30 research outputs found

    The nature of assembly bias - III. Observational properties

    Full text link
    We analyse galaxies in groups in the Sloan Digital Sky Survey (SDSS) and find a weak but significant assembly-type bias, where old central galaxies have a higher clustering amplitude (61 ±\pm 9 per cent) at scales > 1 Mpc than young central galaxies of equal host halo mass (Mh∌1011.8h−1M_{h} \sim 10^{11.8} h^{-1} M⊙M_{\odot}). The observational sample is volume-limited out to z=0.1 with Mr−M_r - 5 log(h)≀−19.6(h) \le -19.6. We construct a mock catalogue of galaxies that shows a similar signal of assembly bias (46 ±\pm 9 per cent) at the same halo mass. We then adapt the model presented by Lacerna & Padilla (Paper I) to redefine the overdensity peak height, which traces the assembly bias such that galaxies in equal density peaks show the same clustering regardless of their stellar age, but this time using observational features such as a flux limit. The proxy for peak height, which is proposed as a better alternative than the virial mass, consists in the total mass given by the mass of neighbour host haloes in cylinders centred at each central galaxy. The radius of the cylinder is parametrized as a function of stellar age and virial mass. The best-fitting set of parameters that make the assembly bias signal lower than 5−-15 per cent for both SDSS and mock central galaxies are similar. The idea behind the parametrization is not to minimize the bias, but it is to use this method to understand the physical features that produce the assembly bias effect. Even though the tracers of the density field used here differ significantly from those used in paper I, our analysis of the simulated catalogue indicates that the different tracers produce correlated proxies, and therefore the reason behind this assembly bias is the crowding of peaks in both simulations and the SDSS.Comment: 12 pages, 11 figures. Accepted for publication in MNRA

    Spatial organization acts on cell signaling: how physical force contributes to the development of cancer

    Get PDF
    Cells constantly encounter physical forces and respond to neighbors and circulating factors by triggering intracellular signaling cascades that in turn affect their behavior. The mechanisms by which cells transduce mechanical signals to downstream biochemical changes are not well understood. In their work, Salaita and coworkers show that the spatial organization of cell surface receptors is crucial for mechanotransduction. Consequently, force modulation that disrupts the mechanochemical coupling may represent a critical step in cancerogenesis

    The quijote simulations

    Get PDF
    The Quijote simulations are a set of 44,100 full N-body simulations spanning more than 7000 cosmological models in the hyperplane. At a single redshift, the simulations contain more than 8.5 trillion particles over a combined volume of 44,100 each simulation follows the evolution of 2563, 5123, or 10243 particles in a box of 1 h -1 Gpc length. Billions of dark matter halos and cosmic voids have been identified in the simulations, whose runs required more than 35 million core hours. The Quijote simulations have been designed for two main purposes: (1) to quantify the information content on cosmological observables and (2) to provide enough data to train machine-learning algorithms. In this paper, we describe the simulations and show a few of their applications. We also release the petabyte of data generated, comprising hundreds of thousands of simulation snapshots at multiple redshifts; halo and void catalogs; and millions of summary statistics, such as power spectra, bispectra, correlation functions, marked power spectra, and estimated probability density functions

    Inflation and Dark Energy from spectroscopy at z > 2

    Get PDF

    Ramucirumab plus docetaxel versus placebo plus docetaxel in patients with locally advanced or metastatic urothelial carcinoma after platinum-based therapy (RANGE): a randomised, double-blind, phase 3 trial

    Get PDF
    Few treatments with a distinct mechanism of action are available for patients with platinum-refractory advanced or metastatic urothelial carcinoma. We assessed the efficacy and safety of treatment with docetaxel plus either ramucirumab-a human IgG1 VEGFR-2 antagonist-or placebo in this patient population

    Higher order initial conditions for mixed baryon–CDM simulations

    No full text
    International audienceWe present a novel approach to generate higher order initial conditions (ICs) for cosmological simulations that take into account the distinct evolution of baryons and dark matter. We focus on the numerical implementation and the validation of its performance, based on both collisionless N-body simulations and full hydrodynamic Eulerian and Lagrangian simulations. We improve in various ways over previous approaches that were limited to first-order Lagrangian perturbation theory (LPT). Specifically, we (1) generalize nth-order LPT to multifluid systems, allowing 2LPT or 3LPT ICs for two-fluid simulations, (2) employ a novel propagator perturbation theory to set up ICs for Eulerian codes that are fully consistent with 1LPT or 2LPT, (3) demonstrate that our ICs resolve previous problems of two-fluid simulations by using variations in particle masses that eliminate spurious deviations from expected perturbative results, (4) show that the improvements achieved by going to higher order PT are comparable to those seen for single-fluid ICs, and (5) demonstrate the excellent (i.e. few per cent level) agreement between Eulerian and Lagrangian simulations, once high-quality initial conditions are used. The rigorous development of the underlying perturbation theory is presented in a companion paper. All presented algorithms are implemented in the monofonic music-2 package that we make publicly available

    Cosmological perturbations for two cold fluids in ΛCDM

    No full text
    International audienceThe cosmic large-scale structure of our Universe is comprised of baryons and cold dark matter (CDM). Yet it is customary to treat these two components as a combined single-matter fluid with vanishing pressure, which is justified only for sufficiently large scales and late times. Here, we go beyond the single-fluid approximation and develop the perturbation theory for two gravitationally coupled fluids while still assuming vanishing pressure. We mostly focus on perturbative expansions in powers of D (or D_+), the linear structure growth of matter in a ΛCDM Universe with cosmological constant Λ. We derive in particular (1) explicit recursion relations for the two fluid densities, (2) complementary all-order results in the Lagrangian-coordinates approach, as well as (3) the associated component wavefunctions in a semiclassical approach to cosmic large-scale structure. In our companion paper, we apply these new theoretical results to generate novel higher order initial conditions for cosmological hydrodynamical simulations

    Semiclassical path to cosmic large-scale structure

    No full text
    International audienceWe chart a path toward solving for the nonlinear gravitational dynamics of cold dark matter by relying on a semiclassical description using the propagator. The evolution of the propagator is given by a Schrödinger equation, where the small parameter ℏ acts as a softening scale that regulates singularities at shell-crossing. The leading-order propagator, called free propagator, is the semiclassical equivalent of the Zel’dovich approximation, that describes inertial particle motion along straight trajectories. At next-to-leading order, we solve for the propagator perturbatively and obtain, in the classical limit the displacement field from second-order Lagrangian perturbation theory (LPT). The associated velocity naturally includes an additional term that would be considered as third order in LPT. We show that this term is actually needed to preserve the underlying Hamiltonian structure, and ignoring it could lead to the spurious excitation of vorticity in certain implementations of second-order LPT. We show that for sufficiently small ℏ the corresponding propagator solutions closely resemble LPT, with the additions that spurious vorticity is avoided and the dynamics at shell-crossing is regularized. Our analytical results possess a symplectic structure that allows us to advance numerical schemes for the large-scale structure. For times shortly after shell-crossing, we explore the generation of vorticity, which in our method does not involve any explicit multistream averaging, but instead arises naturally as a conserved topological charge

    Two is better than one : joint statistics of density and velocity in concentric spheres as a cosmological probe

    No full text
    The analytical formalism to obtain the probability distribution functions (PDFs) of spherically-averaged cosmic densities and velocity divergences in the mildly non-linear regime is presented. A large-deviation principle is applied to those cosmic fields assuming their most likely dynamics in spheres is set by the spherical collapse model. We validate our analytical results using state-of-the-art dark matter simulations with a phase-space resolved velocity field finding a 2% percent level agreement for a wide range of velocity divergences and densities in the mildly nonlinear regime (~10Mpc/h at redshift zero), usually inaccessible to perturbation theory. From the joint PDF of densities and velocity divergences measured in two concentric spheres, we extract with the same accuracy velocity profiles and conditional velocity PDF subject to a given over/under-density which are of interest to understand the non-linear evolution of velocity flows. Both PDFs are used to build a simple but accurate maximum likelihood estimators for the redshift evolution of the variance of both the density and velocity divergence fields, which have smaller relative errors than their sample variances when non-linearities appear. Given the dependence of the velocity divergence on the growth rate, there is a significant gain in using the full knowledge of both PDFs to derive constraints on the equation of state of dark energy. Thanks to the insensitivity of the velocity divergence to bias, its PDF can be used to obtain unbiased constraints on the growth of structures (σ8\sigma_8,f) or it can be combined with the galaxy density PDF to extract bias parameters
    corecore