80 research outputs found

    Genetic analysis indicates spatial-dependent patterns of sex-biased dispersal in Eurasian lynx in Finland

    Get PDF
    Conservation and management of large carnivores requires knowledge of female and male dispersal. Such information is crucial to evaluate the population's status and thus management actions. This knowledge is challenging to obtain, often incomplete and contradictory at times. The size of the target population and the methods applied can bias the results. Also, population history and biological or environmental influences can affect dispersal on different scales within a study area. We have genotyped Eurasian lynx (180 males and 102 females, collected 2003-2017) continuously distributed in southern Finland (similar to 23,000 km(2)) using 21 short tandem repeats (STR) loci and compared statistical genetic tests to infer local and sex-specific dispersal patterns within and across genetic clusters as well as geographic regions. We tested for sex-specific substructure with individual-based Bayesian assignment tests and spatial autocorrelation analyses. Differences between the sexes in genetic differentiation, relatedness, inbreeding, and diversity were analysed using population-based AMOVA, F-statistics, and assignment indices. Our results showed two different genetic clusters that were spatially structured for females but admixed for males. Similarly, spatial autocorrelation and relatedness was significantly higher in females than males. However, we found weaker sex-specific patterns for the Eurasian lynx when the data were separated in three geographical regions than when divided in the two genetic clusters. Overall, our results suggest male-biased dispersal and female philopatry for the Eurasian lynx in Southern Finland. The female genetic structuring increased from west to east within our study area. In addition, detection of male-biased dispersal was dependent on analytical methods utilized, on whether subtle underlying genetic structuring was considered or not, and the choice of population delineation. Conclusively, we suggest using multiple genetic approaches to study sex-biased dispersal in a continuously distributed species in which population delineation is difficult.Peer reviewe

    Admixture and gene flow from Russia in the recovering Northern European brown bear (Ursus arctos)

    Get PDF
    Large carnivores were persecuted to near extinction during the last centuries, but have now recovered in some countries. It has been proposed earlier that the recovery of the Northern European brown bear is supported by migration from Russia. We tested this hypothesis by obtaining for the first time continuous sampling of the whole Finnish bear population, which is located centrally between the Russian and Scandinavian bear populations. The Finnish population is assumed to experience high gene flow from Russian Karelia. If so, no or a low degree of genetic differentiation between Finnish and Russian bears could be expected. We have genotyped bears extensively from all over Finland using 12 validated microsatellite markers and compared their genetic composition to bears from Russian Karelia, Sweden, and Norway. Our fine masked investigation identified two overlapping genetic clusters structured by isolation-by-distance in Finland (pairwise FST = 0.025). One cluster included Russian bears, and migration analyses showed a high number of migrants from Russia into Finland, providing evidence of eastern gene flow as an important driver during recovery. In comparison, both clusters excluded bears from Sweden and Norway, and we found no migrants from Finland in either country, indicating that eastern gene flow was probably not important for the population recovery in Scandinavia. Our analyses on different spatial scales suggest

    Quantification of grazing efficacy, growth and health score of different lumpfish (Cyclopterus lumpus L.) families: possible size and gender effects

    Get PDF
    Postponed access: the file will be available after 2022-09-12To investigate the possible family influence on sea lice grazing of lumpfish on Atlantic salmon, ten families of lumpfish (N = 480) with a mean (± SD) weight of 54.8 ± 9.2 g were distributed among ten sea cages (5 × 5 × 5 m) each stocked with 400 Atlantic salmon with a mean (± SD) weight of 621.4 ± 9.2 g. All the ten cages were stocked with 48 lumpfish (12% stocking density). The stocking of cages was such that each cage consisted of two random families where full- and paternal half-sib families were randomly allocated to the different cages. There were clear differences in sea lice grazing efficacy, growth and cataract prevalence between the ten families assessed in this study. Lumpfish from families 2, 6 and 10 had the lowest mean weights but showed comparable growth rates compared to the other families throughout the study and this may be as a direct result of genetic influence. In addition, fish from these families had a significantly higher incidence of lice grazing of both L. salmonis and C. elongatus compared to the other families. Using mixed linear model to analyse the data revealed significant family and paternal effect on sea lice grazing. There was a trend for a reduction in sea lice grazing with increased size within each family. The results indicated that it was the smallest size classes of lumpfish (40–140 g) which exhibited higher sea lice grazing potential compared to the larger size classes within families. There were no clear differences in the lice grazing potential between male and female lumpfish within and between families. Overall, present findings showed that sea lice grazing of both L. salmonis and C. elongatus can be enhanced using targeted family production and if this behaviour has a genetic basis it may further enhanced through selection and targeted breeding programs.acceptedVersio

    Ad

    Get PDF
    This study was funded by the Norwegian Ministry of Climate and the Environment. TAM is grateful for partial support by Centro de EstatĂ­stica e AplicaçÔes da Universidade de Lisboa, funded by the Fundação para a CiĂȘncia e a Tecnologia, Portugal, through the project UID/MAT/00006/2013.Polar bears have experienced a rapid loss of sea-ice habitat in the Barents Sea. Monitoring this subpopulation focuses on the effects on polar bear demography. In August 2015, we conducted a survey in the Norwegian Arctic to estimate polar bear numbers and reveal population substructure. DNA profiles from biopsy samples and ear tags identified on photographs revealed that about half of the bears in Svalbard, compared to only 4.5% in the pack ice north of the archipelago, were recognized recaptures. The recaptured bears had originally been marked in Svalbard, mostly in spring. The existence of a local Svalbard stock, and another ecotype of bears using the pack ice in autumn with low likelihood of visiting Svalbard, support separate population size estimation for the two areas. Mainly by aerial survey line transect distance sampling methods, we estimated that 264 (95% CI = 199 - 363) bears were in Svalbard, close to 241 bears estimated for August 2004. The pack ice area had an estimated 709 bears (95% CI = 334 - 1026). The pack ice and the total (Svalbard + pack ice, 973 bears, 95% CI = 334 - 1026) both had higher estimates compared to August 2004 (444 and 685 bears, respectively), but the increase was not significant. There is no evidence that the fast reduction of sea-ice habitat in the area has yet led to a reduction in population size. The carrying capacity is likely reduced significantly, but recovery from earlier depletion up to 1973 may still be ongoing.Publisher PDFPeer reviewe

    A curated DNA barcode reference library for parasitoids of northern European cyclically outbreaking geometrid moths

    Get PDF
    Large areas of forests are annually damaged or destroyed by outbreaking insect pests. Understanding the factors that trigger and terminate such population eruptions has become crucially important, as plants, plant-feeding insects, and their natural enemies may respond differentially to the ongoing changes in the global climate. In northernmost Europe, climate-driven range expansions of the geometrid moths Epirrita autumnata and Operophtera brumata have resulted in overlapping and increasingly severe outbreaks. Delayed density-dependent responses of parasitoids are a plausible explanation for the 10-year population cycles of these moth species, but the impact of parasitoids on geometrid outbreak dynamics is unclear due to a lack of knowledge on the host ranges and prevalences of parasitoids attacking the moths in nature. To overcome these problems, we reviewed the literature on parasitism in the focal geometrid species in their outbreak range and then constructed a DNA barcode reference library for all relevant parasitoid species based on reared specimens and sequences obtained from public databases. The combined recorded parasitoid community of E. autumnata and O. brumata consists of 32 hymenopteran species, all of which can be reliably identified based on their barcode sequences. The curated barcode library presented here opens up new opportunities for estimating the abundance and community composition of parasitoids across populations and ecosystems based on mass barcoding and metabarcoding approaches. Such information can be used for elucidating the role of parasitoids in moth population control, possibly also for devising methods for reducing the extent, intensity, and duration of outbreaks

    Y-chromosomal testing of brown bears (Ursus arctos): Validation of a multiplex PCR-approach for nine STRs suitable for fecal and hair samples

    Get PDF
    High-resolution Y-chromosomal markers have been applied to humans and other primates to study population genetics, migration, social structures and reproduction. Y-linked markers allow the direct assessment of the genetic structure and gene flow of uniquely male inherited lineages and may also be useful for wildlife conservation and forensics, but have so far been available only for few wild species. Thus, we have developed two multiplex PCR reactions encompassing nine Y-STR markers identified from the brown bear (Ursus arctos) and tested them on hair, fecal and tissue samples. The multiplex PCR approach was optimized and analyzed for species specificity, sensitivity and stutter-peak ratios. The nine Y-STRs also showed specific STR-fragments for male black bears and male polar bears, while none of the nine markers produced any PCR products when using DNA from female bears or males from 12 other mammals. The multiplex PCR approach in two PCR reactions could be amplified with as low as 0.2 ng template input. Precision was high in DNA templates from hairs, fecal scats and tissues, with standard deviations less than 0.14 and median stutter ratios from 0.04 to 0.63. Among the eight di- and one tetra-nucleotide repeat markers, we detected simple repeat structures in seven of the nine markers with 9–25 repeat units. Allelic variation was found for eight of the nine Y-STRs, with 2–9 alleles for each marker and a total of 36 alleles among 453 male brown bears sampled mainly from Northern Europe. We conclude that the multiplex PCR approach with these nine Y-STRs would provide male bear Y-chromosomal specificity and evidence suited for samples from conservation and wildlife forensics

    Northern Fennoscandia via the British Isles: evidence for a novel postglacial recolonization route by winter moth (Operophtera brumata)

    Get PDF
    The frequency and severity of outbreaks by pestiferous insects is increasing globally, likely as a result of human-mediated introductions of non-native organisms. However, it is not always apparent whether an outbreak is the result of a recent introduction of an evolutionarily naïve population, or of recent disturbance acting on an existing population that arrived previously during natural range expansion. Here we use approximate Bayesian computation to infer the colonization history of a pestiferous insect, the winter moth, Operophtera brumata L. (Lepidoptera: Geometridae), which has caused widespread defoliation in northern Fennoscandia. We generated genotypes using a suite of 24 microsatellite loci and find that populations of winter moth in northern Europe can be assigned to five genetically distinct clusters that correspond with 1) Iceland, 2) the British Isles, 3) Central Europe and southern Fennoscandia, 4) Eastern Europe, and 5) northern Fennoscandia. We find that the northern Fennoscandia winter moth cluster is most closely related to a population presently found in the British Isles, and that these populations likely diverged around 2,900 years ago. This result suggests that current outbreaks are not the result of a recent introduction, but rather that recent climate or habitat disturbance is acting on existing populations that may have arrived to northern Fennoscandia via pre-Roman traders from the British Isles, and/or by natural dispersal across the North Sea likely using the Orkney Islands of northern Scotland as a stepping-stone before dispersing up the Norwegian coast. © 2021. The authors, CC-BY 4.0 license.</p

    Responses of domestic chicks (Gallus gallus domesticus) to multimodal aposematic signals

    No full text
    Many aposematic prey combine their visual warning signals with additional signals. Together, these signals constitute a multimodal or multicomponent warning display. The additional signals are thought to increase the effects of the visual signals on predators. Olfactory signals are much emphasized, but later studies have shown that also auditory signals like the buzzing of certain insects might have multimodal effects. The wasp displays typical visual aposematic signals, black and yellow stripes, but does also emit a characteristic buzzing. We wanted to test if, and in what way, the visual and acoustic display of the wasp has an aversive function on the predators. We therefore conducted a 12-trial discrimination-learning task on inexperienced chicks to study whether there are innate biases toward these signals and how they affect the speed of avoidance learning. We also performed three extinction-learning trials to study how memorable the signals were to the chicks. We show that the visual signals in the display of the wasp contribute to the protection from predators but in different ways; the yellow color had an aversive effect on inexperienced predators, while the striped pattern improved the aversion learning. The sound did not enhance the innate aversions but increased the aversion learning of stripes in green prey. Copyright 2006.aposematism; avoidance learning; chicks; innate biases; multimodal signals; sound; stripes
    • 

    corecore