44 research outputs found

    Stiffness dependence of critical exponents of semiflexible polymer chains situated on two-dimensional compact fractals

    Full text link
    We present an exact and Monte Carlo renormalization group (MCRG) study of semiflexible polymer chains on an infinite family of the plane-filling (PF) fractals. The fractals are compact, that is, their fractal dimension dfd_f is equal to 2 for all members of the fractal family enumerated by the odd integer bb (3b<3\le b< \infty). For various values of stiffness parameter ss of the chain, on the PF fractals (for 3b93\le b\le 9) we calculate exactly the critical exponents ν\nu (associated with the mean squared end-to-end distances of polymer chain) and γ\gamma (associated with the total number of different polymer chains). In addition, we calculate ν\nu and γ\gamma through the MCRG approach for bb up to 201. Our results show that, for each particular bb, critical exponents are stiffness dependent functions, in such a way that the stiffer polymer chains (with smaller values of ss) display enlarged values of ν\nu, and diminished values of γ\gamma. On the other hand, for any specific ss, the critical exponent ν\nu monotonically decreases, whereas the critical exponent γ\gamma monotonically increases, with the scaling parameter bb. We reflect on a possible relevance of the criticality of semiflexible polymer chains on the PF family of fractals to the same problem on the regular Euclidean lattices.Comment: 22 pages, 6 figure

    Hamiltonian walks on Sierpinski and n-simplex fractals

    Full text link
    We study Hamiltonian walks (HWs) on Sierpinski and nn--simplex fractals. Via numerical analysis of exact recursion relations for the number of HWs we calculate the connectivity constant ω\omega and find the asymptotic behaviour of the number of HWs. Depending on whether or not the polymer collapse transition is possible on a studied lattice, different scaling relations for the number of HWs are obtained. These relations are in general different from the well-known form characteristic of homogeneous lattices which has thus far been assumed to hold for fractal lattices too.Comment: 22 pages, 6 figures; final versio

    Hall effect in the vicinity of quantum critical point in Tm1-xYbxB12

    Full text link
    The angular, temperature and magnetic field dependences of Hall resistance roH for the rare-earth dodecaboride solid solutions Tm1-xYbxB12 have been studied in a wide vicinity of the quantum critical point (QCP) xC~0.3. The measurements performed in the temperature range 1.9-300 K on high quality single crystals allowed to find out for the first time in these fcc compounds both an appearance of the second harmonic contribution in ro2H at QCP and its enhancement under the Tm to ytterbium substitution and/or with increase of external magnetic field. When the Yb concentration x increases a negative maximum of a significant amplitude was shown to appear on the temperature dependences of Hall coefficient RH(T) for the Tm1-xYbxB12 compounds. Moreover, a complicated activation type behavior of the Hall coefficient is observed at intermediate temperatures for x>0.5 with activation energies Eg~200K and Ea~55-75K in combination with the sign inversion of RH(T) at low temperatures in the coherent regime. The density of states renormalization effects are analyzed within the variation of Yb concentration and the features of the charge transport in various regimes (charge gap formation, intra-gap manybody resonance and coherent regime) are discussed in detail in Tm1-xYbxB12 solid solutions.Comment: 38 pages including 10 figures, 70 reference

    On the construction of metrics from fuzzy metrics and its application to the fixed point theory of multivalued mappings

    Get PDF
    [EN] We present a procedure to construct a compatible metric from a given fuzzy metric space. We use this approach to obtain a characterization of a large class of complete fuzzy metric spaces by means of a fuzzy version of Caristi’s fixed point theorem, obtaining, in this way, partial solutions to a recent question posed in the literature. Some illustrative examples are also given.The authors thank the referees for several useful suggestions. Salvador Romaguera and Pedro Tirado acknowledge the support of the Ministry of Economy and Competitiveness of Spain, grant MTM2012-37894-C02-01.Castro Company, F.; Romaguera Bonilla, S.; Tirado Peláez, P. (2015). On the construction of metrics from fuzzy metrics and its application to the fixed point theory of multivalued mappings. Fixed Point Theory and Applications. 2015:226. https://doi.org/10.1186/s13663-015-0476-1S2015:226Kelley, JL: General Topology. Springer, New York (1955)Schweizer, B, Sklar, A: Statistical metric spaces. Pac. J. Math. 10, 314-334 (1960)Klement, E, Mesiar, R, Pap, E: Triangular Norms. Kluwer Academic, Dordrecht (2000)Hamacher, H: Über logische Verknüpfungen unscharfer Aussagen und deren zugehörige Bewertungsfunktionen. In: Progress in Cybernetics and Systems Research, pp. 276-287. Hemisphere, New York (1975)Kramosil, I, Michalek, J: Fuzzy metrics and statistical metric spaces. Kybernetika 11, 326-334 (1975)George, A, Veeramani, P: On some results in fuzzy metric spaces. Fuzzy Sets Syst. 64, 395-399 (1994)Gregori, V, Romaguera, S: Some properties of fuzzy metric spaces. Fuzzy Sets Syst. 115, 485-489 (2000)Radu, V: On the triangle inequality in PM-spaces. STPA, West University of Timişoara 39 (1978)Abbas, M, Ali, B, Romaguera, S: Multivalued Caristi’s type mappings in fuzzy metric spaces and a characterization of fuzzy metric completeness. Filomat 29(6), 1217-1222 (2015)Cho, YJ, Grabiec, M, Radu, V: On Nonsymmetric Topological and Probabilistic Structures. Nova Science Publishers, New York (2006)Hadžić, O, Pap, E: Fixed Point Theory in Probabilistic Metric Spaces. Kluwer Academic, Dordrecht (2001)Mihet, D: A note on Hicks type contractions on generalized Menger spaces. STPA, West University of Timişoara 133 (2002)Mihet, D: A Banach contraction theorem in fuzzy metric spaces. Fuzzy Sets Syst. 144, 431-439 (2004)Radu, V: Some fixed point theorems in PM spaces. In: Stability Problems for Stochastic Models. Lecture Notes in Mathematics, vol. 1233, pp. 125-133. Springer, Berlin (1985)Radu, V: Some remarks on the probabilistic contractions on fuzzy Menger spaces (The Eighth Intern. Conf. on Applied Mathematics and Computer Science, Cluj-Napoca, 2001). Autom. Comput. Appl. Math. 11(1), 125-131 (2002)Chauhan, S, Shatanawi, W, Kumar, S, Radenović, S: Existence and uniqueness of fixed points in modified intuitionistic fuzzy metric spaces. J. Nonlinear Sci. Appl. 7, 28-41 (2014)Hussain, N, Salimi, P, Parvaneh, V: Fixed point results for various contractions in parametric and fuzzy b-metric spaces. J. Nonlinear Sci. Appl. 8, 719-739 (2015)Mihet, D: Common coupled fixed point theorems for contractive mappings in fuzzy metric spaces. J. Nonlinear Sci. Appl. 6, 35-40 (2013)Hicks, TL: Fixed point theory in probabilistic metric spaces. Zb. Rad. Prir.-Mat. Fak. (Novi Sad) 13, 63-72 (1983)Radu, V: Some suitable metrics on fuzzy metric spaces. Fixed Point Theory 5, 323-347 (2004)O’Regan, D, Saadati, R: Nonlinear contraction theorems in probabilistic spaces. Appl. Math. Comput. 195, 86-93 (2008)Caristi, J: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Am. Math. Soc. 215, 241-251 (1976)Kirk, WA: Caristi’s fixed-point theorem and metric convexity. Colloq. Math. 36, 81-86 (1976)Ansari, QH: Metric Spaces: Including Fixed Point Theory and Set-Valued Maps. Alpha Science, Oxford (2010
    corecore