7 research outputs found

    Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch

    Get PDF
    Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.Peer reviewe

    From the Arctic Circle to the Canadian prairies - a case study of silver birch acclimation capacity

    Get PDF
    Earlier provenance research has indicated poor success even in short distance transfers (&gt; 2–3° latitude) of silver birch (Betula pendula Roth) southward from their origin. These results may indicate poor adaptability of silver birch to a warming climate. Some of the scenarios for a warming climate in Finland suggest effective heat sums are likely to double in the north and increase 1.5 fold in the south for the period of 2070–2099. Consequently, the outlook for silver birch appears bleak. To study the acclimation of birch to this projected change we established a provenance trial in northeastern Alberta, Canada, at the temperature area currently predicted for Central Finland (lat. 64–66°N) at the turn of this century (1400 dd). Our 10-year experiment showed that all the Finnish provenances (origins 61–67°N) have acclimated well to the warmer growth conditions experienced in Alberta at 54°N. These results suggest that silver birch has the potential to acclimate to thermal conditions predicted for Finland at the end of the 21st century. Our results also indicate that silver birch has the potential as a plantation species in Canada, where the Finnish birch grew faster in the boreal forest region of Canada than local paper birch (Betula papyrifera Marsh.) provenances.</ja:p

    Tree architecture: A strigolactone-deficient mutant reveals a connection between branching order and auxin gradient along the tree stem

    Get PDF
    Due to their long lifespan, trees and bushes develop higher order of branches in a perennial manner. In contrast to a tall tree, with a clearly defined main stem and branching order, a bush is shorter and has a less apparent main stem and branching pattern. To address the developmental basis of these two forms, we studied several naturally occurring architectural variants in silver birch (Betula pendula). Using a candidate gene approach, we identified a bushy kanttarelli variant with a loss-of-function mutation in the BpMAX1 gene required for strigolactone (SL) biosynthesis. While kanttarelli is shorter than the wild type (WT), it has the same number of primary branches, whereas the number of secondary branches is increased, contributing to its bush-like phenotype. To confirm that the identified mutation was responsible for the phenotype, we phenocopied kanttarelli in transgenic BpMAX1::RNAi birch lines. SL profiling confirmed that both kanttarelli and the transgenic lines produced very limited amounts of SL. Interestingly, the auxin (IAA) distribution along the main stem differed between WT and BpMAX1::RNAi. In the WT, the auxin concentration formed a gradient, being higher in the uppermost internodes and decreasing toward the basal part of the stem, whereas in the transgenic line, this gradient was not observed. Through modeling, we showed that the different IAA distribution patterns may result from the difference in the number of higher-order branches and plant height. Future studies will determine whether the IAA gradient itself regulates aspects of plant architecture.Peer reviewe

    Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch

    No full text
    Abstract Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A

    Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch

    No full text
    corecore