166 research outputs found
Light cone in the two-dimensional transverse-field Ising model in time-dependent mean-field theory
We investigate the propagation of a local perturbation in the two-dimensional
transverse-field Ising model with a time-dependent application of mean-field
theory based on the BBGKY hierarchy. We show that the perturbation propagates
through the system with a finite velocity and that there is transition from
Manhattan to Euclidian metric, resulting in a light cone with an almost
circular shape at sufficiently large distances. The propagation velocity of the
perturbation defining the front of the light cone is discussed with respect to
the parameters of the Hamiltonian and compared to exact results for the
transverse-field Ising model in one dimension.Comment: 6 pages, 4 figure
Reverse conductivity for water transport and related anatomy in fine roots of six temperate tree species -a potential limitation for hydraulic redistribution
International audienceHydraulic redistribution (HR), the passive reallocation of water along plant structures following a water potential gradient, is an important mechanism for plant survival under drought. For example, trees with deeper roots reallocate water from deeper moist to shallower, drier soil layers sustaining their upper fine root system. The relevance of HR for temperate forest ecosystems is hardly investigated. Both environmental and tree internal factors limiting the capacity for HR, such as low water potential gradients or root anatomy, respectively, are not well understood. Here we investigate fine root anatomy and related capacity for reverse flow of water of six temperate tree species, i.e. Acer pseudoplatanus, Castanea sativa, Fagus sylvatica, Picea abies, Pseudotsuga menziesii and Quercus robur both in forward and reverse flow direction. Additionally, anatomy of primary and secondary roots was analyzed, to test the hypotheses that root anatomy is similar in primary and secondary roots (H1) and conductivity for forward and reverse flow of water in fine roots is identical (H2). In contrast to the two conifer species, most anatomical parameters, e.g. hydraulic conduit diameter and conduit density, were distinctly different between primary and secondary roots in the angiosperms. Therefore, H1 was not supported for angiosperm trees. The reverse flow of water in fine roots was reduced by approx. 40 % compared to the forward flow in angiosperms, while there was no difference in the conifers. Thus, H2 was confirmed for conifers while there was a significant difference for angiosperms. This reduction may be caused by vessel structure (e.g. tapering or secondary thickening elements), or perforation plate and pit architecture (e.g. width of aperture opening). Because of the reduced conductivity of reverse water flow, the ability of angiosperm trees to redistribute water along their root system might be lower than expected
Do minimum wages improve self-rated health? Evidence from a natural experiment
We analyze whether the introduction of the general minimum wage in Germany in 2015 had an effect on workersâ self-rated health. To this end, we use survey data linked to administrative employment records and apply difference-in-differences regressions combined with propensity score matching. This approach enables us to control for a vast set of potential confounding variables. We find a health improving effect among the individuals who were most likely to be affected by the reform. Our results indicate that workersâ improved satisfaction with pay, their reduced working hours, and a reduction in time pressure at work may drive this result
Carbon allocation to root exudates is maintained in mature temperate tree species under drought
- Carbon (C) exuded via roots is proposed to increase under drought and facilitate important ecosystem functions. However, it is unknown how exudate quantities relate to the total C budget of a drought-stressed tree, that is, how much of net-C assimilation is allocated to exudation at the tree level.
- We calculated the proportion of daily C assimilation allocated to root exudation during early summer by collecting root exudates from mature Fagus sylvatica and Picea abies exposed to experimental drought, and combining above- and belowground C fluxes with leaf, stem and fine-root surface area.
- Exudation from individual roots increased exponentially with decreasing soil moisture, with the highest increase at the wilting point. Despite c. 50% reduced C assimilation under drought, exudation from fine-root systems was maintained and trees exuded 1.0% (F. sylvatica) to 2.5% (P. abies) of net C into the rhizosphere, increasing the proportion of C allocation to exudates two- to three-fold. Water-limited P. abies released two-thirds of its exudate C into the surface soil, whereas in droughted F. sylvatica it was only one-third.
- Across the entire root system, droughted trees maintained exudation similar to controls, suggesting drought-imposed belowground C investment, which could be beneficial for ecosystem resilience
Evaluation of statistical approaches for association testing in noisy drug screening data
Background Identifying associations among biological variables is a major challenge in modern quantitative biological research, particularly given the systemic and statistical noise endemic to biological systems. Drug sensitivity data has proven to be a particularly challenging field for identifying associations to inform patient treatment. Results To address this, we introduce two semi-parametric variations on the commonly used concordance index: the robust concordance index and the kernelized concordance index (rCI, kCI), which incorporate measurements about the noise distribution from the data. We demonstrate that common statistical tests applied to the concordance index and its variations fail to control for false positives, and introduce efficient implementations to compute p-values using adaptive permutation testing. We then evaluate the statistical power of these coefficients under simulation and compare with Pearson and Spearman correlation coefficients. Finally, we evaluate the various statistics in matching drugs across pharmacogenomic datasets. Conclusions We observe that the rCI and kCI are better powered than the concordance index in simulation and show some improvement on real data. Surprisingly, we observe that the Pearson correlation was the most robust to measurement noise among the different metrics.Peer reviewe
Estimating the global root exudate carbon flux
Root exudation, the export of low-molecular weight organic carbon (C) from living plant roots to soil, influences microbial activity, nutrient availability, and ecosystem feedbacks to climate change, but the magnitude of this C flux at ecosystem and global scales is largely unknown. Here, we synthesize in situ measurements of root exudation rates and couple those to estimates of fine root biomass to estimate global and biome-level root exudate C fluxes. We estimate a global root exudate flux of 13.4 (10.1â20.2) Pg C yâ1, or about 9% (7â14%) of global annual gross primary productivity. We did not find differences in root mass-specific exudation rates among biomes, though total exudate fluxes are estimated to be greatest in grasslands owing to their high density of absorptive root biomass. Our synthesis highlights the global importance of root exudates in the terrestrial C cycle and identifies regions where more in situ measurements are needed to improve future estimates of root exudate C fluxes
Dynamics of initial carbon allocation after drought release in mature Norway spruceâIncreased belowground allocation of current photoassimilates covers only half of the carbon used for fineâroot growth
After drought events, tree recovery depends on sufficient carbon (C) allocation to the sink organs. The present study aimed to elucidate dynamics of tree-level C sink activity and allocation of recent photoassimilates (C) and stored C in c. 70-year-old Norway spruce (Picea abies) trees during a 4-week period after drought release. We conducted a continuous, whole-tree C labeling in parallel with controlled watering after 5âyears of experimental summer drought. The fate of C to growth and CO efflux was tracked along branches, stems, coarse- and fine roots, ectomycorrhizae and root exudates to soil CO efflux after drought release. Compared with control trees, drought recovering trees showed an overall 6% lower C sink activity and 19% less allocation of C to aboveground sinks, indicating a low priority for aboveground sinks during recovery. In contrast, fine-root growth in recovering trees was seven times greater than that of controls. However, only half of the C used for new fine-root growth was comprised of C while the other half was supplied by stored C. For drought recovery of mature spruce trees, in addition to C, stored C appears to be critical for the regeneration of the fine-root system and the associated water uptake capacity
Proteomic Profiling Across Breast Cancer Cell Lines and Models
We performed quantitative proteomics on 60 human-derived breast cancer cell line models to a depth of ~13,000 proteins. The resulting high-throughput datasets were assessed for quality and reproducibility. We used the datasets to identify and characterize the subtypes of breast cancer and showed that they conform to known transcriptional subtypes, revealing that molecular subtypes are preserved even in under-sampled protein feature sets. All datasets are freely available as public resources on the LINCS portal. We anticipate that these datasets, either in isolation or in combination with complimentary measurements such as genomics, transcriptomics and phosphoproteomics, can be mined for the purpose of predicting drug response, informing cell line specific context in models of signalling pathways, and identifying markers of sensitivity or resistance to therapeutics
An innovative in-situ AFM system for a soft X-ray spectromicroscopy synchrotron beamline
Multimodal imaging and spectroscopy like concurrent Scanning
Transmission X-ray Microscopy (STXM) and X-ray Fluorescence
(XRF) are highly desirable as they allow retrieving complementary
information. This paper reports on the design, development,
integration and field testing of a novel in-situ Atomic Force
Microscopy (AFM) instrument for operation in high vacuum in a
synchrotron soft X-ray microscopy STXM-XRF end-station. A
combination of XRF-AFM is demonstrated for the first time in the
soft X-ray regime, with an outlook for the full XRF-STXM-AFM combination
Tsr4 and Nap1, two novel members of the ribosomal protein chaperOME
Dedicated chaperones protect newly synthesized ribosomal proteins (r-proteins) from aggregation and accompany them on their way to assembly into nascent ribosomes. Currently, only nine of the âŒ80 eukaryotic r-proteins are known to be guarded by such chaperones. In search of new dedicated r-protein chaperones, we performed a tandem-affinity purification based screen and looked for factors co-enriched with individual small subunit r-proteins. We report the identification of Nap1 and Tsr4 as direct binding partners of Rps6 and Rps2, respectively. Both factors promote the solubility of their r-protein clients in vitro. While Tsr4 is specific for Rps2, Nap1 has several interaction partners including Rps6 and two other r-proteins. Tsr4 binds co- translationally to the essential, eukaryote-specific N-terminal extension of Rps2, whereas Nap1 interacts with a large, mostly eukaryote-specific binding surface of Rps6. Mutation of the essential Tsr4 and deletion of the non-essential Nap1 both enhance the 40S synthesis defects of the corresponding r-protein mutants. Our findings highlight that the acquisition of eukaryote-specific domains in r-proteins was accompanied by the co-evolution of proteins specialized to protect these domains and emphasize the critical role of r-protein chaperones for the synthesis of eukaryotic ribosomes
- âŠ