27 research outputs found

    pH-Sensitive nanoparticles containing 5-fluorouracil and leucovorin as an improved anti-cancer option for colon cancer

    Get PDF
    Parenteral administration of chemotherapeutic drugs, 5-fluorouracil (5-FU) and leucovorin (LV), is commonly used to treat large bowel carcinomas such as colon cancer (CC) and colorectal carcinoma (CRC). Our study aims to design a novel nanoparticulate drug-delivery vehicle for oral use capable of colon-specific release. A modified double-emulsion solvent evaporation method was used in the preparation of pH-responsive Eudargit S100 polymeric nanoparticles, loaded with 5-FU/LV combination (5-FU/LV-loaded Eudargit S100 NPs). Our optimized drug-loaded NP showed a pH-responsive drug release and exhibited significantly more cytotoxic actions in cancer-cell lines than free drugs. These findings open the way for conducting clinical trials for colon malignancies treated with nanoparticles

    pH-sensitive nanoparticles containing 5-fluorouracil and leucovorin as an improved anti-cancer option for colon cancer.

    Get PDF
    Parenteral administration of chemotherapeutic drugs, 5-fluorouracil (5-FU) and leucovorin (LV), is commonly used to treat large bowel carcinomas such as colon cancer (CC) and colorectal carcinoma (CRC). Our study aims to design a novel nanoparticulate drug-delivery vehicle for oral use capable of colon-specific release. A modified double-emulsion solvent evaporation method was used in the preparation of pH-responsive Eudargit S100 polymeric nanoparticles, loaded with 5-FU/LV combination (5-FU/LV-loaded Eudargit S100 NPs). Our optimized drug-loaded NP showed a pH-responsive drug release and exhibited significantly more cytotoxic actions in cancer-cell lines than free drugs. These findings open the way for conducting clinical trials for colon malignancies treated with nanoparticles

    Nano-encapsulation of a novel anti-Ran-GTPase peptide for blockade of regulator of chromosome condensation (RCC1) function in MDA-MB-231 breast cancer cells

    Get PDF
    Ran is a small ras-related GTPase and is highly expressed in aggressive breast carcinoma. Overexpression induces malignant transformation and drives metastatic growth. We have designed a novel series of anti-Ran-GTPase peptides, which prevents Ran hydrolysis and activation, and although they display effectiveness in silico, peptide activity is suboptimal in vitro due to reduced bioavailability and poor delivery. To overcome this drawback, we delivered an anti-Ran-GTPase peptide using encapsulation in PLGA-based nanoparticles (NP). Formulation variables within a double emulsion solvent evaporation technique were controlled to optimise physicochemical properties. NP were spherical and negatively charged with a mean diameter of 182ā€“277 nm. Peptide integrity and stability were maintained after encapsulation and release kinetics followed a sustained profile. We were interested in the relationship between cellular uptake and poly(ethylene glycol) (PEG) in the NP matrix, with results showing enhanced in vitro uptake with increasing PEG content. Peptide-loaded, pegylated (10% PEG)-PLGA NP induced significant cytotoxic and apoptotic effects in MDA-MB-231 breast cancer cells, with no evidence of similar effects in cells pulsed with free peptide. Western blot analysis showed that encapsulated peptide interfered with the proposed signal transduction pathway of the Ran gene. Our novel blockade peptide prevented Ran activation by blockage of regulator of chromosome condensation 1 (RCC1) following peptide release directly in the cytoplasm once endocytosis of the peptide-loaded nanoparticle has occurred. RCC1 blockage was effective only when a nanoparticulate delivery approach was adopted

    Preparation and in vivo evaluation of insulin-loaded biodegradable nanoparticles prepared from diblock copolymers of PLGA and PEG

    Get PDF
    The aim of this study was to design a controlled release vehicle for insulin to preserve its stability and biological activity during fabrication and release. A modified, double emulsion, solvent evaporation, technique using homogenisation force optimised entrapment efficiency of insulin into biodegradable nanoparticles (NP) prepared from poly (dl-lactic-co-glycolic acid) (PLGA) and its PEGylated diblock copolymers. Formulation parameters (type of polymer and its concentration, stabiliser concentration and volume of internal aqueous phase) and physicochemical characteristics (size, zeta potential, encapsulation efficiency, in vitro release profiles and in vitro stability) were investigated. In vivo insulin sensitivity was tested by dietinduced type II diabetic mice. Bioactivity of insulin was studied using Swiss TO mice with streptozotocin-induced type I diabetic profile. Insulin-loaded NP were spherical and negatively charged with an average diameter of 200ā€“400 nm. Insulin encapsulation efficiency increased significantly with increasing ratio of co-polymeric PEG. The internal aqueous phase volume had a significant impact on encapsulation efficiency, initial burst release and NP size. Optimised insulin NP formulated from 10% PEG-PLGA retained insulin integrity in vitro, insulin sensitivity in vivo and induced a sustained hypoglycaemic effect from 3 hours to 6 days in type I diabetic mice

    Advances in nanomaterial-based immunosensors for prostate cancer screening

    Get PDF
    Prostate cancer is one of the most common health hazards for men worldwide, specifically in Western countries. Rapid prostate cancer screening by analyzing the prostate-specific antigen present in male serum has brought about a sharp decline in the mortality index of this disease. Immunoassay technology quantifies the target analyte in the sample using the antigen-antibody reaction. Immunoassays are now pivotal in disease diagnostics, drug monitoring, and pharmacokinetics. Recently, immunosensors have gained momentum in delivering better results with high specificity and lower limit of detection (LOD). Nanomaterials like gold, silver, and copper exhibit numerous exceptional features and their use in developing immunosensors have garnered excellent results in the diagnostic field. This review highlights the recent and different immunoassay techniques used to detect prostate-specific antigens and discusses the advances in nanomaterial-based immunosensors to detect prostate cancer efficiently. The review also explores the importance of specific biomarkers and nanomaterials-based biosensors with good selectivity and sensitivity to prostate cancer

    Matrix metalloproteinase 2 is a target of the RAN-GTP pathway and mediates migration, invasion and metastasis in human breast cancer

    Get PDF
    RAS-related nuclear protein(RAN) is a nuclear shuttle and normally regulates events in the cell cycle. When overexpressed in cultured cells, it causes increases in cell migration/invasion in vitro and its overexpression is associated with early breast cancer patient deaths in vivo. However, the underlying mechanism is unknown. The effect of RAN overexpression on potential targets MMP2, ATF3, CXCR3 was investigated by Real-Time PCR/Western blots in the triple receptor negative breast cancer(TRNBC) cell line MDA-MB231 and consequent biological effects were measured by cell adhesion, cell migration and cell invasion assays. Results showed that knockdown of RAN lead to a reduction of MMP2 and its potential regulators ATF3 and CXCR3. Moreover, knockdown of ATF3 or CXCR3 downregulated MMP2 without affecting RAN, indicating that RAN regulates MMP2 through ATF3 and CXCR3. Knockdown of RAN and MMP2 reduced cell adhesion, cell migration and cell growth in agar, whilst overexpression of MMP2 reversed the knockdown of RAN. Furthermore, immunohistochemical staining for RAN and MMP2 are positively associated with each other in the same tumour and separately with patient survival times in breast cancer specimens, suggesting that a high level of RAN may be a pre-requisite for MMP2 overexpression and metastasis. Moreover, positive immunohistochemical staining for both RAN and MMP-2 reduces further patient survival times over that for either protein separately. Our results suggest that MMP2 expression can stratify progression of breast cancers with a high and low incidence of RAN, both RAN and MMP2 in combination can be used for a more accurate patient prognosis. SIMPLE SUMMARY: Ran is an important regulator of normal cell growth and behaviour. We have established in cell line models of breast cancer (BC) a molecular pathway between RAN and its protein-degrading effector MMP-2 and properties related to metastasis in culture. Using immunohistochemistry (IHC) staining of primary BCs, we have shown that RAN and MMP-2 are on their own significantly associated with patient demise from metastatic BC. Moreover, when staining for MMP-2 is added to that for RAN in the primary tumours, there is a significant decrease in patient survival time over that for either protein alone. Thus a combination of staining for RAN and MMP2 is an excellent marker for poor prognosis in breast cancer

    Preparation and in vivo evaluation of insulin-loaded biodegradable nanoparticles prepared from diblock copolymers of PLGA and PEG

    Get PDF
    YesThe aim of this study was to design a controlled release vehicle for insulin to preserve its stability and biological activity during fabrication and release. A modified, double emulsion, solvent evaporation, technique using homogenisation force optimised entrapment efficiency of insulin into biodegradable nanoparticles (NP) prepared from poly (dl-lactic-co-glycolic acid) (PLGA) and its PEGylated diblock copolymers. Formulation parameters (type of polymer and its concentration, stabiliser concentration and volume of internal aqueous phase) and physicochemical characteristics (size, zeta potential, encapsulation efficiency, in vitro release profiles and in vitro stability) were investigated. In vivo insulin sensitivity was tested by diet-induced type II diabetic mice. Bioactivity of insulin was studied using Swiss TO mice with streptozotocin-induced type I diabetic profile. Insulin-loaded NP were spherical and negatively charged with an average diameter of 200ā€“400 nm. Insulin encapsulation efficiency increased significantly with increasing ratio of co-polymeric PEG. The internal aqueous phase volume had a significant impact on encapsulation efficiency, initial burst release and NP size. Optimised insulin NP formulated from 10% PEGā€“PLGA retained insulin integrity in vitro, insulin sensitivity in vivo and induced a sustained hypoglycaemic effect from 3 h to 6 days in type I diabetic mice
    corecore