659 research outputs found
Bound states for Overlap and Fixed Point Actions close to the chiral limit
We study the overlap and the fixed point Dirac operators for massive fermions
in the two-flavor lattice Schwinger model. The masses of the triplet (pion) and
singlet (eta) bound states are determined down to small fermion masses and the
mass dependence is compared with various continuum model approximations. Near
the chiral limit, at very small fermion masses the fixed point operator has
stability problems, which in this study are dominated by finite size effects,Comment: 13 pages, 2 figure
HEart and BRain interfaces in Acute ischemic Stroke (HEBRAS) – rationale and design of a prospective oberservational cohort study
Background An effective diagnostic work-up in hospitalized patients with acute
ischemic stroke is vital to optimize secondary stroke prevention. The HEart
and BRain interfaces in Acute ischemic Stroke (HEBRAS) study aims to assess
whether an enhanced MRI set-up and a prolonged Holter-ECG monitoring yields a
higher rate of pathologic findings as compared to diagnostic procedures
recommended by guidelines (including stroke unit monitoring for at least 24 h,
echocardiography and ultrasound of brain-supplying arteries). Methods/Design
Prospective observational single-center study in 475 patients with acute
ischemic stroke and without known atrial fibrillation. Patients will receive
routine diagnostic care in hospital as wells as brain MRI, cardiac MRI, MR
angiography of the brain-supplying arteries and Holter-monitoring for up to 10
days. Study patients will be followed up for cardiovascular outcomes at 3 and
12 months after enrolment. Discussion By comparing the results of routine
diagnostic care to the study-specific MRI/ECG approach, the primary outcome of
HEBRAS is the proportion of stroke patients with pathologic diagnostic
findings. Predefined secondary outcomes are the association of stroke
localization, autonomic dysbalance and cardiac dysfunction as well as the
effect of impaired heart-rate-variability on long-term clinical outcome. The
investigator-initiated HEBRAS study will assess whether an enhanced MRI
approach and a prolonged ECG monitoring yield a higher rate of pathological
findings than current standard diagnostic care to determine stroke etiology.
These findings might influence current diagnostic recommendations after acute
ischemic stroke. Moreover, HEBRAS will determine the extent and clinical
impact of stroke-induced cardiac damage
Individual participant data validation of the PICNICC prediction model for febrile neutropenia
BACKGROUND: Risk-stratified approaches to managing cancer therapies and their consequent complications rely on accurate predictions to work effectively. The risk-stratified management of fever with neutropenia is one such very common area of management in paediatric practice. Such rules are frequently produced and promoted without adequate confirmation of their accuracy.
METHODS: An individual participant data meta-analytic validation of the 'Predicting Infectious ComplicatioNs In Children with Cancer' (PICNICC) prediction model for microbiologically documented infection in paediatric fever with neutropenia was undertaken. Pooled estimates were produced using random-effects meta-analysis of the area under the curve-receiver operating characteristic curve (AUC-ROC), calibration slope and ratios of expected versus observed cases (E/O).
RESULTS: The PICNICC model was poorly predictive of microbiologically documented infection (MDI) in these validation cohorts. The pooled AUC-ROC was 0.59, 95% CI 0.41 to 0.78, tau2=0, compared with derivation value of 0.72, 95% CI 0.71 to 0.76. There was poor discrimination (pooled slope estimate 0.03, 95% CI -0.19 to 0.26) and calibration in the large (pooled E/O ratio 1.48, 95% CI 0.87 to 2.1). Three different simple recalibration approaches failed to improve performance meaningfully.
CONCLUSION: This meta-analysis shows the PICNICC model should not be used at admission to predict MDI. Further work should focus on validating alternative prediction models. Validation across multiple cohorts from diverse locations is essential before widespread clinical adoption of such rules to avoid overtreating or undertreating children with fever with neutropenia
Predicting Infectious ComplicatioNs in Children with Cancer : an external validation study
Background:The aim of this study was to validate the 'Predicting Infectious ComplicatioNs in Children with Cancer' (PICNICC) clinical decision rule (CDR) that predicts microbiologically documented infection (MDI) in children with cancer and fever and neutropenia (FN). We also investigated costs associated with current FN management strategies in Australia.Methods:Demographic, episode, outcome and cost data were retrospectively collected on 650 episodes of FN. We assessed the discrimination, calibration, sensitivity and specificity of the PICNICC CDR in our cohort compared with the derivation data set.Results:Using the original variable coefficients, the CDR performed poorly. After recalibration the PICNICC CDR had an area under the receiver operating characteristic (AUC-ROC) curve of 0.638 (95% CI 0.590-0.685) and calibration slope of 0.24. The sensitivity, specificity, positive predictive value and negative predictive value of the PICNICC CDR at presentation was 78.4%, 39.8%, 28.6% and 85.7%, respectively. For bacteraemia, the sensitivity improved to 85.2% and AUC-ROC to 0.71. Application at day 2, taking into consideration the proportion of MDI known (43%), further improved the sensitivity to 87.7%. Length of stay is the main contributor to cost of FN treatment, with an average cost per day of AUD 2183 in the low-risk group.Conclusions:For prediction of any MDI, the PICNICC rule did not perform as well at presentation in our cohort as compared with the derivation study. However, for bacteraemia, the predictive ability was similar to that of the derivation study, highlighting the importance of recalibration using local data. Performance also improved after an overnight period of observation. Implementation of a low-risk pathway, using the PICNICC CDR after a short period of inpatient observation, is likely to be safe and has the potential to reduce health-care expenditure
Frequency of Hemorrhage on Follow Up Imaging in Stroke Patients Treated With rt-PA Depending on Clinical Course
Background: According to current guidelines, stroke patients treated with rt-PA should undergo brain imaging to exclude intracerebral bleeding 24 h after thrombolysis, before the start of medical secondary prevention. However, the usefulness of routine follow-up imaging with regard to changes in therapeutic management in patients without neurological deterioration is unclear. We hypothesized that follow up brain imaging solely to exclude bleeding in patients who clinically improved after rt-PA application may not be necessary. Methods: Retrospective single-center analysis including stroke patients treated with rt-PA. Records were reviewed for hemorrhagic transformation one day after systemic thrombolysis and brain imaging-based changes in therapeutic management. Twenty-four hour after thrombolysis patients were divided into four groups: (1) increased NIHSS score; (2) unchanged NIHSS score; (3) improved NIHSS score and; (4) NIHSS score = 0. Results: Out of 188 patients (mean age 73 years, 100 female) receiving rt-PA, 32 (17%) had imaging-proven hemorrhagic transformation including 11 (6%) patients with parenchymal hemorrhage. Patients in group (1, 2) more often had hypertension (p = 0.015) and more often had parenchymal hemorrhage (9 vs. 4%; p < 0.206) compared to group (3, 4) and imaging-based changes in therapeutic management were more frequent (19% vs. 6%; p = 0.007). Patients of group (3, 4) had no changes in therapeutic management in 94% of the cases. Patients in group (4) had no hemorrhagic transformation in routine follow-up brain imaging. Conclusions: Frequency of hemorrhagic transformation in Routine follow-up brain imaging and consecutive changes in therapeutic management were different depending on clinical course measured by NHISS score
Frequency of Hemorrhage on Follow Up Imaging in Stroke Patients Treated With rt-PA Depending on Clinical Course
Background: According to current guidelines, stroke patients treated with rt-PA should undergo brain imaging to exclude intracerebral bleeding 24 h after thrombolysis, before the start of medical secondary prevention. However, the usefulness of routine follow-up imaging with regard to changes in therapeutic management in patients without neurological deterioration is unclear. We hypothesized that follow up brain imaging solely to exclude bleeding in patients who clinically improved after rt-PA application may not be necessary. Methods: Retrospective single-center analysis including stroke patients treated with rt-PA. Records were reviewed for hemorrhagic transformation one day after systemic thrombolysis and brain imaging-based changes in therapeutic management. Twenty-four hour after thrombolysis patients were divided into four groups: (1) increased NIHSS score; (2) unchanged NIHSS score; (3) improved NIHSS score and; (4) NIHSS score = 0. Results: Out of 188 patients (mean age 73 years, 100 female) receiving rt-PA, 32 (17%) had imaging-proven hemorrhagic transformation including 11 (6%) patients with parenchymal hemorrhage. Patients in group (1, 2) more often had hypertension (p = 0.015) and more often had parenchymal hemorrhage (9 vs. 4%; p < 0.206) compared to group (3, 4) and imaging-based changes in therapeutic management were more frequent (19% vs. 6%; p = 0.007). Patients of group (3, 4) had no changes in therapeutic management in 94% of the cases. Patients in group (4) had no hemorrhagic transformation in routine follow-up brain imaging. Conclusions: Frequency of hemorrhagic transformation in Routine follow-up brain imaging and consecutive changes in therapeutic management were different depending on clinical course measured by NHISS score
There is an obstetrical dilemma: Misconceptions about the evolution of human childbirth and pelvic form
Compared to other primates, modern humans face high rates of maternal and neonatal morbidity and mortality during childbirth. Since the early 20th century, this "difficulty" of human parturition has prompted numerous evolutionary explanations, typically assuming antagonistic selective forces acting on maternal and fetal traits, which has been termed the "obstetrical dilemma." Recently, there has been a growing tendency among some anthropologists to question the difficulty of human childbirth and its evolutionary origin in an antagonistic selective regime. Partly, this stems from the motivation to combat increasing pathologization and overmedicalization of childbirth in industrialized countries. Some authors have argued that there is no obstetrical dilemma at all, and that the difficulty of childbirth mainly results from modern lifestyles and inappropriate and patriarchal obstetric practices. The failure of some studies to identify biomechanical and metabolic constraints on pelvic dimensions is sometimes interpreted as empirical support for discarding an obstetrical dilemma. Here we explain why these points are important but do not invalidate evolutionary explanations of human childbirth. We present robust empirical evidence and solid evolutionary theory supporting an obstetrical dilemma, yet one that is much more complex than originally conceived in the 20th century. We argue that evolutionary research does not hinder appropriate midwifery and obstetric care, nor does it promote negative views of female bodies. Understanding the evolutionary entanglement of biological and sociocultural factors underlying human childbirth can help us to understand individual variation in the risk factors of obstructed labor, and thus can contribute to more individualized maternal care
Home-based care of low-risk febrile neutropenia in children-an implementation study in a tertiary paediatric hospital
BACKGROUND: Home-based management of low-risk febrile neutropenia (FN) is safe, improves quality of life and reduces healthcare expenditure. A formal low-risk paediatric program has not been implemented in Australia. We aimed to describe the implementation process and evaluate the clinical impact. METHOD: This prospective study incorporated three phases: implementation, intervention and evaluation. A low-risk FN implementation toolkit was developed, including a care-pathway, patient information, home-based assessment and educational resources. The program had executive-level endorsement, a multidisciplinary committee and a nurse specialist. Children with cancer and low-risk FN were eligible to be transferred home with a nurse visiting daily after an overnight period of observation for intravenous antibiotics. Low-risk patients were identified using a validated decision rule, and suitability for home-based care was determined using disease, chemotherapy and patient-level criteria. Plan-Do-Study-Act methodology was used to evaluate clinical impact and safety. RESULTS: Over 18 months, 292 children with FN were screened: 132 (45%) were low-risk and 63 (22%) were transferred to home-based care. Compared with pre-implementation there was a significant reduction in in-hospital median LOS (4.0 to 1.5 days, p < 0.001) and 291 in-hospital bed days were saved. Eight (13%) patients needed readmission and there were no adverse outcomes. A key barrier was timely screening of all patients and program improvements, including utilising the electronic medical record for patient identification, are planned. CONCLUSION: This program significantly reduces in-hospital LOS for children with low-risk FN. Ongoing evaluation will inform sustainability, identify areas for improvement and support national scale-up of the program
Prevalence and risk of Down syndrome in monozygotic and dizygotic multiple pregnancies in Europe: implications for prenatal screening.
OBJECTIVE: To determine risk of Down syndrome (DS) in multiple relative to singleton pregnancies, and compare prenatal diagnosis rates and pregnancy outcome.
DESIGN: Population-based prevalence study based on EUROCAT congenital anomaly registries.
SETTING: Eight European countries.
POPULATION: 14.8 million births 1990-2009; 2.89% multiple births.
METHODS: DS cases included livebirths, fetal deaths from 20 weeks, and terminations of pregnancy for fetal anomaly (TOPFA). Zygosity is inferred from like/unlike sex for birth denominators, and from concordance for DS cases.
MAIN OUTCOME MEASURES: Relative risk (RR) of DS per fetus/baby from multiple versus singleton pregnancies and per pregnancy in monozygotic/dizygotic versus singleton pregnancies. Proportion of prenatally diagnosed and pregnancy outcome.
STATISTICAL ANALYSIS: Poisson and logistic regression stratified for maternal age, country and time.
RESULTS: Overall, the adjusted (adj) RR of DS for fetus/babies from multiple versus singleton pregnancies was 0.58 (95% CI 0.53-0.62), similar for all maternal ages except for mothers over 44, for whom it was considerably lower. In 8.7% of twin pairs affected by DS, both co-twins were diagnosed with the condition. The adjRR of DS for monozygotic versus singleton pregnancies was 0.34 (95% CI 0.25-0.44) and for dizygotic versus singleton pregnancies 1.34 (95% CI 1.23-1.46). DS fetuses from multiple births were less likely to be prenatally diagnosed than singletons (adjOR 0.62 [95% CI 0.50-0.78]) and following diagnosis less likely to be TOPFA (adjOR 0.40 [95% CI 0.27-0.59]).
CONCLUSIONS: The risk of DS per fetus/baby is lower in multiple than singleton pregnancies. These estimates can be used for genetic counselling and prenatal screening
- …