagram, as is the slow westward return flow in the southern half basin.

Note that although the upper level streamfunction field in the neighbor-

hood of AA' does satisfy our assumption of x~dependence quite well (since

it is dominated by the mean flow rather than the eddy field), the pro-

jection of the lower level velocity onto section AA' is quite large;

that is, IJ~il ~ 1~1J Fortunately, the maximum velocity at level i~~ J~ .
exceeds that at level 3 by more than an order of magnitude and ~ hence,

the local shears will depend most strongly on the upper level circula-

tion. Still, it will be shown presently that even small uncertainties

in the value of the shear can, in some instances, cause large uncertain-

ties in the LSA results. Despite these limitations, we shall proceed

with the linear analysis bearing in mind that, should our assumptions
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Figure 23: Representative instantaneous fields from experiment l.

(a) upper layer streamfunction (contour interval =
4.0 Sverdrups).

(b) lower layer streamfunction (contour interval =
2.4 Sverdrups).
Profile AA' is replotted in Figure 24.
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Figure 24: Profiles AA r from experiment l, 'Figure 23.

(a) uppeS layer streamfunction (liji lmax =3.2 x 10 ). '
(b) upper layer velocity (luil = 5l.3).
(c) upper layer potential vortï~tty (I qi I= 2.0 x 10-5). max
(d) lower layer streamfunction (I ij3'6 max= 7.9 x 10 ).
(e) lower layer velocity (lu3' = l.4).
(f) lower layer potential vort~~tty (I q31= 2.l x iO-5). max
Maximl instahility occurs at y = 750 Ia.
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prove too severe or the two-dimensional results inconclusive, we may wish

in future to devise a fully three-dimensional stability theory.

The unstable mode predicted by LSA is centered at y = 750 km as

denoted by the líne drawn through the individual plots of Figure 24. As

we expect, the instability aligns with the westward inertial recircula-

tion and lies in a region of opposing potential vorticity gradients at

the upper and lower levels (Figures 24c, f), a necessary condition for

barocliuic instability (Ped10sky, 1963). The growing eddies - the ei~en-

functions of the LSA - appear in Figure 25 both in, transect (25a, c) and

with the oscillatory x-dependence reintroduced (25b, d). As should be no

surprise, the eddies display the telltale 90° phase offset between

upper and lower level appropriate for a transfer of mean potential energy

to the perturbation field.

In comparison to the results of the EI nonlinear simulation~ the

~redicted eddies have many of the same statistical properties (Tables 3

and 4). Even by inspection it is obvious that the idealized stability

analysis "eddies" have the same spatial scales (Figures 5 and 25) and

that they are both preferentially elongated in the meridional direction. 1

Wave radiation into the southern basin and the consequent setup of the

barotropic far field can, of course, only occur in the fully nonlinear

experiments.

An energy diagram for the growing eddies (Figure 26) confirm the

characteristic- baroclinic energy transfers. (Note that since these are

IThis feature can also be anticipated theoretically for westward zonal

currents (Robinson and McWilliams, 1974).
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-_0 '~,~

Figure 25: The most unstable baroclinic mode corresponding
to profile AA', Figures 23 and 24.

(a,c) the complex upper and lower layer eigen-
functions (Re~ so¡id, Im~ dotted).

(b,d) the real part of the unstable modes with
the x-dependence reintroduced.
Lines have been drawn along x = 480 km to
indicate the phase relationship between the
upper and lower layer eddies.
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Table 4: The equilibrium eddy. statistics from the four
primary experiments as predicted by the linear
stability analysis.
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El E2 E2R

baroclinic baro- / baro- baro- / ba::o:- .
clinic tropic clinic tropic

wavelength (la) 370 350/470 420 390 350

period (days) 58 35/490 75 180 67

phase speed (cm
-1 7.4 -l2/-.5l 7.9 -2.4 6. Isee )

global energy transfer baroclinic baro- baro- baro- baro-
(FPl) tropic clinic tropic tropic

(FP2) (FPl) (FP2) (FPl)
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Figure 26: The normalized global energy budget for the growing
perturbation of Figure 25.
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growing eddies the energy fluxes to each eddy energy component need not

sum to zero.) Individual plots of the energy flux term as a function

of y indicate the localness of the energy transfers (Figures 27 and 28);

the band of baroclinic activity is 0(200 km) in width. The global and

local fluxes have been normalized by their maximum values which are also

listed in the figures. Since "the El eddy energetics are dominated by
-- -.. f,."

this single localized region of instability, the corresponding LSA

energy fluxes have the same spatial characteristics as the zonal eddy

energy fluxes observed in the nonlinear simulation (Figure 29).

We would like, however, to be able to do better than just a predic-

tion of the primary energy flux paths and their spatial distributions.

How might we redimensionalize the predicted energy fluxes so as to

provide a quantitative cpmparison to the experimental results? There

are two possible methods. First, we could estimte the equilibrium

amplitude of the eddies in EI and, adopting a similar amplitude for the

corresponding LSA eigenfunctions, determine the approximate magnitudes

of the various flux terms. Second, we might try the converse tactic

and nondimensionalize the global energy fluxes derived in EI; this is

most easily accomplished by normalizing by the maximum flux value as

we have already implicitly done for the LSA energy diagram. Both types

of comparison are risky, however, beèause no matter how we make our

estimates, we are always comparing an equilibrium energy diagram with

an inherently non-equilibrium one. We can expect a correspondence

between the two only in the fortuitous case that certain energy fluxes

and/or paths remain essentially fixed during the onset and equilibrium



l40.

'-" '-1..

Figure 2 7 : Normalized local energy fluxes for the growing perturba tions
of Figure 25.

Diagram Flux Maximum Value

(a) -(K -+ K ' ). 4.7xlOlO1 1

(b) .: p' -+ K I ). 5.6xlOlOi
(c) .: D -+ K I ). 3. ixiOlO

H 1

(d) .: K -+ K ' 8). 3.0xlO3 3

(e) .: p' -+ K ' ). 4.9xlOlO3 '
(f) .: D -+ K ' ). 1. 8xlOlO

H 3
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Figure 28: Normlized local energy fluxes for the growing perturbations
of Figure 25.

.

Diagram Flux Maximum Value

(a) Pressure Work on K ' 2.7xlOlO
1

(b) Total Flux to K ' 2.2xlO1O1

(c) .: P + P' ~ l.4xlOll

(d) Pressure Work on K ' 9
3 9.5xlO

(e) Total Flux to K ' 2.2xlOIO3

(f) Total Flux to P' 3.0x1OlO
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Figure 29: A comparison of the dominant energy fluxes from experiment
1 as obs~rved in the nonlinear simulations (zonal average;
dotted line) and as predicted by the linear stability
analysis of the profile of Figure 25 (solid line).

(a) -: P -+ p' :; .

(b) -: p' -+ K , :; .
1

(c) -: p' -+ K3 , :; . ---------
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phases of these experiments, or, equivalently, where the infinitesimal

eddies maintain their structural features as they grow to finite ampli-

tude. There is no reason ~ priori why this should be true, but with

this ~roviso we proceed to attempt such quantitative comparisons.

Figure 30 shows the normalized energetics derived from an average

over five EI instantaneous profiles taken 10 days apart (thus covering

approximately one eddy cycle) "along x = 500 km. By assigning to the

eigenfunctions an estimate of the eddy amplitude in El over this inter-

val ($i = $3 = 4.5 x i07), we redimensionalize the ~ P + p' ~ transfer

2'and get an energy transfer estimate of one erg/cm /sec. This is too

high, in comparison to Figure 8, by a factor of nearly four but the ex-

tension of the x = 500 km (local) cascade rates uniformly acròss the

basin, an assumption of zonal uniformity, is overly optimistic; actually,

x = 500 km is a longitude of unusually high activity and some geometric
..

factor of 0(l/2) can be reasonably applied to the LSA energy fluxes to

account for lateral inhomogeneities. With this correction, the compari-

son of the linearized perturbation energy flux ~ P + p' ~ to the results

of experiment 1 is within a factor of perhaps two. This is a first

indication that some of the primary energy transfers from mean to eddy

field established during the onset phase may be insensitive to the

approach of the system to ~quilibriUI. Adopting our second strategY,

let us normlize the EI global energy fluxes by the ~ P + p' ~ value

(Figure 8), producing flux ratios comparable to those associated with

the predicted linear modes (Figure 30). Again, we are left with the

~p' + K'~impression that certain flux ratios, most notably 1 may
~p + p'~

remain invariant during the establishment of the eddy field. The
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Figure 30: A mean no~aiized global energy budget for the baroclinic
instabilities of experiment 1 as predicted by LSA (average
over five baroclinic modes).
The numbers in brackets are the equivalent flux ratios
derived from the experiment i global energy diagram

(Figure 8) by dividing by ~ P ~ p' ~.
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generality of this relationship remains to be established.

It is clear, however, that the predictions of the LSA compare favor-

ably with the exact statistics of the El mesoscale field. Growth rates,

space and time scales, spatial distribution of eddies, and energy fluxes

have been shown to be quantitatively as well as qualitatively accurate.

However, El is not an overly complex situation. A north-south section

through its instantaneous vêi6city field actually satisfies our assump-

1tion of two-dimensionality quite well. A more severe test of the

applicability of the LSA will be its accuracy in predicting the statis-

tics of' more disordered eddy fields such as those of E2 and E2R.

~

:r

lwen corrections for path curvature are made to the stability analysis
of El, the predictions are altered by less than 5%.
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(VI. 2) A stability analysis of experiment IR

As we have noted, the north-south profiles of EIR are nearly

identical in structure to those fromEl (Figures 24 and 3l). Why then

is the equilibrium phase of EIR identified by a stable rather than eddy-

ing state? The answer lies in the observation that a sufficient reduc-

tion in vertical shear will always stabilize a frictional baroclinic

flow. A diminution in the maximum upper level velocity by only 30%

will stabilize El for example (Figure 21). Such an explanation is

clearly indicated in EIR where western boundary layer dissipation has

reduced the estimated shear by 3l%, or just enough to preclude the

unstable growth of small perturbations. For a slightly higher character-

istic velocity, the ElR westward return flow would presumably be the

site of a mesoscale eddy field comparable to that in El. In this sense,

and as E2 and E2R will demonstrate, rigid boundaries, in the flat bottom

limt, impose only weak constraints on the interior.
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Figure 3l: Profile AA' from experiment lR, Figure ll. '

, 8'(a) upper level streamunction ( I 'l I =2. 2xlO ).max

(b) upper level potential vorticity (Iqi' =2.0xiO-5).max

(c) upper level velocity (I ul I =33 .l).
max

(d) lower level potential vorticity (I q3 i =2. OxiO-5).
max

l5i.
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(VI.3) A stability analysis of experiment 2

The qualitative behavior of the E2 equilibrium fields suggest that

at least three instabilities are periodically or continuously active;

one barotropic mode in the eastward flowing internal jet, and two baro-

clinic modes symetrically disposed in the westward return flows. One

of the tests of the LSA~ therefore,. will be whether or not it can resolve

these distinct regions of instability and hence prove to be capable of a

truly local analysis. Since the E2 global energetics are dominated by

the~P2 energy flux pathway, we know that the barotropic conversion

process is the most intense overall; it should be readily distinguishable

in almost any profile that transects the internal jet. Surprisingly,

however, when a variety of profiles similar to that proposed in (VI.L)

were examined for experiment 2, barotropic instabilities could not be

detected from any mean velocity profile; only for an instantaneous

velocity record did the barotropic mode appear. The associated growth

rates depend sensitively, with a certain amount of scatter, on horizontal

shear values (Figure 32). (Vertical shear was the crucial environmental

parameter in the case of the baroclinic mode.) Thus, the meandering of

the internal jet, itself indicative of the presence of the finite-ampli-

tude eddies, tends in the mean to smear out the streamfunction field in

the same way as the envelope of the Gulf Stream paths is much broader

than any individual traj ectory. Our inability to detect the presence of

barotropic instabilities from a mean profile is a direct result of this

smearing action. The instability acts on the mean flow to weaken the

set of conditions which originally favored the instability and ultimately

to limit the finite amplitude of the eddies .
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Figure 32: The variation with horizontal shear of the growth rate
of the barotropic modes observed in experiment 2. The
modes deaoted by x's were determined from instantaneous
profiles taken 600 days later than those used to deter-
mine the dotted points~). The residual differences in the
instability properties of the two sets of points
indicates that either we have not, as yet~ quite attained
equilibrium or that there are very long period processes
at work in this simulation.



5.0
- -- ~"~"-'. //. /

25 days
x / x- . ,- 4.0 /I X ' /0

Q) . .en-
.. 3.0 x0 x-
x

50 days
x

0- 2.0

100 days
1.0

0.0

200 days

2.0 4.0 6.0 8.0
i

10.0

IU1yl m~)( x 106 (see-I)

l55.



l56.

For a representative E2 example~ we choose transect AA' through the

instantaneous streamfunction fields pictured in Figure 33; the associated

profiles are replotted for convenience in Figure 34. The quasisymetry

of the upper level velocity about the mid-latitude (Figure 34b) stands

out, with the central jet and two westward recirculations being highly

prominant features. The most unstable mode corresponding to this zonal

"

representation of the instantaneous flow occurs in the eastward current

as expected (Figure 35). The eddies are distinctly barotropic in both

phase relationship (35b, d) and energy transfer characteristics (Figure

36) which now, favor the ~ Ki ~ Ki ~ cascade. In general, the growth

rates of the instantaneous barotropic modes are predicted to be quite

large; Figure 32 suggests a mean e-folding time less then 50 days. This

is consistent with the vigorous meandering observed during the course of

E2. The individual energy flux profiles demonstrate that narrow, highly

structured transfers are involved in the barotropic instability process

(Figures 37-38). Note that the LSA predicts the existence of two sepa-

rate barotropic modes of widely separated scales (Table 4). The long-

period barotropic instability may well account for long-term trends

observed in the E2 global energy statistics.

The barotropic mode is not, however, the only instability predicted

for the Figure 34 profile. LSA also reveals baroclinic activity in the

northern branch of the westward return flow (Figure 39). Its growth

time, 0(75 days), is much greater than that of the barotropic mode, but

the phase and energy flux relationships indicative of baroclinic insta-

btlity are again present (Figures 39 and 40). The individual energy flux

profiles are similar to those of the El baroclinic mode and need not be
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Figure 33: Representative instantaneous fields from eXperiment 2.

(a) upper layer streamfunction (contour interval' =
4.0 Sverdrups).

(b) lower layer streamfunction (contour interval =
8.0 Sverdrups).
Profile AA' is replotted in Figure 34. Lows (L)
and highs (H) indicate cyclonic and anticyclonic
flow respectively.

157.



l58.

-
.0-

CZ



Figure 34:
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Profile AA' from experiment 2, Figure 33.

(a) upper layer streamunction (I ~l i =4.l x lO~). max
(b) upper layer velocity Cluiimax = 53.0).
(c) upper layer potential vorticity C\ail= 4.0 x 10-5). max
Cd) loweS layer streamfunction CI~31max =
1. 4 x lO ).
(e) lower layer
(f) lower layer
= 4.0 x 10-5).
Maximal instability occurs at y = 980 km

(barotropic) and y = 1230 km (baroclinic).

velocity (I u31 = 9.8).
potential vort~gtty (I q31

max
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Figure 35: The most unstable barotropic mode corresponding to
profile AA', Figures 33 and 34.

(a, c) the" complex upper and lower layer eigen-
functions (Re~ solid, Im~ dotted).

(b,d) the real part of the unstable modes with the
x-dependence reintroduced.
Lines have been drawn along x = 560 km to indicate
the phase relationship between the upper and lower
layer eddies.

l6i.
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Figure 36: 'The normalized global energy budget for the growing
perturbations of Figure 35.
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Figure 3 7 : Normalized local energy fluxes for the growing perturbations
of Figure 35.

Diagr am Flux Maximum Value

(a) ~iS~~' :: 1.9xi012

(b) ~ p' ~ ~ I :: 2.4xlOll

(c) ~ DH ~ Ki I :: 2 . 5xlOll

(d) ~ K3 ~ K3 I :: 3. lxiOll

(e) ~ p' ~ K I :: 1.5xlOll3

(f) ~ D ~ K I ). 2.8xlOlOH 3
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Figure 38: Normlized local energy fluxes for the growing perturbations
of Figure 35.

Diagram Flux Maximum Value

(a) Pressure Work on K i i.OxiOl21

(b) Total Flux to K i l. ixiOl21

(c) -c P -+ pI ;) 4. 9xi011

(d) Pressure Work on K i l.6xlOll
3

(e) Total Flux to K i 2.2xlOll
3

(f) Total Flux to pI 5.8xlOll
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Figure 39: The most unstablèbaroclinic mode corresponding to
profile AA', Figures 33 and 34.

(a,c) the complex. upper and lower layer eigen-
functions (Re~ solid, Im~ dotted).

(b,d) the real part of the unstable eigenfunctions
with the x-dependence reintroduced.
Lines have been drawn along x = 600 km to indicate
the phase relationship between the upper and lower
layer eddies.
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Figure 40: The normalized global energy budget for the growing
perturbations of Figure 39.

171.



0.115

0.065

1.000
.

0.007

0.089

c: p -p'~

K'
i

(0.1 78)

~

~P'-K:~
0.129

-.
p'

(0.303)

c: p' - K'a~
0.569

,

K'3

(0.487)

l72.



l73.
included here. The ineffectiveness of the baroclinic transfer (FPl)

relative to the barotropic (FP2) in the global~ long-term energy fluxes

(Figure l4) can be explained by observing that the region of westward

inertial flow is highly variable in E2 with the consequ~nce that the baro-

clinic instability is intermittent while the barotropic is continuous.

Because of the difficulty of estimating a representative amplitude

-
for the barotropic eddies from the E2 results, the quantitative compari-

son of the LSA energy fluxes to the E2 model results can be made most

easily by the second of our two methods in which the six~box global energy

~Ki + Ki~. The flux ratios

for the LSA eddies have been estimated by an average over the results,

diagram is normalized by the dominant flux

for the barotropic modes from nine separate profiles to give them greater

reliability (Figure 41). By comparison to the full model energetics, we
~p' + K'~

1note that the flux ratio is approximately constant for both~K + K' ~ '
the growing as well as the e~uiliSrium eddy field. This observation

conforms, in a certain sense, to the conclusions of Section VI. i. In

both El and E2, flux ratios lying on or near the primary flux pathway

remain constant throughout the infinitesimal and finite-amplitude eddy

phases. This strengthens our belief in an invariance of some under-

standable sort but the evidence is hardly overwhelming. Thus, though

perhaps somewhat less successful than the prediction attempted in (VI. I),

the results for E2 do clearly show that the component instabilities of a

more complicated equilibrium can be isolated and described. The diffi-

cult and unresolved question is how to put the many LSA modes (Table 4)

back together to form the best prediction of the equilibrium eddy field

(Table 3).
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Figure 41: A mean normlized global energy budget for the
barotropic instabiiities of experiment 2 as
predicted by LSA (average over nine barotropic
modes). The numbers in brackets are the equivalent
flux ratios obtained from the experiment 2 global
energy diagram (Figure l4) by dividing by":K -+ K'::.
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(VI.4) A stability analysis of experiment 2R

The instantaneous north-south velocity profiles collected for analy-

sis from E2R bear many of the features of the E2 sections. A profile

taken 'along the mid-longitude in E2R (Figures 42 and 43) with minor

changes could be a scaled version of the transect studied in (VI. 3) -

Figure 34, the amplitude ratio being about 0.5. We therefore expect the

instabilities of both experiments to have comparable properties. Indeed,

an examination of the E2R profiles reveals the analogue of the quasi-

linear relationship, noted before in E2~ between the growth rate, Re ~

of the barotropic mode and'the local value of horizontal shear in the

mid-latitude jet (Figure 44). Because of the lower overall flow speed,

however, the mean e-folding time for the barotropic instability is now

0(75 days). Physically, this reduced growth rate is translated into a

more quiescent stream which undergoes less meandering and displays less

asymetry between the cyclonic and anticyclonic gyres. The effective- .

ness of the barotropic mode has been so reduced by the weakening of the

current that the baroclinic modes are now equally as energetic as the

barotropic, as opposed to E2 where the barotropic clearly dominated.

The most unstable eigenfunctions associated with the representative E2R

flow profile are shown in Figures 45 (barotropic) and 47 (baroclinic)

and align with the regions of greatest local horiZOntal and vertical

shear respectively. The accompanying energy flux diagrams (Figures 46

and 48) clearly identify the inStabilities as barotropic and baroclinic

in the sense (adopted previously) that the fluxes are dominated by the
,

~ Ki ~ Ki ~ and ~ P ~ p'~ transfers.
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Figure 42: Representative instantaneous fields from experiment 2R.

(a) upper level streamfunction (contour interval
2.4 Sverdrups).

(b) lower level streamfunction (contour interval =
4.0 Sverdrups).
Profile AA' is replotted in Figure 43.
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Figure 43: Profile AA' from experiment 2R, Figure 42.

(a) upper level streamfunc tion (I ~l I =2.l x 108). max
(b) upper level velocity (I ul I = 30.7) .
(c) upper level potential vort~~tty (I qi I =4.0 x iO-5). max
(d) lower level streamfunction(I~31 =3.0 x i07)., max
(e) lower level velocity (I u31 =3.2).
(f) lower5level potential vortï~tty (I q31 =4.0 x lO- ). max
Maximal instability occurs at y = l020 km

(barotropic) and y = 760 km (baroclinic).
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Figure 44: The variation with horzontal shear of the growth rate
of the barotropic- modes observed in experiment 2R.
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Figure 45: The most unstable barotropic mode corresponding to
profile AA', Figures 42 and 43.

(a,c) the complex upper and lower level eigen-
functions (Re~ solid, Im~ dotted).

(b,d) the real part of the unstable eigenfunction
with the x-dependence reintroduced.
Lines have been drawn along, x = 680 km to indicate
the phase relationship between the upper and lower
level eddies.
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i

I

Figure 46: The normlized global energy budget for the growing
perturbations of Figure 45.
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Figure 47: The most unstable baroclinic mode corresponding to
profile AA' Figures 42 and 43.

(a,c) the complex upper and lower level eigen-
functions (Re~ solid, Im~ dotted).

(b,d) the real part of the unstable eigenfunction
with x-dependence reintroduced.
Lines have been drawn along x = 680 km to indicate
the phase relationship between the upper and lower
level eddies.
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Figure 48: The normlized global energy budget for the growing'
perturbations of Figure 47.
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One might argue that E2R has the most complicated equilibrium of all

the primry experiments; although the eddies grow less rapidly than those

in E2, and therefore the eddying is less intense, we now have a situation

where at least two (and possibly three) unstable modes are continuously

active with neither overwhelming the other. Previously, either a baro-

clinic (El) or barotropic (E2) mode completely controlled the global

energetics even though smaller regions of competing instabilities might

have been locally operational. In E2R, both instability processes are

in approximte balance, making the overall energy transfer path (FP3)

more :complex and the mean eddy statistics (Table 4) more difficult to

ascertain. Note, however, one very nice confirmation of the E2R nonlinear

results by the LSA. Recall that the E2R frequency spectrum has signifi-

cant content near not only 64, but also 51, days (Figure 17). The 64-day

periodicity arises directly from the presence of the baroclinic mode

(predicted by LSA to have a 67-day period). There is aiso a smaller but

significant content at a period of l7l days which must be due to the

barotropic mode (predicted period 180 days). Now where could the strong

5l-day oscillation be originating? Almost certainly it results from the

nonlinear coupling of the two primary instabilities which have an

interactive period of 49 days.

Unfortunately, attempts to renormlize and compare the predicted LSA

energy flux ratios with those from the full experiment are not successful;

they fail because now the energy cascade cannot be adequately modelled py

a simple flux pathway. Presumably, a local energetic ~nalysis of the in-

dividual regiqns of instability in E2R would reconfirm (over limited areas)

the invariance of the flux ratios identified in Sections VI. land VI.-3.

.~ .- :::.-..
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(VI.5) Generalized properties of the baroclinic mode

In studying our four primry experiments, certain characteristics of

the unstable modes have become clear, specifically the strong relation-

ship between local velocity shear and the efficiency of the instability

process. But have we learned enough about the conditions under which the

eddies arise to be able to construct analytic profiles with given insta-

bilities? To do so, we first need to know whether other profile features

and environmental parameters affect eddy generation. If we are then

successful in making uns table flows to order, we are also much closer to

generalizing our deductions to the real world.

Consider first the profiles of Figure 49 in which we have construct-

ed a smooth mean flow consisting of two strong internal jets, one east-

ward and the other westward. Now, we perform an experiment by solving

for the unstable modes as a function of maximum jet velocity. As will

~

eme~ge later, the breadth of the jets is such that we are always in the

baroclinic regime so that vertical shear, u , should be the appropriatez

measure of instability. FigUres 50 and 5l show the results of this

baroclinic mode scaling experiment. A gently curving relationship

exists between growth rate, RedÇ and the local maximUI vertical shear.

h

f

The westward flowing jet is always more unstable than the eastward, and

the threshold value for instability occurs for a velocity difference of

5-l0 cm/sec across the thermocline; both observations conform to the

predictions of baroclinic instability theory (Robinson and McWilliams,

1974). However, the systematic variation of the most unstable wave-

number, k , with shear amplitude is in the opposite sense. - decreasingmax ,



l~.
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Figure 49: An idealized mean circulation consisting of two oppositely
directed internal jets of e~ual strength., ' 8
(a) upper level streamfunction (1~1 I ' = 6.0 x 10 ).
(b) upper level velocity (I ul I = ~~~7).
(c) upper5level potential vort~~!ty (I qi i =4.9 x lO- ). max
(d) lower level potential, vorticity (I q314.0 x iO-5). max
The lower level is at rest.
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Figure 50: The variation with vertical shear of the growth rate
of the baroclinic modes associated with the analytic
circulatión of Figure 49.

X unstable modes in the westward flowing jet.
. unstable modes in the eastward flowing jet.
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Figure 51: The variation with vertical shear of the most unstable
wavenumber, k , .associated with the analytic circula-
tion of Figur~a~g.

)C unstable modes in the westward flowing jet.
. unstable modes in the eastward flowing jet.
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with increasing vertical shear (Figure 51) - to that suggested by the

same theories. This conflict, which has not been adequately resolved,

is however the only point of contention between mid-ocean stability

theories and the LSA results.

The quasilinear trend of ~ with Uz is very reminiscent of the cumu-

lative results of El plotted in Figure 2l. This is expected if, as we

suppose~ local amplitude variabilities are primarily responsible for the

time-dependence of the instabilities. An additional experiment confirms

this explanation. Taking an instantaneous velocity profile from El,

i.e., a model-generated rather than an analytic profile, we perform a

simlar scaling experiment and overlay the results onto Figure 21. The

coincidence of the two sets of points justifies our assigning a primary

role to variations in the amplitude of the local shear.

Of course, we hold other potentially important environmental param-

eters fixed during these nonlinear simulations so we have no way of

guaging the sensitivity of the results to other factors. Assume for the

moment, however, that the strategy outlined at the beginning of the

chapter can be used. That, is, let us fix the profiles under considera-

tion and vary the interesting parameters without worrying about the fact

that the profiles ~ if model generated, would themselves depend on the

same parameters. (Alternatively, we could just consider this a

study of the instabllity properties of' generalized current profiles.)

We have done this for the Rossby radius of deformation, Rd, which has

been varied for the idealized jet profile of Figure 49a. 1 The variation

lA systematic study of the effects of frictional parameterization is

underway; the results will be reserved for future elaboration.



200.

in Rea- with Rd is smooth, monotonic, and inverse, with larger growth

rates associated with smaller deformation scales (Figure 52). The wave-

scale of the most unstable eddies is always slightly larger than and

varies linearly with Rd (Figure 53).

The effects of jet structure - including their width and separation -

on the barotlinic mode have also been studied. The results indicate

that over a wide range of values the width of the jet has little effect

on its stability properties so long as the ratio of vertical to horizon-

tal shear remains large. Similarly, a sequence of, jet pairs separated by

succeedingly larger and larger distances (Figures 54 and 55) shows that

a separation of only one or two jet widths (or equivalently one or two

deformtion wavelengths) is sufficient for the eastward and westward

flowing regions to be independent (Figure 56).

~ A last experiment underscores the. sensitivity of the instability

mechanisms to the exact levels of local shear. Figure 57 shows an iso-

lated jet with strong horizontal as well as vertical shear. If the

lower layer is taken to be at rest, the energetics are dominated by the

~ p ~ p' ~ flux (FPl); this is a baroclinic instability in our terminol-
~
~

, r
ogy. Now, consider adding successively to the strength of the lower

layer flow by setting ~3 = a~i and varying a from 0.0 to 1.0, thereby

slowly reducing the vertical but not the horizontal shear. Such a test

shows that setting ~3 to the l5% level completely eliminates the domi-

nance of the baroclinic transfer, yielding a mixed mode (FP3). Adding

30% of ~i to ~3' we have a heavily barotropic transfer (FP2). These

results are sumarized in Figure 58. On the basis of the analytic

profile experiments, then, there is little reason to doubt that the
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Figure 52: The variation with Rd of the growth rate of the
baroclinic modes associated with the analytic
circulation of Figure 49.
~ unstable modes in the westward flowing jet.
. unstable modes in the eastward flowing jet.
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Figure 53:
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The variation with Rd of the most unstable wavenumber ~
k , associated witli the analytic circulation of
F~iire 49.
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Figure 54: A sequence of idealized mean circulations consisting
of two oppositely directed internal jets 6f equal
strength separated by succeedingly greater distances.
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Figure 55: A continuation of the sequence of analytic jets from
Figure 54.
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Figure 56: The variation with jet separation of the baroclinic
modes associated w.ith the analytic circulations of
Figures 54 and 55.

X unstable modes in the westward flowing jet
. unstable modes in the eastward flowing jet
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Figure 57: An idealized mean circulation consisting of a single
eastward jet and a slow uniform westward return flo~.
(a) upper level streamfunction (I~l I = 2.5 x lO ).
(b) upper level velocity (I u1 I~ax = ~~O).
(c) upper level potential vorticity (I qi I =4.0 x iO-5). max
(d) lower level potential vorticity (I q I =5' 3max4.0 x lO- ).
The lower level is at rest.

2ll.
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Figure 58: The variation with the strength of the lower layer
circulation, ~3/~l' of the energy flux ratio

~ Ki ~ Ki i ~ + ~ K3 ~ K3 i ~

~ P ~ p' ~

for the unstable mode corresponding to Figure 57.
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baroclinic instabilities, though rather insensitive to certain features

of the jets such as width and separation, depend critically on the local

ratio of horizontal to vertical shear. The transition from a baroclinic

to a barotropic instability can therefore be quite rapid if we use as a

measure the accuracy with which we can make velocity measurements in the

field.
-.-:-.~"
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(VI. 6) Generalized properties of the barotropic mode

As indicated in the previous section, a jet with a sufficiently

intense horizontal velocity gradient will be barotropically unstable.

Such a current is shown in Figure 59; we have made it very narrow to

insure the predominance of the barotropic over the baroclinic instabil-

ity mechanism. Using this ~~7alized jet profile in a scaling experiment

similar to that conducted for the baroclinic mode, LSA yields the

variation of Reöíwith horizontal shear. The trend is once again quasi-

, -6-llinear (Figure 60) with a threshold value of approximately 2 x 10 sec.

This scaling behavior roughly explains the observed distribution of crR

versus I uly I in E2 (Figure 32) and E2R (Figure 44). However, as

opposed to the baroclinic modes of El, the time-dependence of the solu-

tions clearly involves more than just amplitude changes. This is indi-

cated not only by the scatter in the correlation between growth rate and

horizontal shear but by the fact that the linear regressions from three

complementary experiments have slightly different slopes and intercepts

(Figure 32, 44, and 60). Perhaps barotropic activity is a function of

some higher order profile feature? Without further tests, we have no

indication what this additional dependence might be. It is known, how-

ever, that, as opposed to the strong role of the radius of deformation

in determining the vigorousness of a baroclinic mode, R d seems to have

only a slight effect on the growth rate and wavenumber characteristics

of the barotropic eddies. This suggests that the missing functional de-

pendence might involve velocity profile features that we have not as yet

considered.



.._-':...._,.

Figure 59: An idealized mean circulation consisting of a single
eastward jet and a slow uniform westward return flow.

(a) upper level streamfunction (I iJi I =2.7 x 108). max
(b) upper level velocity (I ul I = 62.7).
(c) uppeE5level potential vort~tty (I qi Imax =
4.6 x lO )'.
(d) lower 5level potential vorticity (I q31max =
4.0 x lO- ).
The lower level is at rest.
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Figure 60: The variation witn horizontal shear of the growth rate
of the barotropic mode associated with the analytic
circulation of Figure 59.
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(VII) Conclusions

We have described two numerical procedures for simulating quasi-

geostrophic mesoscale eddies under a variety of conditions. The first,

a global nonlinear model~ uses a pseudospectral technique whose accuracy,

efficiency and resolution make it well suited to the study of boundary

layer phenomena of which thes~ highly asymetric beta-plane flows are an

example. The application of this formulation was to an investigation of

the effects on the mid-ocean equilibrium circulation of variations in

western boundary layer structure; two pair of primary simulations,

including both single and double-gyred mean flows, were conducted in this,

context. Second, in an attempt to explore the local. dynamic processes at

work in eddy generation regions, a quasisteady linear stability theory

was advanced and used to interpret the simulated eddy statistics on the

basis of mean and instantaneous velocity profiles.
.

We will not dwell at length on the primary conclusions of the

previous chapters; they were

(i) the closed basin Chebyshev-sine model can be made at least
as accurate and efficient as other current finite-difference
two-layer box models though it has a definite superiority in
its resolution of boundary layer processes and adaptability
to rather arbitrary boundary conditions;

(i1) in the-absence of t-o-raphy, ne~n-euREaås tend
to promote a more efficient diffusion of vorticity than free-
slip walls; they thus affect the quantitative, though not the
qualitative, properties of the interior flow field;

(iii) a linear stability analysis (LSA) can, in most cases, accur-
ately reproduce the statistics of the equilibrium eddy field
given pairs of one-dimensional velocity profiles;

(iv) the LSA has an advantage over global analysis techniques in
that it yields accurate information on the local dynamics of
the eddies; thus, relatively less unstable regions that may
be masked in the global statistics can be explored via LSA;
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(v) the growth rates of the individual barotropic and baroclinic
modes scale directly with the local magnitude of the hori-
zontal and vertical shears respectively;

(yi) the immediate effect of infinitesimal eddies on the mean
flow is to reduce the horizontal and vertical shear fields
whose extreme values originally induce the instabilities;
the finite-amplitude modification of the mean flow by the
eddies - that is, ~K +K' ~ ~~ 0 - is not predicted by the LSA;

(vii) in the presence of barotropic disturbances, horizontal shears,
and consequently the existence of unstable modes, can be
severely underestimated on the basis of mean velocity pro-
files; instantaneous velocity records, although unaveraged in
time and therefore not quasisteady as required by the theory,
are barotropically unstable to linear perturbations which bear
some resemblance to the eddies of the nonlinear double-gyred
experiment;

(viii) very small relative errors of O(LO%) in the measurement of
vertical and horizontal shears can lead to completely errone-
ous predictions as to the existence and type of instability
operative in a local region; and

(ix) the general properties of the baroclinic modes - phase rela-
tionships, parameteric dependencies ~ and spatial characteris-
tics - conform in most cases to the predictions of mid-ocean
baroclinic stability theory.

Many of these points can be sumrized very nicely in one scatter dia-

gram - Figure 61 - in which all the unstable modes we have calculated

from all of the four primary experiments (El, ElR~ E2, E2R) are plotted

as a function of Uz and IU1yl. The corresponding instabilit!es, deduced

via LSA, are cla~sified as either barotropic, baroclinic or mixed and

are each represented by a different symbol. The resulting dependence of

the instabilities on the ratio of horizontal to vertical shear is

obvious; the Uz - IUiyl half-infinite plane can be divided into three

distinct regions: one region of stability, and two of barotropic and

baroclinicactivity. The transition from one to another of these regions

can be quite abrupt as was verified using a sequence of analytic profiles
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Figure 61: A scatter diagram of the barotropic and baroclinic
instabilities observed in the four primary experiments
as a function of local horizontal and vertical shear
strengths.
)( barotropic modes
o baroclinic modes
A mixed modes

..
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(Figure 62) whose horizontal to vertical shear ratio passes from the

predicted barotropically to the baroclinically unstable region of Figure

61. The LSA was applied to this series of profiles to ascertaln exactly

what type(s) of energy transfer predominated, either FPI (baroclinic

instability), FP2 (barotropic instability), or FP3 (mixed instability).

The seven points determined in this way have been added to Figure 6l;

',.. -4 -i
they lie along (u) = l.25 x lO sec and again reestablish thez'max

existence of a very rapid transition from barotropic to baroclinic

instability.

Of course, other important parameters have been held invariant

during our four simulations. The scatter diagram of Figure 6l represents,

therefore, only one two-dimensional slice through a many-dimensioned

space of parameters; under other conditions, quite different behavior can

be expected. Hart (l974), for instance, has pointed out the dependence, .ç:lL:l
of the mixed instability problem on the eddy Froude number (F = 0 e )K e N~~
and the layer depth ratio ( ~': Yll3) in a two-layer quasigeostrophic

model on an f-plane. For sufficiently small ~mand mQdera.teT,meane

current distributions representative of an isolated eddy embedded in the

mid-ocean can be stabilized. For our experiments, F ~ 1 and S = 0.25.e

According to Hart ~ these conditions allow a wide range of unstable

behavior which depends on the width of the shear zone. Our simulations,

in which the ratio, of vertical to horizontal shear varies, support this

conclusion. As in related contexts (see Owens, 1975, for instance),

therefore, the mesoscale eddies are characterized by a competition

between many physical processes. Even under the very modest range of.

flow structures and strengths studied in our experiments, a variety of
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Figure 62: Representative profiles taken from a sequence of analytic
single-jet circulations whose horizontal to vertical shear
ratio passes from the predicted barotropically to the
baroclinica1ly unstable region of Figure 6l.
(a,c) the most barotropically active streamsunction and

velocity profiles (I~ll = 2.7 x 10 ,

lUll ,= 62.7). max
(b,d) the Æ3gt baroclinically active stre~unction and

velocity profiles (I~ll = 3.8 x lO ,

I ul I = 62. 7) . max
Th L Lmax.e ower ayer is at rest.
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instabilities are evident. As Hart pointed out, the ocean's eddy field

seems to occupy a unique position in the space of available nondimension-

al paraneters~ lying very near the "triple point" where the stable, and

barotropically and baroclinically unstable regions coincide.

The last conclusion to be drawn from Figure 6l concerns the condi-

tions necessary for instability. On the one hand, approximately a 5 cm

sec -l velocity difference across the thermocline can lead to vigorous

baroclinic activity in the two-level model; this corresponds to an ampli-

tude of 2-3 em sec -l for the first baroclinic mode in an equivalent

two-mode dynamical model (Flierl, 1975a). Persistent vertical shears in

the mid-ocean probably do not reach this level and, indeed, there is no

strong evidence for baroclinic instability in either the Polygon or MODE

field results (McWilliam and Robinson, 1974; McWilliams, 1975). On the

~ other hand, a horizontal shear greater- than 2-3 x iO-6 sec -i seems to be

~large enough to promote barotropic instabilities. This value is equiva-

-l
lent to a 12.5 cm sec velocity gradient over a horizontal distance of

50 kI. Such relatively small shears are certainly attained instantane-

ously, if not in the mean, in the Gulf Stream (Robinson, Luyten, and

Fuglister, 1974). These numerical experiments therefore support the

contention, long held by observationalists, that intense current systems

such as the Gulf Stream or the North Equatorial Current, and not the

mid-ocean, are the primary sites of eddy generation and growth.
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Appendix A - Fast sine/cosine transforms

The implementation of spectral methods depends primrily on the

ability to construct efficient spectral transform routines. In the' pre-

sent applications, the variable fields can be expanded in a discrete

Fourier series. However, we have even more' information about these

fields; not only are they real, ,but they must be either odd or even func-

tions (see section III.L). Armed with these extra bits of informtion,

conventional discrete fast Fourier transforms can be modified to provide

even more efficient transform programs. A gain in execution time of

four can be achieved.

(A. l) FFST

Following Orszag (l97la), let us consider a string of (N+I) uniform-

ly spaced points, a (0" n " N), such thatn - -
(i)

*
(a.l)a = a (a real)n n n

(ii) a = ~-n (a antisymetric) (a.2)n n

and (iii) a - ~ - 0- -.
0

The Fourier transform of such a series must be conjugate-symetric, that

is, for 0 " j 2 N-l,

(iv) A.
J

*= ~-j (a. 3)

where the discrete transform

A. -
.J

N~
flCO

..rtl' i / N
0. e.

'"

.
o ~ J ~ N-I .
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I) co

I
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(a.4)

In addition, from (a.l) and (a.2),

~.. ::" - t a~1' ("'~n+i- Q.~,,-,)
-- c. a. N-:lr,

ÐM_n .

+(~ -C\ )N- R"-, "'-cR" + i
=



231.

The conjugate symetry of b suggests that we set

( L \ c:"in IN ( )en = in ~ 1)K+W¡) + L e. bri- -bic+1' o ~ n ~ K-I
K~ N/'l

from which, for 0 ~ j ~ K-l,

C. - ~ (b + b '\ l.."~ (2.j)" /f" . l; (l _ b ) 'e.2.1TC: C~+')nJMJ lro" f(l-), e. + c. ~o Dn K+ti

:I f ~ b e. ÒT'i;('ljhl/M + ~' b :'7f~(Clj)..JI'11'-0 n "Coil h

+ ~ r ~ b e&~(ó?.i+,)"/M+ ~' -b e, l.i. (';j+-,)n/M J1)=0 ri 1'irK. ..
(:J ,':- 'j

::
ßo1j + t ß~+, ·

(a.5)

In other words ~ the N-point transform A. can be obtained from the
J

K (=N/4) point ,transform C. and the relations (a.3), (a.4), and (a.5).
J

(A.2) FFCT

Simlarly, consider a set of (N+l) points a such that
n

(i) a = a (a real)n n n
*

(ii) a = A (a symetric)n n-n n

and, as before, for o .0 j ~ N- 1 ,

(iii) *
(a.6)A. = ~-j.J

Then, let hn -
Cl.in + ¡ ( Gt 02ri+,- Cloin-i) o~ n~ M-t-

M -= N/öi

from which, by considerations of symetry~
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and A¡: HII,j+BM-jl + 1,,¡~(,,¡) r B¡ - 8M-J. (a.7)

Since the b field is once again conjugate-symetric, define

c." ~
. ~Ln/N )

( -bn + b"l'n)'" L t ( lbl\- -bl(-l'
..-...,..-.

whence t è. c
.¡

Bcïj T t ß ~J+J · (a.8)

The results (a.7) and (a.8) may be obtained by retracing the steps of

section (A. l) . The N-point cosine transform A. can again be retrieved
J

from the K-point discrete Fourier transform of the array c (0 ~ n ~ K-l)n

via equations (a.6), (a.7), and (a.8).
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Appendix B - Some properties of Chebyshev series

Consider the one-dimensional discrete Chebyshev expansion

A (x) -

N
L ~ T (x)n&o '" '"

-I ~ II ~ + I (b. l)

where 1; ()c) :: T (COs 9) : CoS (V)~)"

.._,.....,...

and A(x) is some unspecified scalar function. Then the series expansions

for the first and second derivatives of A(x) are given by

N N
etA i

¿ Cl~ -r ()e)= Abc) =
¿: C\ l' C)()

-=

ë1 nco n=.

c: '!
AI n N "

and
;¡ 8l

= AH(x) = L 0. -ç ex) = L G\ ~(x)
1)'1. 1)1:0

where Ni :l ~Cln :: ra.fc.
P=Ð+1p+ od

1/ I
/I

an = - z: (p.t_'1~) a.en
P:f)+Óil f
P+" ~"en

and C :.Ól c. = l (n::o).o ~ .,

(b.2)

(b . 3)

These relations can be expressed more compac tly as

( ~t1 ) a..,
i ,

(b . 4 ):: C"_ia.,,.i ct ft+ I

( c?n)
, 1/ "and q,,, : Cn_i ctri-i Gt"i-' . (b . 5 )
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By considering (b. I) and (b. 2), one can also show that the Chebyshev

series has the following properties:

A ()Co: 1:1) - 0

and

-b
1J

2: ct., =
":0

" ocl

N

~ Gl-O,,~o "
" c"cn

~ AJ

dA -= z: i L. ,
(x,: :t , ) =- 0 a.n :: a." ': '0

d)L - --._,:..~..,_. .,=0 n=o
n od n oen

,. ~ /IL;t -~ n D. c h~- o.nn=o
n ocl c( n e.C-

or

(b . 6 )

(b. 7)

These are the equivalent series statements of the analytic boundary

conditions adopted in Chapter III.
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Appendix C - A modified Adams-Bashforth method

Consider the partial differential equation , '

~ - A+ß.J (c.l)

where .l = '1(x,y, t) is some scalar function. In analogy to our quasigeo-

strophic vorticity equation~7,..we may think of t' as representing poten-

tial vorticity. It is convenient to consider the right-hand side of (c.1)

as including two expressions, A and B, the former containing the advective

and forcing effects and the latter the diffusive terms. Now, for consid-

erations of viscous stability as well as those numerical constraints

mentioned in Chapter III, we wlsh to treat B semi-implicitly.' By modify-

ing the traditional Adams-Bashforth approximation, we therefore derive

the following appropriate scheme
..

i ~~I;. ('/:. + (~) 13L+l + (3:-t)o4 k + C:)( (jl: A k-'). (c.2)

As usual, verification of (c.2) follows directly from a Taylor series

expansion of the A and B terms; thus,

".. ,
vik + (~) r B+ At ~ + O(~ol)ili + C~:) A ki -

+
(f) f 6 -A.. At ~ + o 

(Âto1) J "

::
i Ie ..

.& tA-t6) + ~ (~A '" 8 ) + Ot.c 3)ól .. + dt
k (!.)" .lo1 ( .t ) k

OCht 3).- i+M.~ + ~ ~:t -l

from which the second-order validity of the modified Adams-Bashforth

method is established.
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Appendix D - Constructing pseudospectral analogues of Arakawa
conservative schemes

In many applications, it is considered advantageous for the discre-

tized version of the nonlinear equations to retain some of the conserva-

tive properties they have in their contniuous form. In particular, the

discrete representation of the advective terms must have rather specific
.. '.". ~.-

integral properties if conservation is to be maintained. A variety of

possible finite-difference formulations which conserve some or all of the

quadratic moments was originally noted by Arakawa (1966). As we now show,

the extension of these results to the pseudospectral or spectral approxi-

mation is quite trivial. Consider, for instance, the energy-conserving,

second-order finite-difference representation of the Jacobian term:

-;i~i (. ~ ~) :
I '

;¡ct.,I-~. .(ti. . -q. .)+ 'S. .('l. . _,I .)T "' i.1 l t+I" ,\+1 "+l~J-1 &'-'.1 J "-'JJ+I Y~-Ii J-'

+ ~.. (if. . -?/. ) - ~ (¥ - 'l ) 1
'...\+1 &.+'1 )+1 C-~J+-I i; i-i ':+~å-I i-i, j-i

.. r- p J. ( + I? .I" \ + (; .¡il \ - i? ~ I 1 ~),Jd ~ J"l \+1. ~.J'l. -I . \.,I(.. .) "he .. -t OCd.. il oJ "i) c.,.j' &...'

I J r Jill .) ( .iil 1 L a
i ~)( r ,,~ - .J~ f ~ l t",j + 0 Cd ).

Recasting the expression into its equivalent derivative forms shows that

the Arakawa second-order, energy-conserving scheme involves nothing more

than setting

J". . C¥. ~) ::""~ ' v. . . ( -t IT)..,~ .. (d.l)

that is, using the well known conservative representation of the
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advective terms. Now the analogous pseudospectral energy-conserving

approximtion follows immediately; it consists of making the identical

assumption (d. I) although now the relative error in the calculation of

the Jacobian term is of course much reduced in the pseudospectra1

approxim tion.

The conservative properties of representation (d. I) follow from the

fact that the corresponding" flux term in the energy equation can be

integrated by parts; thus,

Sf i¡ ¡Cliff) c:hccl'1r = r ¡ z¡ d~ r~~~i- 2f -J~ r r~J f q)( "1
%

: rr (~fllr/ifi- ~J'lJ¥ _ ~ rvrJ1/1 ~,J!lJj 2 d)(JrJlc di ~ ~~ .l~ l' 01)( + d~ oJJC ~ ~
~

(d.2)

= ~ LtJ '¡f~; 1 -;~ í 'if'§ J l d. "1

:: 0

where r is the boundary of our closed domain through which no mass or

energy transport is allowed. We therefore see that the requirement of

energy conservation is satisfied by assuming (d. I) only if our discrete

formulation maintains the property of being integrable by parts so that

the advective energy flux terms can be identically cast, into the form

of a global divergence (which clearly sums out in the appropriate manner).

The pseudospectral technique does, in fact, have the required property.

To prove this, it is sufficient to show that, in general,

1'-1

~o jx ( ~ri ci~) :

"'-1

~
n=o ( ~.f", a + of ~) =- 00:)( ~t' " "¡x . (d.3)
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For instance, choose a generalized Fourier expansion for the functions

f and g :n n 1(-1 ipKl'
(' ': ~ ip e.
"In

t'=-K.
and K tq)(~

~n: ;;-ic ~t e. 0

Then, Jfn =:

~x

1(-1', "
2: .. l. -S e. '-p'Kn

t-=-K. P p

and ~~n w:
oJ )(

K-' t1, )( n
~ \.i C\ e.
t-=-II ~ t

O~t"!:N-1
1(-: N/~

)(" = o? / N

(d.4)

so that
A)-I

~ j; (f.. ~n) =r)CO '" .,

l.-'
z: (~., C\ 1- of ~~).1)( ~l1 n ." x.
I)CO

(d.5)

N-I 1(-, K-/ ." (f7XVl
- ¿ 2: ¿: '- (1)C;) .fpq, e .
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Note, however, that

N-'

z:
"CO

¿ Cp1qJ x"

e '\ ~
~ :

Cp+t =F 0

(P-l1) :. 0

mc: N

vrod N .

Hence, contributions to the sumation (d.5) can occur only for p = q = -K.

In order ,to obtain the cancellation required by (d.3), we must modify the

derivative rela tions (d. 4) to become

J2n
,1(-,

. f I.rX"= 2-
..X

P ':-k+ J

Lr ,.e
(d.6)

and ~ tc-, "tXn
'; 2. \.i j e. '

~l,, i=-K-I t
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from which integration by parts and our conservative properties are

insured. Relations (d.6) therefore define the appropriate method for

taking derivatives in the pseudospectral approximation.

'This derivation only holds for a set of expansion functions - like

the Fourier series - which are orthonormal with respect to a unit weight

function over the interval under consideration. (Therefore, this result

applies equally well to a sumation of sine modes or Legendre poly-

nomials.) However, the Chebyshev series adopted in Chapter III does

not satisfy this orthogonality condition; its weight function -
-1/2

vex) = (i-x2) -is quite different. Consequently, if we let

N,
of" - ~ f T (Xn )-

fC. r t
X on = CoS ( r; )

N
and :jn - - T- 2. ~i i ()(n)

\=0

then

N
~ ( cllr\~" + fn ~'" )
r)l:o oJ)l ..IC

N ~ ~
= r L ( it'~' +f.r~;) L I:pCx.. rr;( X'r\)

roo i: 0 b 0" ""0 ..

which cannot in general sum to zero for any arbitrary fields f and g .n n
Indeed, this is the price we must pay for the convenience~ efficiency,

and increased boundary layer resolution of the Chebyshev transform

method. It is operationally possible to guarantee strict conservation

even with a Chebyshev series if one is wilting to modify some of the

higher order dynamic equations as was done in (III. 3) to sat isfy the
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boundary conditions. However, tests have shown that the nonconservation

associated with the Chebyshev series technique rarely exceeds one part

5
in 10 for well behaved fields such as those of the primary experiments.

This error is relatively much less than the errors arising from the

physical and numerical approximations of Chaptèrs II and III and can be

saf ely ignored.
-._~~
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