483 research outputs found

    A record of communal nesting in the barn owl (Tyto alba)

    Get PDF
    We report a unique case of two female Barn Owls laying eggs and incubating together in a single nest cup in a communal nest. A trio of two females and one male bred in an abandoned water tower in 2013 in Israel. Both females incubated/brooded together in the communal nest, and all three individuals brought food to the communal family. The two females laid 20 eggs, of which 19 hatched and 16 fledged

    Controlled Rate Thermal Analysis (CRTA) as New Method to Control the Specific Surface in Hydroxyapatite Thin Coatings

    Get PDF
    The control of the texture in synthetic hydroxyapatite ceramics had limited their application in the field of the materials for bone implantation, even more when it is used as a filling in cements and other formulations in orthopedic surgery. The present article shows preliminary results demonstrating the effectiveness of a modification of the controlled rate thermal analysis (CRTA), developed by J. Rouquerol, used for the preparation of ceramic materials with controlled textural characteristics, during the formation of ceramic powders of synthetic hydroxyapatite at low temperatures. The thermal treatments of the hydroxyapatite were carried out in a device connected to a computer, to control temperature and pressure system, keeping the decomposition speed constant. Results, reported when preparing ceramic powders of hydroxyapatite at 300 and 850°C under controlled pressure, using synthetic hydroxyapatite with a Ca/P molar ratio equal to 1.64, were checked using IR spectroscopy and X‐ray diffraction, showed that the formed phase corresponds to that of crystalline hydroxyapatite, even at 300°C of maximum temperature. Values of specific surface (BET) between 17 and 66 m2/g, with pore size in the range of 50–300 Å in both cases are obtained by N2 absorption isotherms, when analyzing the isotherms of nitrogen absorption

    Trapping cold atoms using surface-grown carbon nanotubes

    Get PDF
    We present a feasibility study for loading cold atomic clouds into magnetic traps created by single-wall carbon nanotubes grown directly onto dielectric surfaces. We show that atoms may be captured for experimentally sustainable nanotube currents, generating trapped clouds whose densities and lifetimes are sufficient to enable detection by simple imaging methods. This opens the way for a novel type of conductor to be used in atomchips, enabling atom trapping at sub-micron distances, with implications for both fundamental studies and for technological applications

    Multifunctional sol-gel derived thin film based on nanocrystaline hydroxyapatite powders

    Get PDF
    The aim of this work was to prepare bioactive hydroxyapatite coatings by sol-gel method and to study the effect of thermal treatment temperature upon the bioactivity and corrosion protection of these coatings on Ti6Al4V alloy. The application of (DTA/TGA) and (XRD) has provided valuable information about the phase transformation, mass loss, identification of the phases developed, crystallite size and degree of crystallinity. (SEM/EDX) has been applied to study the surface morphology of coated samples before and after immersion in simulated body fluid (SBF) to detect the biomimetic precipitation of the bonelike apatite. The obtained results show that all the prepared samples are ceramic nanocrystalline with crystal structure and composition like hydroxyapatite, with little deviations from that present in the human bone. The bioactivity of the studied samples is found to be closely related to the thermal treatments applied. That is, the bioactivity decreases as the temperature of the thermal treatment increase. Coatings from such prepared hydroxyapatite sol have been accomplished by dip-coating technique on non-toxic Ti6Al4V alloy for biomedical applications. The corrosion behaviour of the resulting hydroxyapatite coatings in a (SBF) has been studied by electrochemical impedance spectroscopy (EIS). The hydroxyapatite coated Ti6Al4V alloy displayed excellent bioactivity when soaked in the (SBF) and acceptable corrosion protection behaviour.This work has been supported by the National Program for Materials, Spanish Ministry of Science and Innovation (Project MAT2006-04486). A.A. El hadad acknowledges a pre-doctoral contract JAE financed by CSIC; V. Barranco acknowledges a Ramon y Cajal researcher contract financed by CSIC-MICIN

    A perspective on the pathway to a scalable quantum internet using rare-earth ions

    Full text link
    The ultimate realization of a global quantum internet will require advances in scalable technologies capable of generating, storing, and manipulating quantum information. The essential devices that will perform these tasks in a quantum network are quantum repeaters, which will enable the long-range distribution of entanglement between distant network nodes. In this perspective, we provide an overview of the primary functions of a quantum repeater and discuss progress that has been made toward the development of repeaters with rare-earth ion doped materials while noting challenges that are being faced as the technologies mature. We give particular attention to erbium, which is well suited for networking applications. Finally, we provide a discussion of near-term benchmarks that can further guide rare-earth ion platforms for impact in near-term quantum networks

    Magnetic-film atom chip with 10 μ\mum period lattices of microtraps for quantum information science with Rydberg atoms

    Get PDF
    We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 μ\mum, suitable for experiments in quantum information science employing the interaction between atoms in highly-excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cut out of a silver foil, was mounted under the atom chip in order to load ultracold 87^{87}Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.Comment: 7 pages, 7 figure

    Identifying the molecular systems that influence cognitive resilience to Alzheimer\u27s disease in genetically diverse mice.

    Get PDF
    Individual differences in cognitive decline during normal aging and Alzheimer\u27s disease (AD) are common, but the molecular mechanisms underlying these distinct outcomes are not fully understood. We utilized a combination of genetic, molecular, and behavioral data from a mouse population designed to model human variation in cognitive outcomes to search for the molecular mechanisms behind this population-wide variation. Specifically, we used a systems genetics approach to relate gene expression to cognitive outcomes during AD and normal aging. Statistical causal-inference Bayesian modeling was used to model systematic genetic perturbations matched with cognitive data that identified astrocyte and microglia molecular networks as drivers of cognitive resilience to AD. Using genetic mapping, we identifie

    Identificación y modelado de los procesos para la implementación de la norma IRAM 50520 en la UTN FRT

    Get PDF
    Desde su concepción, el grupo de investigación GIITNI tiene como fin establecer las bases para brindar servicios de Vigilancia Tecnológica a todos los posibles interesados en el proceso de innovación en cuanto a cuestiones tecnológicas, y contribuir a la gestión del conocimiento dentro de la universidad pública. El objetivo de este trabajo es presentar la implementación de un sistema de Vigilancia e Inteligencia estratégica basada en la Norma IRAM 50520 para mejorar desde su ámbito el servicio que presta la Facultad, y de ese modo lograr contribuir a la generación de valor público. Se tomará como caso de estudio el proceso de implementación de la norma IRAM en el grupo GIITNI de la Universidad Tecnológica Nacional, Facultad Regional Tucumán.Sociedad Argentina de Informática e Investigación Operativ
    corecore