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Abstract

In this paper, we prove the generalized Hyers-Ulam stability of the following
additive-cubic-quartic functional equation

11f (x + 2y) + 11f (x − 2y)

= 44f (x + y) + 44f (x − y) + 12f (3y) − 48f (2y) + 60f (y) − 66f (x)
(1)

in various complete lattictic random normed spaces.
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1. Introduction
Probability theory is a powerful hand set for modeling uncertainty and vagueness in

various problems arising in the field of science and engineering. It has also very useful

applications in various fields, e.g., population dynamics, chaos control, computer pro-

gramming, nonlinear dynamical systems, nonlinear operators, statistical convergence

and others. The random topology proves to be a very useful tool to deal with such

situations where the use of classical theories breaks down. The usual uncertainty prin-

ciple of Werner Heisenberg leads to a generalized uncertainty principle, which has

been motivated by string theory and non-commutative geometry. In strong quantum

gravity, regime space-time points are determined in a random manner. Thus, impossi-

bility of determining the position of particles gives the space-time a random structure.

Because of this random structure, position space representation of quantum mechanics

breaks down and so a generalized normed space of quasi-position eigenfunction is

required. Hence one needs to discuss on a new family of random norms. There are

many situations where the norm of a vector is not possible to be found and the con-

cept of random norm seems to be more suitable in such cases, i.e., we can deal with

such situations by modeling the inexactness through the random norm.

The stability problem of functional equations originated from a question of Ulam [1]

concerning the stability of group homomorphisms. Hyers [2] gave a first affirmative

partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was gener-

alized by Aoki [3] for additive mappings and by Rassias [4] for linear mappings by
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considering an unbounded Cauchy difference. The paper of Rassias [4] has provided a

lot of influence in the development of what we call generalized Hyers-Ulam stability or

as Hyers-Ulam-Rassias stability of functional equations. A generalization of the Rassias

theorem was obtained by Găvruta [5] by replacing the unbounded Cauchy difference

by a general control function in the spirit of Rassias approach.

The stability problems of several functional equations have been extensively investi-

gated by a number of authors and there are many interesting results concerning this

problem (see [4,6-27]).

In [28,29], Jun and Kim considered the following cubic functional equation

f (2x + y) + f (2x − y) = 2f (x + y) + 2f (x − y) + 12f (x). (2)

It is easy to show that the function f(x) = x3 satisfies the functional equation (2),

which is called a cubic functional equation and every solution of the cubic functional

equation is said to be a cubic mapping.

In [8], Lee et al. considered the following quartic functional equation

f (2x + y) + f (2x − y) = 4f (x + y) + 4f (x − y) + 24f (x) − 6f (y). (3)

It is easy to show that the function f(x) = x4 satisfies the functional equation (3),

which is called a quartic functional equation and every solution of the quartic func-

tional equation is said to be a quartic mapping.

Let X be a set. A function d : X × X ® [0, ∞] is called a generalized metric on X if d

satisfies the following conditions:

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y Î X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z Î X.

We recall a fundamental result in fixed point theory.

Theorem 1.1. [30,31]Let (X, d) be a complete generalized metric space and J : X ® X

be a strictly contractive mapping with Lipschitz constant L < 1. Then, for any x Î X,

either

d(Jnx, Jn+1x) = ∞

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) < ∞ for all n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y* of J;

(3) y* is the unique fixed point of J in the set Y = {y ∈ X|d(Jn0 x, y) < ∞};
(4) d(y, y∗) ≤ 1

1−L d(y, Jy)for all y Î Y.

In 1996, Isac and Rassias [32] were the first to provide applications of stability theory

of functional equations for the proof of new fixed point theorems with applications.

Using fixed point methods, the stability problems of several functional equations have

been extensively investigated by a number of authors (see [33-38]).
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2. Preliminaries
The theory of random normed spaces (RN-spaces) is important as a generalization of

deterministic result of linear normed spaces and also in the study of random operator

equations. The RN-spaces may also provide us the appropriate tools to study the geo-

metry of nuclear physics and have important application in quantum particle physics.

The generalized Hyers-Ulam stability of different functional equations in random

normed spaces, RN-spaces and fuzzy normed spaces has been recently studied by

Alsina [39], Mirmostafaee, Mirzavaziri and Moslehian [40,35], Miheţ, and Radu [41],

Miheţ, et al. [42,43], Baktash et. al [44], Najati [45] and Saadati et. al. [24].

Let L = (L,≥L) be a complete lattice, i.e., a partially ordered set in which every none-

mpty subset admits supremum and infimum and 0L = infL, 1L = supL. The space of

latticetic random distribution functions, denoted by �+
L, is defined as the set of all map-

pings F : ℝ ∪ {-∞, +∞} ® L such that F is left continuous, non-decreasing on ℝ and

F(+∞) = 1L, F(+∞) = 1L.
The subspace D+

L ⊆ �+
L is defined as D+

L = {F ∈ �+
L : l−F(+∞) = 1L}, where l- f(x)

denotes the left limit of the function f at the point x. The space �+
L is partially ordered

by the usual point-wise ordering of functions, i.e., F ≥ G if and only if F(t) ≥L G(t) for

all t in ℝ. The maximal element for �+
L in this order is the distribution function given

by

ε0(t) =
{
0L, if t ≤ 0,
1L, if t > 0.

Definition 2.1. [46] A triangular norm (t-norm) on L is a mapping T : (L)2 → L

satisfying the following conditions:

(1) (∀x ∈ L)(T (x, 1L) = x) (: boundary condition);

(2) (∀(x, y) ∈ (L)2)(T (x, y) = T (y, x)) (: commutativity);

(3) (∀(x, y, z) ∈ (L)3)(T (x,T (y, z)) = T (T (x, y), z)) (: associativity);

(4) (∀(x, x’, y, y’) Î (L)4)(x ≤L x’ and y≤Ly′ ⇒ T (x, y)≤LT (x′, y′)) (: monotonicity).

Let {xn} be a sequence in L converges to x Î L (equipped the order topology). The t-

norm T is called a continuous t-norm if

lim
n→∞ T (xn, y) = T (x, y),

for any y Î L.

A t-norm T can be extended (by associativity) in a unique way to an n-array opera-

tion taking for (x1, ..., xn) Î Ln the value T (x1, . . . , xn) defined by

T 0
i=1xi = 1, T n

i=1xi = T (T n−1
i=1 xi, xn) = T (x1, . . . , xn).

The t-norm T can also be extended to a countable operation taking, for any

sequence {xn} in L, the value

T ∞
i=1xi = lim

n→∞ T n
i=1xi. (4)

The limit on the right side of (4) exists since the sequence (T n
i=1xi)n∈N is non-increas-

ing and bounded from below.
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Note that we put T = T whenever L = [0, 1]. If T is a t-norm then, for all x Î [0, 1]

and n Î N ∪ {0}, x(n)T
is defined by 1 if n = 0 and T(x(n−1)

T , x) if n ≥ 1. A t-norm T is

said to be of Hadžić-type (we denote by T ∈ H) if the family (x(n)T )n∈N is equicontinu-

ous at x = 1 (see [47]).

Definition 2.2. [46] A continuous t-norm T on L = [0, 1]2 is said to be continuous

t-representable if there exist a continuous t-norm * and a continuous t-conorm ◇ on

[0, 1] such that, for all x = (x1, x2), y = (y1, y2) Î L,

T (x, y) = (x1 ∗ y1, x2♦y2).

For example,

T (a, b) = (a1b1,min{a2 + b2, 1})

and

M(a, b) = (min{a1, b1},max{a2, b2})

for all a = (a1, a2), b = (b1, b2) Î [0, 1]2 are continuous t-representable.

Define the mapping T∧ from L2 to L by

T∧(x, y) =
{
x, if y≥Lx,
y, if x≥Ly.

Recall (see [47,48]) that, if {xn} is a given sequence in L, then (T∧)ni=1xi is defined

recurrently by (T∧)1i=1xi = x1 and (T∧)ni=1xi = T∧((T∧)n−1
i=1 xi, xn) for all n ≥ 2.

A negation on L is any decreasing mapping N : L → L satisfying N (0L) = 1L and

N (1L) = 0L. If N (N (x)) = x for all x Î L, then N is called an involutive negation. In

the following, L is endowed with a (fixed) negation N .

Definition 2.3. A latticetic random normed space is a triple (X,μ,T∧), where X is a

vector space and μ is a mapping from X into D+
L satisfying the following conditions:

(LRN1) μx(t) = ε0(t) for all t > 0 if and only if x = 0;

(LRN2) μαx(t) = μx

(
t

|α|
)
for all x in X, a ≠ 0 and t ≥ 0;

(LRN3) μx+y(t + s)≥LT∧(μx(t),μy(s)) for all x, y Î X and t, s ≥ 0.

We note that, from (LPN2), it follows μ-x(t) = μx(t) for all x Î X and t ≥ 0.

Example 2.4. Let L = [0, 1] × [0, 1] and an operation ≤L be defined by

L = {(a1, a2) : (a1, a2) ∈ [0, 1] × [0, 1] and a1 + a2 ≤ 1},
(a1, a2)≤L(b1, b2) ⇔ a1 ≤ b1, a2 ≥ b2, ∀a = (a1, a2), b = (b1, b2) ∈ L.

Then (L, ≤L) is a complete lattice (see [46]). In this complete lattice, we denote its

units by 0L = (0, 1) and 1L = (1, 0). Let (X, ||·||) be a normed space. Let

T (a, b) = (min{a1, b1},max{a2, b2}) for all a = (a1, a2), b = (b1, b2) Î [0, 1] × [0, 1]

and μ be a mapping defined by

μx(t) =
(

t
t + ||x|| ,

||x||
t + ||x||

)
, ∀t ∈ R+.

Then, (X,μ,T ) is a latticetic random normed spaces.
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If (X,μ,T∧) is a latticetic random normed space, then we have

V = {V(ε,λ) : ε>L0L,λ ∈ L\{0L, 1L}

is a complete system of neighborhoods of null vector for a linear topology on X gen-

erated by the norm F, where

V(ε,λ) = {x ∈ X : Fx(ε) >LN (λ)}.

Definition 2.5. Let (X,μ,T∧) be a latticetic random normed spaces.

(1) A sequence {xn} in X is said to be convergent to a point x Î X if, for any t > 0

and ε ∈ L\{0L}, there exists a positive integer N such that μxn−x(t) >LN (ε) for all n ≥

N.

(2) A sequence {xn} in X is called a Cauchy sequence if, for any t > 0 and ε ∈ L\{0L},
there exists a positive integer N such that μxn−xm(t) >LN (ε) for all n ≥ m ≥ N.

(3) A latticetic random normed space (X,μ,T∧) is said to be complete if every Cau-

chy sequence in X is convergent to a point in X.

Theorem 2.6. If (X,μ,T∧)is a latticetic random normed space and {xn} is a sequence

such that xn ® x, then limn→∞ μxn(t) = μx(t).

Proof. The proof is the same as classical random normed spaces (see [49]). □
Lemma 2.7. Let (X,μ,T∧)be a latticetic random normed space and x Î X. If

μx(t) = C, ∀t > 0,

then C= 1Land x = 0.

Proof. Let μx(t) = C for all t > 0. Since Ran(μ) ⊆ D+
L, we have C= 1L and, by (LRN1),

we conclude that x = 0. □

3. Non-Archimedean Lattictic random normed space
By a non-Archimedean field, we mean a field K equipped with a function (valuation) | ·

| from K into [0, ∞) such that |r| = 0 if and only if r = 0, |rs| = |r| |s| and |r + s| ≤

max{|r|, |s|} for all r, s ∈ K. Clearly, |1| = | - 1| = 1 and |n| ≤ 1 for all n Î N. By the

trivial valuation we mean the mapping | · | taking everything but 0 into 1 and |0| = 0.

Let X be a vector space over a field K with a non-Archimedean non-trivial valuation

| · |. A function || · || : X → [0,∞) is called a non-Archimedean norm, if it satisfies the

following conditions:

(1) ||x|| = 0 if and only if x = 0;

(2) for any r ∈ K, x ∈ X , ||rx|| = |r| ||x||;

(3) the strong triangle inequality (ultrametric), i.e.,

||x + y|| ≤ max{||x||, ||y||}, ∀x, y ∈ X ).

Then (X , || · ||) is called a non-Archimedean normed space.

Due to the fact that

||xn − xm|| ≤ max{||xj+1 − xj|| : m ≤ j ≤ n − 1}, ∀m,n ∈ N(n > m),

a sequence {xn} is a Cauchy sequence if and only if {xn+1 - xn} converges to zero in a

non-Archimedean normed space. By a complete non-Archimedean normed space, we

mean one in which every Cauchy sequence is convergent.

Cho and Saadati Advances in Difference Equations 2011, 2011:31
http://www.advancesindifferenceequations.com/content/2011/1/31

Page 5 of 12



In 1897, Hensel [50] discovered the p-adic numbers as a number theoretical analo-

gue of power series in complex analysis. Fix a prime number p. For any nonzero

rational number x, there exists a unique integer nx Î ℤ such that x = a
b p

nx, where a

and b are integers not divisible by p. Then, |x|p := p−nx defines a non-Archimedean

norm on Q. The completion of Q with respect to the metric d(x, y) = |x - y|p is

denoted by Qp, which is called the p-adic number field.

Throughout the paper, we assume that X is a vector space and Y is a complete non-

Archimedean normed space.

Definition 3.1. A non-Archimedean lattictic random normed space (briefly, non-

Archimedean LRN-space) is a triple (X ,μ,T ), where X is a linear space over a non-

Archimedean field K, T is a continuous t-norm and is μ is a mapping from X into D+
L

satisfying the following conditions hold:

(NA-LRN1) μx(t) = ε0(t) for all t > 0 if and only if x = 0;

(NA-LRN2) μαx(t) = μx

(
t

|α|
)
for all x ∈ X , t > 0, a ≠ 0;

(NA-LRN3) μx+y(max{t, s})≥LT (μx(t),μy(s)) for all x, y, z ∈ X and t, s ≥ 0.

It is easy to see that, if (NA-LRN3) holds, then we have

(RN3) μx+y(t + s)≥LT (μx(t),μy(s)).

As a classical example, if (X , ||.||) is a non-Archimedean normed linear space, then

the triple (X ,μ,T ), where L = [0, 1], T = min and

μx(t) =
{
0, t ≤ ||x||,
1, t > ||x||,

is a non-Archimedean LRN-space.

Example 3.2. Let (X , ||.||) be is a non-Archimedean normed linear space in which L

= [0, 1]. Define

μx(t) =
t

t + ||x|| , ∀x ∈ X , t > 0.

Then (X ,μ,min) is a non-Archimedean RN-space.

Definition 3.3. Let (X ,μ,T ) be a non-Archimedean LRN-space and {xn} be a

sequence in X .

(1) The sequence {xn} is said to be convergent if there exists x ∈ X such that

lim
n→∞ μxn−x(t) = 1L

for all t > 0. In that case, x is called the limit of the sequence {xn}.

(2) The sequence {xn} in X is called a Cauchy sequence if, for any ε ∈ L\{0L} and t >

0, there exists a poisitve integer n0 such that, for all n ≥ n0 and p > 0,

μxn+p−xn(t) >LN (ε).

(3) If every Cauchy sequence is convergent, then the random norm is said to be com-

plete and the non-Archimedean RN-space is called a non-Archimedean random

Banach space.
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Remark 3.4. [51] Let (X ,μ,T∧) be a non-Archimedean LRN-space. Then, we have

μxn+p−xn(t)≥LT∧{μxn+j+1−xn+j(t) : j = 0, 1, 2, ..., p − 1}.

Thus the sequence {xn} is Cauchy sequence if, for any ε ∈ L\{0L} and t > 0, there

exists a positive integer n0 such that, for all n ≥ n0,

μxn+1−xn(t) >LN (ε).

4. Generalized Ulam-Hyers stability for functional equation (1): an odd case
in non-Archimedean LRN-spaces
Let K be a non-Archimedean field, X be a vector space over K and (Y ,μ,T) be a non-

Archimedean random Banach space over K In this section, we investigate the stability

of the functional equation (1): an odd case where f is a mapping from K to Y.
Let Ψ be a distribution function on X × X to D+

L (Ψ(x, y, t) denoted by Ψx,y(t) such

that

�cx,cx(t)≥L�x,x

(
t
|c|

)
, ∀x ∈ X , c �= 0.

Definition 4.1. A mapping f : X → Y is said to be Ψ-approximately mixed ACQ if

μDf (x,y)(t)≥L�x,y(t), ∀x, y ∈ X , t > 0. (5)

We assume that 2 ≠ 0 in K (i.e., the characteristic of K is not 2). Our main result, in

this section, is as follows:

Theorem 4.2. Let Kbe a non-Archimedean field, Xbe a vector space over Kand
(Y ,μ,T)be a non-Archimedean complete LRN-space over KLet f : X → Ybe an odd

and Ψ-approximately mixed ACQ mapping. If, for some a Î ℝ, a > 0, and some integer

k, k > 3 with |2k| <a,

�2−kx,2−ky(t) ≥ �x,y(αt), ∀x ∈ X , t > 0, (6)

and

lim
n→∞ T∞

j=nM
(
x,

αjt

|2|kj
)
= 1L, ∀x ∈ X , t > 0, (7)

then there exists a unique cubic mapping C : X → Y such that

μf (x)−C(x)(t)≥LT ∞
i=1M

(
x,

αi+1t

|2|ki
)
, ∀x ∈ X , t > 0, (8)

where

M(x, t) := T(�x,0(t),�2x,0(t), . . . ,�2k−1x,0(t)), ∀x ∈ X , t > 0.

Proof. First, by induction on j, we show that for any x ∈ X , t > 0 and j ≥ 2,

μf (4jx)−256j f (x)(t) ≥ Mj(x, t) := T(�(x, 0, t), . . . ,�(4j−1x, 0, t)). (9)

Putting y = 0 in (5), we obtain

μf (4x)−256f (x)(t) ≥ �(x, 0, t), ∀x ∈ X , t > 0.
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This proves (9) for j = 2. Assume that (9) holds for some j ≥ 2. Replacing y by 0 and

x by 4jx in (5), we get

μf (4j+1x)−256f (4jx)(t) ≥ �(4jx, 0, t), ∀x ∈ X , t > 0.

Since |256| ≤ 1, we have

μf (4j+1x)−256j+1f (x)(t) ≥ T(μf (4j+1x)−256f (4jx)(t),μ256f (4jx)−256j+1f (x)(t))

= T
(

μf (4j+1x)−256f (4jx)(t),μf (4jx)−256j f (x)

(
t

|256|
))

≥ T(μf (4j+1x)−256f (4jx)(t),μf (4jx)−256j f (x)(t))

≥ T(�(4jx, 0, t),Mj(x, t))

= Mj+1(x, t), ∀x ∈ X .

Thus (9) holds for all j ≥ 2. In particular,

μf (4kx)−256kf (x)(t) ≥ M(x, t), ∀x ∈ X , t > 0. (10)

Replacing x by 4-(kn+k)x in (10) and using inequality (6), we obtain

μ
f
( x
4kn

)
−256kf

( x
4kn+k

)(t) ≥ M
( x

4kn+k
, t

)
≥ M(x,αn+1t), ∀x ∈ X , t > 0, n ≥ 0.

(11)

Then, we have

μ
(44k)

n
f
(

x
(4k)n

)
−(44k)

n+1
f
(

x
(4k)n+1

)(t) ≥ M

(
x,

αn+1

|(44k)n|
t

)
, ∀x ∈ X , t > 0, n ≥ 0,

and so

μ
(44k)

n
f
(

x
(4k)

n

)
−(44k)

n+p
f
(

x
(4k)

n+p

)(t)

≥ Tn+p
j=n

⎛
⎜⎝μ

(44k)
j
f

(
x

(4k)
j

)
−(44k)

j+p
f

(
x

(4k)
j+p

)(t)
⎞
⎟⎠

≥ Tn+p
j=n M

(
x,

αj+1

|(44k)j|
t

)

≥ Tn+p
j=n M

(
x,

αj+1

|(4k)j|
t

)
, ∀x ∈ X , t > 0, n ≥ 0.

Since limn→∞T∞
j=nM

(
x, αj+1

|(4k)j| t
)
= 1 for all x ∈ X and t > 0,

{
(44k)

n
f
(

x
(4k)

n

)}
is a Cau-

chy sequence in the non-Archimedean random Banach space (Y ,μ,T). Hence we can

define a mapping Q : X → Y such that

lim
n→∞ μ

(44k)
n
f
(

x
(4k)n

)
−Q(x)

(t) = 1, ∀x ∈ X , t > 0.
(12)
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Next, for all n ≥ 1, x ∈ X and t > 0, we have

μ
f (x)−(44k)

n
f
(

x
(4k)n

)(t) = μ∑n−1
i=0 (44k)

i
f
(

x
(4k)i

)
−(44k)

i+1
f
(

x
(4k)i+1

)(t)

≥ Tn−1
i=0

(
μ
(44k)

i
f
(

x
(4k)i

)
−(44k)

i+1
f
(

x
(4k)i+1

)(t)
)

≥ Tn−1
i=0 M

(
x,

αi+1t

|44k|i
)
.

Therefore, it follows that

μf (x)−Q(x)(t) ≥ T

(
μ
f (x)−(44k)

n
f
(

x
(4k)n

)(t),μ
(44k)

n
f
(

x
(4k)n

)
−Q(x)

(t)

)

≥ T

(
Tn−1
i=0 M

(
x,

αi+1t

|44k|i
)
,μ

(44k)
n
f
(

x
(4k)n

)
−Q(x)

(t)

)
.

By letting n ® ∞, we obtain

μf (x)−Q(x)(t) ≥ T∞
i=1M

(
x,

αi+1t

|4k|i
)
,

which proves (8). Since T is continuous, from a well-known result in probabilistic

metric space (see [49], Chapter 12), it follows that

lim
n→∞ μ�1(x,y,k)(t) = μ�2(x,y)(t), ∀x, y ∈ X , t > 0,

for almost all t > 0., where

�1(x, y, k) =(4k)
n · 16f (4−kn(x + 4y)) + (4k)nf (4−kn(4x − y))

− 306[(4k)
n · 9f (4−kn(x +

y
3
)) + (4k)nf (4−kn(x + 2y))]

− 136(4k)
n
f (4−kn(x − y)) + 1394(4k)nf (4−kn(x + y))

− 425(4k)
n
f (4−kny) + 1530(4k)nf (4−knx)

and

�2(x, y) =16Q(x + 4y) +Q(4x − y) − 306
[
9Q

(
x +

y
3

)
+Q(x + 2y)

]
− 136Q(x − y) + 1394Q(x + y) − 425Q(y) + 1530Q(x).

On the other hand, replacing x, y by 4-knx, 4-kny, respectively, in (5) and using (NA-

RN2) and (6), we get

μ�1(x,y,k)(t) ≥ �

(
4−knx, 4−kny,

t

|4k|n
)

≥ �

(
x, y,

αnt

|4k|n
)
, ∀x, y ∈ X , t > 0.

Since limn→∞�
(
x, y, αnt

|4k|n
)
= 1, it follows that Q is a quartic mapping.

If Q′ : X → Y is another quartic mapping such that μQ’(x)-f(x)(t) ≥ M(x, t) for all

x ∈ X and t > 0, then, for all n Î N, x ∈ X and t > 0,
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μQ(x)−Q′(x)(t) ≥ T

(
μ
Q(x)−(44k)

n
f
(

x
(4k)n

)(t),μ
(44k)

n
f
(

x
(4k)n

)
−Q′(x)

(t), t)

)
.

Therefore, by (12), we conclude that Q = Q’. This completes the proof. □
Corollary 4.3. Let Kbe a non-Archimedean field, Xbe a vector space over Kand

(Y ,μ,T)be a non-Archimedean random Banach space over Kunder a t-norm T ∈ H.

Let f : X → Ybe a Ψ-approximately quartic mapping. If, for some a Î ℝ, a > 0, and

some integer k, k > 3, with |4k| <a

�(4−kx, 4−ky, t) ≥ �(x, y,αt), ∀x ∈ X , t > 0,

then there exists a unique quartic mapping Q : X → Ysuch that

μf (x)−Q(x)(t) ≥ T∞
i=1M

(
x,

αi+1t

|4|ki
)
, ∀x ∈ X , t > 0,

where

M(x, t) := T(�(x, 0, t),�(4x, 0, t), ...,�(4k−1x, 0, t)), ∀x ∈ X , t > 0.

Proof. Since

lim
n→∞M

(
x,

αjt

|4|kj
)
= 1, ∀x ∈ X , t > 0,

and T is of Hadžić type, it follows that

lim
n→∞ T∞

j=nM
(
x,

αjt

|4|kj
)
= 1, ∀x ∈ X , t > 0.

Now, if we apply Theorem 4.2, we get the conclusion. □
Example 4.4. Let (X ,μ,TM) non-Archimedean random normed space in which

μx(t) =
t

t + ||x|| , ∀x ∈ X , t > 0,

and (Y ,μ,TM) a complete non-Archimedean random normed space (see Example

3.2). Define

�(x, y, t) =
t

1 + t
.

It is easy to see that (6) holds for a = 1. Also, since

M(x, t) =
t

1 + t
,

we have

lim
n→∞ T∞

M,j=nM
(
x,

αjt

|4|kj
)
= lim

n→∞

(
lim
m→∞ TmM,j=nM

(
x,

t

|4|kj
))

= lim
n→∞ lim

m→∞

(
t

t + |4k|n
)

= 1, ∀x ∈ X , t > 0.
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Let f : X → Y be a Ψ-approximately quartic mapping. Thus, all the conditions of

Theorem 4.2 hold and so there exists a unique quartic mapping Q : X → Y such that

μf (x)−Q(x)(t) ≥ t

t + |4k| .
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