1,877 research outputs found

    Impact of Gene-Gender Effects of Adrenergic Polymorphisms on Hypothalamic-Pituitary-Adrenal Axis Activity in Depressed Patients

    Get PDF
    Objective: There is overwhelming evidence that activation of the hypothalamic-pituitary-adrenal (HPA) system plays a major role in depression and cardiovascular disease in genetically susceptible individuals. We hypothesized that due to the multiple interactions between the sympathetic and the HPA systems via adrenoceptors, polymorphisms in these genes could have an impact on HPA axis activity in major depression. Methods: Using the dexamethasone/corticotrophin-releasing hormone (DEX/CRH) test, we investigated the association of alpha 2-adrenoceptor (ADRA2A -1291C -> G) and the beta 2-adrenoceptor gene (ADRB2 Arg16Gly) in 189 patients with major depression during the acute state of the disease and after remission. Results: Male ADRA2A -1291G allele homozygotes showed significant pretreatment HPA axis hyperactivity, with increased adrenocorticotropin (ACTH; F = 4.9, d.f. = 2, p = 0.009) and cortisol responses (F = 6.4, d.f. = 2, p = 0.003). In contrast, female ADRB2 Arg/Arg homozygotes had increased pretreatment ACTH (F = 7.17, d.f. = 2, p = 0.001) and cortisol (F = 8.95, d.f. = 2, p = 0.000) levels. Interestingly, in the respective genotypes, the stress hormones remained elevated in the second DEX/CRH test, despite a reduction in depressive symptoms. Conclusions: This study provides evidence that, depending on gender and polymorphisms, there is continuous HPA axis overdrive in a proportion of patients irrespective of the status of depression. Considering the importance of stress hormones for cardiovascular disorders, our data might suggest that these patients are at high risk of comorbidity between depression and cardiovascular disorders. Copyright (c) 2008 S. Karger AG, Base

    AROUSING FEAR IN DENTAL HEALTH EDUCATION * , †

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65851/1/j.1752-7325.1965.tb00484.x.pd

    Astroclimatic Characterization of Vallecitos: A candidate site for the Cherenkov Telescope Array at San Pedro Martir

    Full text link
    We conducted an 18 month long study of the weather conditions of the Vallecitos, a proposed site in Mexico to harbor the northern array of the Cherenkov Telescope Array (CTA). It is located in Sierra de San Pedro Martir (SPM) a few kilometers away from Observatorio Astron\'omico Nacional. The study is based on data collected by the ATMOSCOPE, a multi-sensor instrument measuring the weather and sky conditions, which was commissioned and built by the CTA Consortium. Additionally, we compare the weather conditions of the optical observatory at SPM to the Vallecitos regarding temperature, humidity, and wind distributions. It appears that the excellent conditions at the optical observatory benefit from the presence of microclimate established in the Vallecitos.Comment: 16 pages, 16 figures, Publication of the Astronomical Society of the Pacific, accepte

    Interparticle interactions:Energy potentials, energy transfer, and nanoscale mechanical motion in response to optical radiation

    Get PDF
    In the interactions between particles of material with slightly different electronic levels, unusually large shifts in the pair potential can result from photoexcitation, and on subsequent electronic excitation transfer. To elicit these phenomena, it is necessary to understand the fundamental differences between a variety of optical properties deriving from dispersion interactions, and processes such as resonance energy transfer that occur under laser irradiance. This helps dispel some confusion in the recent literature. By developing and interpreting the theory at a deeper level, one can anticipate that in suitable systems, light absorption and energy transfer will be accompanied by significant displacements in interparticle separation, leading to nanoscale mechanical motion

    Low-lying GT(+) strength in Co-64 studied via the Ni-64(d,He-2)Co-64 reaction

    Get PDF
    The Ni-64(d,He-2)Co-64 reaction was studied at the AGOR cyclotron of KVI, Groningen, with the Big-Bite Spectrometer and the EuroSuperNova detector using a 171-MeV deuteron beam. An energy resolution of about 110 keV was achieved. In addition to the J(pi) = 1(+) ground state, several other 1(+) states could be identified in Co-64 and the strengths of the corresponding Gamow-Teller transitions were determined. The obtained strength distribution was compared with theoretical predictions and former (n,p) experimental results and displayed a good agreement. Due to the good energy resolution, detailed spectroscopic information was obtained, which supplements the data base needed for network calculations for supernova scenarios

    Dwarf Nova Oscillations and Quasi-Periodic Oscillations in Cataclysmic Variables: III. A New Kind of Dwarf Nova Oscillation, and Further Examples of the Similarities to X-Ray Binaries

    Full text link
    We present measurements of the periods of Dwarf Nova Oscillations (DNOs) and Quasi-Periodic Oscillations (QPOs) in Cataclysmic Variable stars (CVs), many culled from published literature, but also others newly observed (in VZ Pyx, CR Boo, OY Car, Z Cha, AQ Eri, TU Men, HX Peg, CN Ori, V893 Sco, WX Hyi and EC2117-54). These provide data for 26 systems. We show that in general P_QPO ~ 15 P_DNO and that the correlation for CVs extends by three orders of magnitude lower in frequency the similar relationship found for X-Ray binaries. In addition, we have found that there is a second type of DNO, previously overlooked, which have periods ~ 4 times those of the regular DNOs (As well as those mined from publications, we have observed them in VW Hyi, OY Car, AQ Eri, V803 Cen, CR Boo, VZ Pyx, HX Peg and EC2117-54). Often both types of DNO coexist. Unlike the standard DNOs, the periods of the new type, which we refer to as longer period DNOs (lpDNOs), are relatively insensitive to accretion luminosity and can even appear in quiescence of dwarf novae. We interpret them as magnetically channelled accretion onto the differentially rotating main body of the white dwarf primary, rather than onto a rapidly slipping equatorial belt as in the case of the standard DNOs. This is supported by published measurements of v sin(i) for some of the primaries. Some similarities of the DNOs, lpDNOs and QPOs in CVs to the three types of QPO in X-Ray binaries (burst pulsation, high and low frequency QPOs) are noted.Comment: 19 pages, 30 figures. To appear in MNRA

    Swift J1753.5-0127: The Black Hole Candidate with the shortest orbital period

    Get PDF
    We present time-resolved photometry of the optical counterpart to the black hole candidate Swift J1753.5-0127, which has remained in the low/hard X-ray state and bright at optical/IR wavelengths since its discovery in 2005. At the time of our observations Swift J1753.5-0127 does not show a decay trend but remains stable at R=16.45 with a night to night variability of ~0.05 mag. The R-band light curves, taken from 2007 June 3 to August 31, are not sinusoidal, but exhibit a complex morphology with remarkable changes in shape and amplitude. The best period determination is 3.2443+-0.0010 hours. This photometric period is likely a superhump period, slightly larger than the orbital period. Therefore, Swift J1753.5-0127 is the black hole candidate with the shortest orbital period observed to date. Our estimation of the distance is comparable to values previously published and likely places Swift J1753.5-0127 in the Galactic halo.Comment: Accepted for publication in Ap

    DE Canum Venaticorum : a bright, eclipsing red dwarf–white dwarf binary

    Get PDF
    Context. Close white dwarf–red dwarf binaries must have gone through a common-envelope phase during their evolution. DE CVn is a detached white dwarf–red dwarf binary with a relatively short (∼8.7 h) orbital period. Its brightness and the presence of eclipses makes this system ideal for a more detailed study. Aims. From a study of photometric and spectroscopic observations of DE CVn we derive the system parameters that we discuss in the framework of common-envelope evolution. Methods. Photometric observations of the eclipses are used to determine an accurate ephemeris. From a model fit to an average lowresolution spectrum of DE CVn, we constrain the temperature of the white dwarf and the spectral type of the red dwarf. The eclipse light curve is analysed and combined with the radial velocity curve of the red dwarf determined from time-resolved spectroscopy to derive constraints on the inclination and the masses of the components in the system. Results. The derived ephemeris is HJDmin = 2 452 784.5533(1) + 0.3641394(2) × E. The red dwarf in DE CVn has a spectral type of M3V and the white dwarf has an effective temperature of 8 000 K. The inclination of the system is 86+3◦ −2 and the mass and radius of the red dwarf are 0.41 ± 0.06 M and 0.37+0.06 −0.007 R, respectively, and the mass and radius of the white dwarf are 0.51+0.06 −0.02 M and 0.0136+0.0008 −0.0002 R, respectively. Conclusions. We found that the white dwarf has a hydrogen-rich atmosphere (DA-type). Given that DE CVn has experienced a common-envelope phase, we can reconstruct its evolution and we find that the progenitor of the white dwarf was a relatively lowmass star (M ≤ 1.6 M). The current age of this system is 3.3−7.3 × 109 years, while it will take longer than the Hubble time for DE CVn to evolve into a semi-detached system
    corecore